首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
We investigated higher-level phylogenetic relationships within the genus Halictus based on parsimony and maximum likelihood (ML) analysis of elongation factor-1α DNA sequence data. Our data set includes 41 OTUs representing 35 species of halictine bees from a diverse sample of outgroup genera and from the three widely recognized subgenera of Halictus (Halictus s.s., Seladonia, and Vestitohalictus). We analyzed 1513 total aligned nucleotide sites spanning three exons and two introns. Equal-weights parsimony analysis of the overall data set yielded 144 equally parsimonious trees. Major conclusions supported in this analysis (and in all subsequent analyses) included the following: (1) Thrincohalictus is the sister group to Halictus s.l., (2) Halictus s.l. is monophyletic, (3) Vestitohalictus renders Seladonia paraphyletic but together Seladonia + Vestitohalictus is monophyletic, (4) Michener's Groups 1 and 3 are monophyletic, and (5) Michener's Group 1 renders Group 2 paraphyletic. In order to resolve basal relationships within Halictus we applied various weighting schemes under parsimony (successive approximations character weighting and implied weights) and employed ML under 17 models of sequence evolution. Weighted parsimony yielded conflicting results but, in general, supported the hypothesis that Seladonia + Vestitohalictus is sister to Michener's Group 3 and renders Halictus s.s. paraphyletic. ML analyses using the GTR model with site-specific rates supported an alternative hypothesis: Seladonia + Vestitohalictus is sister to Halictus s.s. We mapped social behavior onto trees obtained under ML and parsimony in order to reconstruct the likely historical pattern of social evolution. Our results are unambiguous: the ancestral state for the genus Halictus is eusociality. Reversal to solitary behavior has occurred at least four times among the species included in our analysis.  相似文献   

2.
Phylogenetic systematic analysis of 20 aspidobothrean taxa using 33 transformation series based in comparative morphology yields three most parsimonious trees with a consistency index of 62%. The trees agree with familial-level relationships of (Rugogastridae (Stichocotylidae (Multicalycidae + Aspidogastridae))) supported by previous phylogenetic systematic assessments, which were based on only 10 transformation series. The analysis does not support completely the current subfamilial classification of the Aspidogastridae: both the Aspidobothriinae [as ( Aspidogaster + Lobatostoma )] and the Cotylaspinae [as Cotylogasteroides + Cotylogaster basiri (( Cotylaspis + Lissemysia ) ( Rohdella ( Lophotaspis ( Multicotyle + Sychnocotyle )))))] are supported as monophyletic groups. Recognizing Rohdellinae, however, would make the Cotylaspinae paraphyletic. The trees support a basal trichotomy of Cotylogaster michaelis + Aspidobothriinae + Cotylaspinae. Within the Aspidogastrinae, Aspidogaster conchicola , type species of the genus, is the sister group of all other species currently placed in the genus + Lobatosoma spp., rendering Aspidogaster paraphyletic.  相似文献   

3.
Approximately 5% of the known species-level diversity of Diptera belongs to the Muscoidea with its approximately 7000 described species. Despite including some of the most abundant and well known flies, the phylogenetic relationships within this superfamily are poorly understood. Previous attempts at reconstructing the relationships based on morphology and relatively small molecular data sets were only moderately successful. Here, we use molecular data for 127 exemplar species of the Muscoidea, two species from the Hippoboscoidea, ten species representing the Oestroidea and seven outgroup species from four acalyptrate superfamilies. Four mitochondrial genes 12S, 16S, COI, and Cytb, and four nuclear genes 18S, 28S, Ef1a, and CAD are used to reconstruct the relationships within the Muscoidea. The length-variable genes were aligned using a guide tree that was based on the protein-encoding genes and the indel-free sections of the ribosomal genes. We found that, based on topological considerations, this guide tree was a significant improvement over the default guide trees generated by ClustalX. The data matrix was analyzed using maximum parsimony (MP) and maximum likelihood (ML) and yielded very similar tree topologies. The Calyptratae are monophyletic and the Hippoboscoidea are the sister group to the remaining calyptrates (MP). The Muscoidea are paraphyletic with a monophyletic Oestroidea nested within the Muscoidea as sister group to Anthomyiidae+Scathophagidae. The monophyly of three of the four recognized families in the Muscoidea is confirmed: the Fanniidae, Muscidae, and Scathophagidae. However, the Anthomyiidae are possibly paraphyletic. Within the Oestroidea, the Sarcophagidae and Tachinidae are sister groups and the Calliphoridae are paraphyletic.  相似文献   

4.
基于细胞色素b的鸫亚科部分鸟类的系统进化   总被引:8,自引:0,他引:8  
采用分子系统学方法对鸫亚科(Turdinae)16属35种鸟类的线粒体细胞色素b基因进行系统发生分析。所测序列经对位排列后共983bp,包含变异位点399个,简约信息位点349个。以太平鸟(Bombycillagarrulus)和雪松太平鸟(Bombycillacedrorum)为外群,采用邻接法、最大简约法、最大似然法和贝叶斯法分别构建鸫亚科的系统发生树。研究结果表明:构建的系统树将所研究鸫亚科鸟类分为2个支系。第1个支系包括鸫属(Turdus)、地鸫属(Zoothera)和宽嘴鸫属(Cochoa);第2个支系包括歌鸲属(Luscinia)、鸲属(Tarsiger)、鹊鸲属(Copsychus)、薮鸲属(Cercotrichas)、红尾鸲属(Phoenicurus)、水鸲属(Rhyacornis)、燕尾属(Enivurus)、啸鸫属(Myiophoneus)、石属(Saxicola)、属(Oenanthe)、溪鸲属(Chaimarrornis)、矶鸫属(Monticola)和欧亚鸲属(Erithacus)。其中地鸫属并非单系类群;红尾鸲属为并系发生,水鸲属和溪鸲属归并到这一支系;石属与矶鸫属互为姐妹群,再与属聚合构成另一支系;然后上述两个支系构成姐妹群;歌鸲属和鸲属聚成姐妹群。对于鹊鸲属、薮鸲属、啸鸫属、欧亚鸲属、宽嘴鸫属和燕尾属,本研究结果并没有完全解决它们在大分支内与其它属间的亲缘关系  相似文献   

5.
记述了中国绒毛隧蜂亚属的8个现有物种,其中Halictus(Vestitohalictus)mucoreus(Eversmann)和Halictus(Vestitohalictus)pulvereus Morawitz为中国新纪录种.对每一物种进行了重描述,并给出其分布和采访植物记录.中国绒毛隧蜂亚属已知种的检索表,每种的结构特征图,特别是雄性S7-S8和外生殖器的结构特征图在文中一并给出.  相似文献   

6.
Phylogeny and classification of Marantaceae   总被引:1,自引:0,他引:1  
Relationships of Marantaceae were estimated from nucleotide sequence variation in the rps16 intron (plastid DNA) and from morphological characters. Fifty-nine species (21 genera) formed the ingroup, and 12 species (12 genera) of other Zingiberales formed the outgroup. There is no support for the traditional subdivision of Marantaceae into a triovulate and a uniovulate tribe or the informal groups previously proposed. The so-called Donax group forms a paraphyletic grade that is basal within Marantaceae. Thalia appears as the distal branch of this grade, but its position is not supported in jackknife analysis. The so-called Calathea group is monophyletic in all shortest trees but not supported with greater than 50% jackknife. The genus Calathea appears to be paraphyletic. The Maranta and Phrynium groups are clearly polyphyletic. Maranta, Koernickanthe , and genera of the Mymsma group, all neotropical, form a strongly supported monophyletic group. The sister of this group is the palaeotropical genus Halopegia. Koernickanthe is nested within Maranta , as this genus is traditionally circumscribed. The African genera Ataenidia and Marantochloa form a strongly supported clade in which Ataenidia is the sister group to Marantochloa . Based on phylogeny it is concluded that Africa, in spite of being much poorer in species, is the most likely ancestral area of Marantaceae  相似文献   

7.
The chloroplast-encoded atp B gene was sequenced from 33 strains representing 28 species of the colonial Volvocales (the Volvocaceae and its relatives) to reexamine phylogenetic relationships as previously deduced by morphological data and rbc L gene sequence data.1128 base pairs in the coding regions of the atp B gene were analyzed by MP, NJ, and ML analyses. Although supported with relatively low bootstrap values (75% and 65% in the NJ and ML analyses, respectively), three anisogamous/oogamous volvocacean genera— Eudorina, Pleodorina, and Volvox, excluding the section Volvox (= Euvolvox, illegitimate name), constituted a large monophyletic group (Eudorina group). Outside the Eudorina group, a robust lineage composed of three species of Volvox sect. Volvox was resolved as in the rbc L gene trees, rejecting the hypothesis of the previous cladistic analysis based on morphological data that the genus Volvox is monophyletic. In addition, the NJ and ML trees suggested that Eudorina is a nonmonophyletic genus as inferred from the morphological data and rbc L gene sequences. Although phylogenetic status of the genus Gonium is ambiguous in the rbc L gene trees and the paraphyly of this genus is resolved in the cladistic analysis based on morphological data, the atp B gene sequence data suggest monophyly of Gonium with relatively low bootstrap values (56–61%) in the NJ and ML trees. On the basis of the combined sequence data (2256 base pairs) from atp B and rbc L genes, Gonium was resolved as a robust monophyletic genus in the NJ and ML trees (with 68–86% bootstrap values), and Eudorina elegans Ehrenberg represented a paraphyletic species positioned most basally within the Eudorina group. However, phylogenetic status and relationships of the families of the colonial Volvocales were still almost ambiguous even in the combined analysis.  相似文献   

8.
Summary Halictine bees exhibit an enormous diversity of solitary and social colony structures. To investigate social evolution in the genusHalictus, phylogenies of 15 species of the subgeneraH. (Halictus) andH. (Seladonia) were constructed based on protein electrophoretic data. Solitary, social, and socially polymorphic species were included.Halictus (Seladonia) apparently rendersH. (Halictus) paraphyletic. The common ancestor ofH. (Halictus) andH. (Seladonia) was probably social or socially polymorphic. This implies that some solitary and socially polymorphic species, such asH. confusus andH. tumulorum, represent evolutionary reversals from a completely eusocial condition to the solitary condition that is thought to be primitive for the subfamily as a whole.  相似文献   

9.
The weta Hemideina crassidens has two chromosomal races that differ by two centric fusions or fissions. The mitochondrial DNA of weta from both chromosomal races and a sister species were sequenced for a 750-bp region of the gene coding for cytochrome oxidase I. The average pairwise genetic distance among the 15 (XO)-chromosome race weta was almost four times greater than the average distance among the 19 (XO)-chromosome race weta. The weta from the 19-chromosome race formed a well-supported monophyletic clade in all shortest maximum parsimony trees. Maximum likelihood and neighbor-joining trees suggested that the 15-chromosome karyotype was paraphyletic with respect to the 19-chromosome karyotype, but this was not supported by maximum parsimony analyses. Although phylogenetic analysis could not exclude chromosome fusion as the rearrangement responsible for the karyotype differentiation, the level of sequence variation and pattern of distribution appear to implicate fission as the more likely event.  相似文献   

10.
Major aspects of lorisid phylogeny and systematics remain unresolved, despite several studies (involving morphology, histology, karyology, immunology, and DNA sequencing) aimed at elucidating them. Our study is the first to investigate the evolution of this enigmatic group using molecular and morphological data for all four well-established genera: Arctocebus, Loris, Nycticebus, and Perodicticus. Data sets consisting of 386 bp of 12S rRNA, 535 bp of 16S rRNA, and 36 craniodental characters were analyzed separately and in combination, using maximum parsimony and maximum likelihood. Outgroups, consisting of two galagid taxa (Otolemur and Galagoides) and a lemuroid (Microcebus), were also varied. The morphological data set yielded a paraphyletic lorisid clade with the robust Nycticebus and Perodicticus grouped as sister taxa, and the galagids allied with Arctocebus. All molecular analyses maximum parsimony (MP) or maximum likelihood (ML) which included Microcebus as an outgroup rendered a paraphyletic lorisid clade, with one exception: the 12S + 16S data set analyzed with ML. The position of the galagids in these paraphyletic topologies was inconsistent, however, and bootstrap values were low. Exclusion of Microcebus generated a monophyletic Lorisidae with Asian and African subclades; bootstrap values for all three clades in the total evidence tree were over 90%. We estimated mean genetic distances for lemuroids vs. lorisoids, lorisids vs. galagids, and Asian vs. African lorisids as a guide to relative divergence times. We present information regarding a temporary land bridge that linked the two now widely separated regions inhabited by lorisids that may explain their distribution. Finally, we make taxonomic recommendations based on our results.  相似文献   

11.
We reanalysed Yang & Pattern's allozyme data, published in Auk in 1981, of Darwin's finches with a variety of distance and cladistic methods to estimate the phylogeny of the group. Different methods yielded different results, nevertheless there was widespread agreement among the distance methods on several groupings. First, the two species of Camarhynchus grouped near one another, but not always as a monophyletic group. Second, Cactospiza pallida and Platyspiza crassirostris formed a monophyletic group. Finally, all the methods (including parsimony) supported the monophyly of the ground finches. The three distance methods also found close relationships generally between each of two populations of Geospiza scandens, G. difficilis and G. conirostris. There is evidence for inconstancy of evolutionary rates among species. Results from distance methods allowing for rate variation among lineages suggest three conclusions which differ from Yang and Patton's findings. First, the monophyletic ground finches arose from the paraphyletic tree finches. Yang and Patton found that the ground finches and tree finches were sister monophyletic taxa. Second, Geospiza scandens appears to be a recently derived species, and not the most basal ground finch. Third, G. fuliginosa is not a recently derived species of ground finch, but was derived from an older split from the remaining ground finches. Most of these conclusions should be considered tentative both because the parsimony trees disagreed sharply with the distance trees and because no clades were strongly supported by the results of bootstrapping and statistical tests of alternative hypotheses. Absence of strong support for clades was probably due to insufficient data. Future phylogenetic studies, preferably using DNA sequence data from several unlinked loci, should sample several populations of each species, and should attempt to assess the importance of hybridization in species phylogeny.  相似文献   

12.
The genus Rosa has a complex evolutionary history caused by several factors, often in conjunction: extensive hybridization, recent radiation, incomplete lineage sorting, and multiple events of polyploidy. We examined the applicability of AFLP markers for reconstructing (species) relationships in Rosa, using UPGMA clustering, Wagner parsimony, and Bayesian inference. All trees were well resolved, but many of the deeper branches were weakly supported. The cluster analysis showed that the rose cultivars can be separated into a European and an Oriental cluster, each being related to different wild species. The phylogenetic analyses showed that (1) two of the four subgenera (Hulthemia and Platyrhodon) do not deserve subgeneric status; (2) section Carolinae should be merged with sect. Cinnamomeae; (3) subsection Rubigineae is a monophyletic group within sect. Caninae, making sect. Caninae paraphyletic; and (4) there is little support for the distinction of the five other subsections within sect. Caninae. Comparison of the trees with morphological classifications and with previous molecular studies showed that all methods yielded reliable trees. Bayesian inference proved to be a useful alternative to parsimony analysis of AFLP data. Because of their genome-wide sampling, AFLPs are the markers of choice to reconstruct (species) relationships in evolutionary complex groups.  相似文献   

13.
The D2 variable region of 28S ribosomal RNA was sequenced from ethanol specimens or obtained from the literature to provide the first phylogenetie reconstruction of the subfamily Euphorinae (Hymenoptera;Braconidae). Phylogenetic relationships were established by comparing the results using two different methods (distance-based neighbor-joining, NJ; and maximum parsimony, MP) and three different outgroups. The monophyly of the Euphorinae is well supported by all trees generated from molecular data. All phylogenetic reconstructions yielded trees with very similar topologies that only partially resolved the morphologically defined tribes and the relationships within the subfamily. We found no evidence for the monophyletic natures of the tribes Euphorinl, Dinocampini,Perilitini, Syntretini, Comsophorini and Centisitini, but we did find some evidence for the tribes Meteorini and Microctonini. The monophyletic nature of the tribe Meteodnl was well-supported in all trees. We also found the clade containing the LecythodeUa,Microctonus, Orionis and Streblocera to be a monophyletic group, which corresponded to the tribe Microtonini, with Orionis transferred from the tribe Eupholini into Microtonini.Among the genera of Euphorini our results showed strong support for a paraphyletic nature of this group, which can be roughly divided into two clades, one consisting of Aridelus Wesmaelia, the other of Leiophron Peristenus, suggesting both of which may be given tribal rank. The placement of the genus Chrysopophorus is largely uncertain. Two clades,Dinocampus Perilitus and Cosmophorus Rhopalophorus, were constantly resolved in our analyses, with 42-96 and 97-100 bootstrap value support, respectively, suggesting that both of them form monophyletic groups. For members of the Centistini, Pygostolus may be removed and included in Microctonini or other relative tribe.  相似文献   

14.
基于28S rRNA D2序列的内茧蜂亚科的分子系统发育   总被引:4,自引:0,他引:4  
首次利用同源28S rRNA D2基因序列对内茧蜂亚科Rogadinae (昆虫纲Insecta:膜翅目Hymenoptera:茧蜂科Braconidae)进行了分子系统学研究。本研究从95%~100%乙醇浸渍保存的标本中提取基因组DNA并扩增了10种内群种类和5种外群种类的28S rDNA D2片段并测序(GenBank序列号AY167645-AY167659),利用BLAST搜索相关的同源序列, 采用了GenBank中13个种类的28S rRNA D2同源序列,然后据此进行分子分析。利用3个外群(共8个种类)和3种建树方法 (距离邻近法distance based neighbor joining, NJ; 最大俭约法maximum parsimony, MP; 和最大似然法maximum likelihood, ML)分析了内茧蜂亚科内的分子系统发育关系。结果表明,由分子数据产生的不同的分子系统树均显示内茧蜂亚科是一个单系群。内茧蜂亚科内依据形态和生物学特征的分群(族和亚族)及其系统发育关系得到部分支持。NJ、MP和ML分析结果均表明内茧蜂族Rogadini不是一个单系,而是一个并系,其余3族则得到不同程度的支持。内茧蜂族可分成2个分支:“脊茧蜂属Aleiodes+弓脉茧蜂属Arcaleiodes”和“沟内茧蜂属Canalirogas+锥齿茧蜂属Conspinaria+刺茧蜂属Spinaria+内茧蜂属Rogas”,二者不是姐妹群。脊茧蜂属Aleiodes和弓脉茧蜂属Arcaleiodes始终是姐妹群。脊茧蜂属Aleiodes是一个单系,并可分成2个姐妹分支,这与依据形态和生物学特征的亚属分群相一致。弓脉茧蜂属Arcaleiodes Chen et He,1991是一个独立的属。分支“沟内茧蜂属Canalirogas+锥齿茧蜂属Conspinaria+刺茧蜂属Spinaria+内茧蜂属Rogas”的单系性仅得到部分分子数据的支持;因形态特异(腹部成甲壳状)而列为亚族级的刺茧蜂属Spinaria,分子分析没有证实这一点。横纹茧蜂族Clinocentrini是个单系,并在内茧蜂亚科的系统发育中处于基部(原始)的位置。我们研究结果还表明,阔跗茧蜂属Yelicones和潜蛾茧蜂属Stiropius相对应的阔跗茧蜂族Yeliconini和潜蛾茧蜂族Stiropiini为2个独立的分支, 与形态和生物学的结果一致,但它们在内茧蜂亚科的系统发育的位置不明,有待今后进一步研究。  相似文献   

15.
A molecular phylogeny of the subfamily Antilopinae was determined using the two mitochondrial DNA (mtDNA) genes cytochrome b and cytochrome c oxidase III. The tribe Antilopini is monophyletic with Antidorcas marsupialis and Litocranius walleri basal to the large genus Gazella. Antilope cervicapra falls within Gazella. This placement would either make Gazella paraphyletic or require that the genus name Gazella be changed to Antilope. Gazella thomsonii is supported as a subspecies of G. rufifrons. Most members of the tribe Neotragini are sister species to the Antilopini, but the Neotragini is rendered paraphyletic by a deep placement of Neotragus moschatus.  相似文献   

16.
To investigate the phylogeny of Patellogastropoda, the complete 18S rDNA sequences of nine patellogastropod limpets Cymbula canescens (Gmelin, 1791), Helcion dunkeri (Krauss, 1848), Patella rustica Linnaeus, 1758, Cellana toreuma (Reeve, 1855), Cellana nigrolineata (Reeve, 1854), Nacella magellanica Gmelin, 1791, Nipponacmea concinna (Lischke, 1870), Niveotectura pallida (Gould, 1859), and Lottia dorsuosa Gould, 1859 were determined. These sequences were then analyzed along with the published 18S rDNA sequences of 35 gastropods, one bivalve, and one chiton species. Phylogenetic trees were constructed by maximum parsimony, maximum likelihood, and Bayesian inference. The results of our 18S rDNA sequence analysis strongly support the monophyly of Patellogastropoda and the existence of three subgroups. Of these, two subgroups, the Patelloidea and Acmaeoidea, are closely related, with branching patterns that can be summarized as [(Cymbula + Helcion) + Patella] and [(Nipponacmea + Lottia) + Niveotectura]. The remaining subgroup, Nacelloidea, emerges as basal and paraphyletic, while its genus Cellana is monophyletic. Our analysis also indicates that the Patellogastropoda have a sister relationship with the order Cocculiniformia within the Gastropoda.  相似文献   

17.
A cladistic analysis based on 63 morphological characters was carried out on the tribe Colletieae including two presumed closely related genera, Geanothus and Noltea as outgroupS. In addition to a parsimony analysis of the equally weighted characters, analyses investigating the effects of character weighting, removal of a presumed hybrid species as well as the impact of uncertainly scored characters were undertaken. In all analyses Noltea was placed as sister group to a well supported monophyletic Colletieae. Nineteen different in group topologies were found, with the additional analyses mainly supporting two of them. Within the Colletieae a basal dichotomy divides Trevoa and Retanilla from the remainder of the tribe. While the Trevoa-Retanilla clade is fully resolved, the second lacks detailed resolution. Within this clade the Colletia species from a well supported monophyletic group, while monophyly of the disjunct genus Discaria could not be confirmed.  相似文献   

18.
The diversity of lacertid lizards in Africa is highest in the southern African subcontinent, where over two-thirds of the species are endemic. With eleven currently recognized species, Pedioplanis is the most diverse among the southern African genera. In this study we use 2200 nucleotide positions derived from two mitochondrial markers (ND2 and 16S rRNA) and one nuclear gene (RAG-1) to (i) assess the phylogeny of Pedioplanis and (ii) estimate divergence time among lineages using the relaxed molecular clock method. Individual analyses of each gene separately supported different nodes in the phylogeny and the combined analysis yielded more well supported relationships. We present the first, well-resolved gene tree for the genus Pedioplanis and this is largely congruent with a phylogeny derived from morphology. Contrary to previous suggestions Heliobolus/Nucras are sister to Pedioplanis. The genus Pedioplanis is monophyletic, with P. burchelli/P. laticeps forming a clade that is sister to all the remaining congeners. Two distinct geographic lineages can be identified within the widespread P. namaquensis; one occurs in Namibia, while the other occurs in South Africa. The P. undata species complex is monophyletic, but one of its constituent species, P. inornata, is paraphyletic. Relationships among the subspecies of P. lineoocellata are much more complex than previously documented. An isolated population previously assigned to P. l. pulchella is paraphyletic and sister to the three named subspecies. The phylogeny identifies two biogeographical clades that probably diverged during the mid-Miocene, after the development of the Benguella Current. This probably led to habitat changes associated with climate and, in conjunction with physical barriers (Great Escarpment), contributed towards speciation within the genus Pedioplanis.  相似文献   

19.
The bee genus Lasioglossum Curtis is a model taxon for studying the evolutionary origins of and reversals in eusociality. This paper presents a phylogenetic analysis of Lasioglossum species and subgenera based on a data set consisting of 1240 bp of the mitochondrial cytochrome oxidase I (COI) gene for seventy-seven taxa (sixty-six ingroup and eleven outgroup taxa). Maximum parsimony was used to analyse the data set (using paup *4.0) by a variety of weighting methods, including equal weights, a priori weighting and a posteriori weighting. All methods yielded roughly congruent results. Michener’s Hemihalictus series was found to be monophyletic in all analyses but one, while his Lasioglossum series formed a basal, paraphyletic assemblage in all analyses but one. Chilalictus was consistently found to be a basal taxon of Lasioglossum sensu lato and Lasioglossum sensu stricto was found to be monophyletic. Within the Hemihalictus series, major lineages included Dialictus + Paralictus, the acarinate Evylaeus + Hemihalictus + Sudila and the carinate Evylaeus + Sphecodogastra. Relationships within the Hemihalictus series were highly stable to altered weighting schemes, while relationships among the basal subgenera in the Lasioglossum series (Lasioglossum s.s., Chilalictus, Parasphecodes and Ctenonomia) were unclear. The social parasite of Dialictus, Paralictus, is consistently and unambiguously placed well within Dialictus, thus rendering Dialictus paraphyletic. The implications of this for understanding the origins of social parasitism are discussed.  相似文献   

20.
The examination of morphological traits has failed to resolve the tribal placement of Marshallia. Suggested relationships for this anomalous genus have, at various times, included Eupatorieae, Heliantheae, Vemonieae, and Inuleae. Chloroplast DNA restriction site mapping, using Bamadesiinae (Mutisieae) as the outgroup, revealed 981 restriction site mutations, 332 of which were phylogenetically informative, for 60 genera representing 15 tribes of Asteraceae. Wagner parsimony produced 36 equally parsimonious tress of 729 steps, and Dollo parsimony produced 34 equally parsimonious trees of 759 steps. Monophyletic groups, resulting from the Wagner analysis, were further tested with the bootstrap method. The placement of Marshallia in the Heliantheae-Tageteae-Coreopsideae-Eupatorieae complex was consistent for all trees produced. Tageteae and Coreopsideae form the sister group to paraphyletic Heliantheae, with Marshallia sharing its most recent common ancestor with Galinsoga, Palafoxia, and Bahia. The Eupatorieae form a monophyletic clade that is derived from helianthoid ancestors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号