首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Little is known about the methanogenic degradation of acetate, the fate of molecular hydrogen and formate or the ability of methanogens to grow and produce methane in cold, anoxic marine sediments. The microbes that produce methane were examined in permanently cold, anoxic marine sediments at Hydrate Ridge (44 degrees 35' N, 125 degrees 10' W, depth 800 m). Sediment samples (15 to 35 cm deep) were collected from areas of active methane ebullition or areas where methane hydrates occurred. The samples were diluted into enrichment medium with formate, acetate or trimethylamine as catabolic substrate. After 2 years of incubation at 4 degrees C to 15 degrees C, enrichment cultures produced methane. PCR amplification and sequencing of the rRNA genes from the highest dilutions with growth suggested that each enrichment culture contained a single strain of methanogen. The level of sequence similarity (91 to 98%) to previously characterized prokaryotes suggested that these methanogens belonged to novel genera or species within the orders Methanomicrobiales and Methanosarcinales. Analysis of the 16S rRNA gene libraries from DNA extracted directly from the sediment samples revealed phylotypes that were either distantly related to cultivated methanogens or possible anaerobic methane oxidizers related to the ANME-1 and ANME-2 groups of the Archaea. However, no methanogenic sequences were detected, suggesting that methanogens represented only a small proportion of the archaeal community.  相似文献   

2.
AIMS: Application of molecular techniques to ecological studies has unveiled a wide diversity of micro-organisms in natural communities, previously unknown to microbial ecologists. New lineages of Archaea were retrieved from several non-extreme environments, showing that these micro-organisms are present in a large variety of ecosystems. The aim was therefore to assess the presence and diversity of Archaea in the sediments of the river Douro estuary (Portugal), relating the results obtained to ecological data. METHODS AND RESULTS: Total DNA was extracted from sediment samples obtained from an estuary deprived of vegetation, amplified by PCR and the resulting DNA fragments cloned. The archaeal origin of the cloned inserts was checked by Southern blot, dot blot or colony blot hybridization. Recombinant plasmids were further analysed by restriction with AvaII and selected for sequencing. Phylogenetic analyses of 14 sequences revealed the presence of members of the domain Archaea. Most of the sequences could be assigned to the kingdom Crenarchaeota. CONCLUSION: Most of these sequences were closely related to those obtained from non-extreme Crenarchaeota members previously retrieved from diverse ecosystems, such as freshwater and marine environments. SIGNIFICANCE AND IMPACT OF THE STUDY: The presence of archaeal 16S rDNA sequences in temperate estuarine sediments emerges as a valuable contribution to the understanding of the complexity of the ecosystem.  相似文献   

3.
4.
This study examined the diversity of Bacteria, Archaea and in particular aerobic methanotrophs associated with a shallow (84 m) methane seep in the tropical Timor Sea, Australia. Seepage of thermogenic methane was associated with a large carbonate hardground covered in coarse carbonate-rich sediments and various benthic organisms such as solitary corals. The diversity of Bacteria and Archaea was studied by analysis of cloned 16S rRNA genes, while aerobic methanotrophic bacteria were quantified using real-time PCR targeting the α-subunit of particulate methane monooxygenase ( pmoA ) genes and diversity was studied by analysis of cloned pmoA genes. Phylogenetic analysis of bacterial and archaeal 16S rRNA genes revealed diverse and mostly novel phylotypes related to sequences previously recovered from marine sediments. A small number of bacterial 16S rRNA gene sequences were related to aerobic methanotrophs distantly related to the genera Methylococcus and Methylocaldum . Real-time PCR targeting pmoA genes showed that the highest numbers of methanotrophs were present in surface sediments associated with the seep area. Phylogenetic analysis of pmoA sequences revealed that all phylotypes were novel and fell into two large clusters comprised of only marine sequences distantly related to the genera Methylococcus and Methylocaldum that were clearly divergent from terrestrial phylotypes. This study provides evidence for the existence of a novel microbial diversity and diverse aerobic methanotrophs that appear to constitute marine specialized lineages.  相似文献   

5.
New perspectives on anaerobic methane oxidation   总被引:2,自引:0,他引:2  
Anaerobic methane oxidation is a globally important but poorly understood process. Four lines of evidence have recently improved our understanding of this process. First, studies of recent marine sediments indicate that a consortium of methanogens and sulphate-reducing bacteria are responsible for anaerobic methane oxidation; a mechanism of 'reverse methanogenesis' was proposed, based on the principle of interspecies hydrogen transfer. Second, studies of known methanogens under low hydrogen and high methane conditions were unable to induce methane oxidation, indicating that 'reverse methanogenesis' is not a widespread process in methanogens. Third, lipid biomarker studies detected isotopically depleted archaeal and bacterial biomarkers from marine methane vents, and indicate that Archaea are the primary consumers of methane. Finally, phylogenetic studies indicate that only specific groups of Archaea and SRB are involved in methane oxidation. This review integrates results from these recent studies to constrain the responsible mechanisms.  相似文献   

6.
Diversity of Bacteria and Archaea was studied in deep marine sediments by PCR amplification and sequence analysis of 16S rRNA and methyl co-enzyme M reductase (mcrA) genes. Samples analysed were from Ocean Drilling Program (ODP) Leg 190 deep subsurface sediments at three sites spanning the Nankai Trough in the Pacific Ocean off Shikoku Island, Japan. DNA was amplified, from three depths at site 1173 (4.15, 98.29 and 193.29 mbsf; metres below the sea floor), and phylogenetic analysis of clone libraries showed a wide variety of uncultured Bacteria and Archaea. Sequences of Bacteria were dominated by an uncultured and deeply branching 'deep sediment group' (53% of sequences). Archaeal 16S rRNA gene sequences were mainly within the uncultured clades of the Crenarchaeota. There was good agreement between sequences obtained independently by cloning and by denaturing gradient gel electrophoresis. These sequences were similar to others retrieved from marine sediment and other anoxic habitats, and so probably represent important indigenous bacteria. The mcrA gene analysis suggested limited methanogen diversity with only three gene clusters identified within the Methanosarcinales and Methanobacteriales. The cultivated members of the Methanobacteriales and some of the Methanosarcinales can use CO2 and H2 for methanogenesis. These substrates also gave the highest rates in 14C-radiotracer estimates of methanogenic activity, with rates comparable to those from other deep marine sediments. Thus, this research demonstrates the importance of the 'deep sediment group' of uncultured Bacteria and links limited diversity of methanogens to the dominance of CO2/H2 based methanogenesis in deep sub-seafloor sediments.  相似文献   

7.
We have conducted a preliminary phylogenetic survey of ammonia-oxidizing beta-proteobacteria, using 16S rRNA gene libraries prepared by selective PCR and DNA from acid and neutral soils and polluted and nonpolluted marine sediments. Enrichment cultures were established from samples and analyzed by PCR. Analysis of 111 partial sequences of c. 300 bases revealed that the environmental sequences formed seven clusters, four of which are novel, within the phylogenetic radiation defined by cultured autotrophic ammonia oxidizers. Longer sequences from 13 cluster representatives support their phylogenetic positions relative to cultured taxa. These data suggest that known taxa may not be representative of the ammonia-oxidizing beta-proteobacteria in our samples. Our data provide further evidence that molecular and culture-based enrichment methods can select for different community members. Most enrichments contained novel Nitrosomonas-like sequences whereas novel Nitrosospira-like sequences were more common from gene libraries of soils and marine sediments. This is the first evidence for the occurrence of Nitrosospira-like strains in marine samples. Clear differences between the sequences of soil and marine sediment libraries were detected. Comparison of 16S rRNA sequences from polluted and nonpolluted sediments provided no strong evidence that the community composition was determined by the degree of pollution. Soil clone sequences fell into four clusters, each containing sequences from acid and neutral soils in varying proportions. Our data suggest that some related strains may be present in both samples, but further work is needed to resolve whether there is selection due to pH for particular sequence types.  相似文献   

8.
Previous studies have demonstrated that naphthalene and other polycyclic aromatic hydrocarbons (PAHs) can be anaerobically oxidized with the reduction of sulfate in PAH-contaminated marine harbor sediments, including those in San Diego Bay. In order to learn more about the microorganisms that might be involved in anaerobic naphthalene degradation, the microorganisms associated with naphthalene degradation in San Diego Bay sediments were evaluated. A dilution-to-extinction enrichment culture strategy, designed to recover the most numerous culturable naphthalene-degrading sulfate reducers, resulted in the enrichment of microorganisms with 16S rDNA sequences in the d-Proteobacteria, which were closely related to a previously described pure culture of a naphthalene-degrading sulfate reducer, NaphS2, isolated from sediments in Germany. A more traditional enrichment culture approach, expected to enrich for the fastest-growing naphthalene-degrading sulfate reducers, yielded 16S rDNA sequences closely related to those found in the dilution-to-extinction enrichments and NaphS2. Analysis of 16S rDNA sequences in sediments from two sites in San Diego Bay that had been adapted for rapid naphthalene degradation by continual amendment with low levels of naphthalene suggested that the microbial community composition in the amended sediments differed from that present in the unamended sediments from the same sites. Most significantly, 6-8% of the sequences recovered from 100 clones of each of the naphthalene-amended sediments were closely related to the 16S rDNA sequences in the enrichment cultures as well as the sequence of the pure culture, NaphS2. No sequences in this NaphS2 phylotype were recovered from the sediments that were not continually exposed to naphthalene. A PCR primer, which was designed based on these phylotype sequences, was used to amplify additional 16S rDNA sequences belonging to the NaphS2 phylotype from PAH-degrading sediments from Island End River (Boston), MA, and Liepaja Harbor, Latvia. Closely related sequences were also recovered from highly contaminated sediment from Tampa Bay, FL. These results suggest that microorganisms closely related to NaphS2 might be involved in naphthalene degradation in harbor sediments. This finding contrasts with the frequent observation that the environmentally relevant microorganisms cannot be readily recovered in pure culture and suggests that further study of the physiology of NaphS2 may provide insights into factors controlling the rate and extent of naphthalene degradation in marine harbor sediments.  相似文献   

9.
Marine subsurface eukaryotes: the fungal majority   总被引:1,自引:0,他引:1  
Studies on the microbial communities of deep subsurface sediments have indicated the presence of Bacteria and Archaea throughout the sediment column. Microbial eukaryotes could also be present in deep-sea subsurface sediments; either bacterivorous protists or eukaryotes capable of assimilating buried organic carbon. DNA- and RNA-based clone library analyses are used here to examine the microbial eukaryotic diversity and identify the potentially active members in deep-sea sediment cores of the Peru Margin and the Peru Trench. We compared surface communities with those much deeper in the same cores, and compared cores from different sites. Fungal sequences were most often recovered from both DNA- and RNA-based clone libraries, with variable overall abundances of different sequence types and different dominant clone types in the RNA-based and the DNA-based libraries. Surficial sediment communities were different from each other and from the deep subsurface samples. Some fungal sequences represented potentially novel organisms as well as ones with a cosmopolitan distribution in terrestrial, fresh and salt water environments. Our results indicate that fungi are the most consistently detected eukaryotes in the marine sedimentary subsurface; further, some species may be specifically adapted to the deep subsurface and may play important roles in the utilization and recycling of nutrients.  相似文献   

10.
Nematodes and fungi are both ubiquitous in marine environments, yet few studies have investigated relationships between these two groups. Microbial species share many well-documented interactions with both free-living and parasitic nematode species, and limited data from previous studies have suggested ecological associations between fungi and nematodes in benthic marine habitats. This study aimed to further document the taxonomy and distribution of fungal taxa often co-amplified from nematode specimens. A total of 15 fungal 18S rRNA phylotypes were isolated from nematode specimens representing both deep-sea and shallow water habitats; all fungal isolates displayed high pairwise sequence identities with published data in Genbank (99-100%) and unpublished high-throughput 454 environmental datasets (>95%). BLAST matches indicate marine fungal sequences amplified in this study broadly represent taxa within the phyla Ascomycota and Basidiomycota, and several phylotypes showed robust groupings with known taxa in phylogenetic topologies. In addition, some fungal phylotypes appeared to be present in disparate geographic habitats, suggesting cosmopolitan distributions or closely related species complexes in at least some marine fungi. The present study was only able to isolate fungal DNA from a restricted set of nematode taxa; further work is needed to fully investigate the taxonomic scope and function of nematode-fungal interactions.  相似文献   

11.
Recent biochemical and metagenomic data indicate that not yet cultured Archaea that are closely related to methanogenic Archaea of the order of Methanosarcinales are involved in the anaerobic oxidation of methane in marine sediments. The DNA from the methanotrophic Archaea has been shown to harbor gene homologues for methyl-coenzyme M reductase, which in methanogenic Archaea catalyses the methane-forming reaction. In microbial mats catalyzing anaerobic oxidation of methane, this nickel enzyme has been shown to be present in concentrations of up to 10% of the total extracted proteins.  相似文献   

12.
Phylogenetic and statistical analyses of 16S rRNA gene libraries were used for the investigation of actinobacterial communities present in two tropical estuarine sediments (Santos-São Vicente estuary, Brazil). The libraries were constructed from samples collected at the brackish end of the estuary, highly hydrocarbon-contaminated, and at the marine end, uncontaminated. Clones from the marine end of the estuary were all related to sequences from non-cultured Actinobacteria and unidentified bacteria recovered from a wide range of environmental samples, whereas clones from the brackish end were mainly related to sequences from cultured Actinobacteria. Statistical analyses showed that the community recovered from the hydrocarbon-contaminated sediment sample, at the brackish end, was less diverse than the uncontaminated one, at the marine end, and that the communities from the two libraries were differently structured, suggesting that these may have not originated from the same community. The recognition of the spatial pattern of actinobacterial distribution in a natural environment is a first step towards understanding the way these communities are organized, providing valuable data for further investigations of their taxonomic and functional diversity.  相似文献   

13.
High-throughput sequencing (HTS) metabarcoding is commonly applied to assess phytoplankton diversity. Usually, haplotypes are grouped into operational taxonomic units (OTUs) through clustering, whereby the resulting number of OTUs depends on chosen similarity thresholds. We applied, instead, a phylogenetic approach to infer taxa among 18S rDNA V4-metabarcode haplotypes gathered from 48 time-series samples using the marine planktonic diatoms Chaetoceros and Bacteriastrum as test case. The 73 recovered taxa comprised both solitary haplotypes and polytomies, the latter composed each of a highly abundant, dominant haplotype and one to several minor, peripheral haplotypes. The solitary and dominant haplotypes usually matched reference sequences, enabling species assignation of taxa. We hypothesise that the super-abundance of reads in dominant haplotypes results from the homogenization effect of concerted evolution. Reads of populous peripheral haplotypes and dominant haplotypes show comparable distribution patterns over the sample dates, suggesting that they are part of the same population. Many taxa revealed marked seasonality, with closely related ones generally showing distinct periodicity, whereas others occur year-round. Phylogenies inferred from metabarcode haplotypes enable delineation of biologically meaningful taxa, whereas OTUs resulting from clustering algorithms often deviate markedly from such taxa.  相似文献   

14.
We report here on novel groups of Archaea in the bacterioplankton of a small boreal forest lake studied by the culture-independent analysis of the 16S rRNA genes amplified directly from lake water in combination with fluorescent in situ hybridization (FISH). Polymerase chain reaction products were cloned and 28 of the 160 Archaea clones with around 900-bp-long 16S rRNA gene inserts, were sequenced. Phylogenetic analysis, including 642 Archaea sequences, confirmed that none of the freshwater clones were closely affiliated with known cultured Archaea. Twelve Archaea sequences from lake Valkea Kotinen (VAL) belonged to Group I of uncultivated Crenarchaeota and affiliated with environmental sequences from freshwater sediments, rice roots and soil as well as with sequences from an anaerobic digestor. Eight of the Crenarchaeota VAL clones formed a tight cluster. Sixteen sequences belonged to Euryarchaeota. Four of these formed a cluster together with environmental sequences from freshwater sediments and peat bogs within the order Methanomicrobiales. Five were affiliated with sequences from marine sediments situated close to marine Group II and three formed a novel cluster VAL III distantly related to the order Thermoplasmales. The remaining four clones formed a distinct clade within a phylogenetic radiation characterized by members of the orders Methanosarcinales and Methanomicrobiales on the same branch as rice cluster I, detected recently on rice roots and in anoxic bulk soil of flooded rice microcosms. FISH with specifically designed rRNA-targeted oligonucleotide probes revealed the presence of Methanomicrobiales in the studied lake. These observations indicate a new ecological niche for many novel 'non-extreme' environmental Archaea in the pelagic water of a boreal forest lake.  相似文献   

15.
Anchialine lakes are a globally rare and unique ecosystem consisting of saline lakes surrounded by land and isolated from the surrounding marine environment. These lakes host a unique flora and fauna including numerous endemic species. Relatively few studies have, however, studied the prokaryote communities present in these lakes and compared them with the surrounding ‘open water’ marine environment. In the present study, we used a 16S rRNA gene barcoded pyrosequencing approach to examine prokaryote (Bacteria and Archaea) composition in three distinct biotopes (sediment, water and the mussel Brachidontes sp.) inhabiting four habitats, namely, three marine lakes and the surrounding marine environment of Berau, Indonesia. Biotope and habitat proved significant predictors of variation in bacterial and archaeal composition and higher taxon abundance. Most bacterial sequences belonged to OTUs assigned to the Proteobacteria. Compared to sediment and water, mussels had relatively high abundances of the classes Mollicutes and Epsilonproteobacteria. Most archaeal sequences, in turn, belonged to OTUs assigned to the Crenarchaeota with the relative abundance of crenarchaeotes highest in mussel samples. For both Bacteria and Archaea, the main variation in composition was between water samples on the one hand and sediment and mussel samples on the other. Sediment and mussels also shared much more OTUs than either shared with water. Abundant bacterial OTUs in mussels were related to organisms previously obtained from corals, oysters and the deepsea mussel Bathymodiolus manusensis. Abundant archaeal OTUs in mussels, in contrast, were closely related to organisms previously obtained from sediment.  相似文献   

16.
Methane production by intestinal methanogenic Archaea and their community structure were compared among phylogenetic lineages of millipedes. Tropical and temperate millipedes of 35 species and 17 families were investigated. Species that emitted methane were mostly in the juliform orders Julida, Spirobolida, and Spirostreptida. The irregular phylogenetic distribution of methane production correlated with the presence of the methanogen-specific mcrA gene. The study brings the first detailed survey of methanogens’ diversity in the digestive tract of millipedes. Sequences related to Methanosarcinales, Methanobacteriales, Methanomicrobiales and some unclassified Archaea were detected using molecular profiling (DGGE). The differences in substrate preferences of the main lineages of methanogenic Archaea found in different millipede orders indicate that the composition of methanogen communities may reflect the differences in available substrates for methanogenesis or the presence of symbiotic protozoa in the digestive tract. We conclude that differences in methane production in the millipede gut reflect differences in the activity and proliferation of intestinal methanogens rather than an absolute inability of some millipede taxa to host methanogens. This inference was supported by the general presence of methanogenic activity in millipede faecal pellets and the presence of the 16S rRNA gene of methanogens in all tested taxa in the two main groups of millipedes, the Helminthophora and the Pentazonia.  相似文献   

17.
Microbial mats in marine cold seeps are known to be associated with ascending sulfide- and methane-rich fluids. Hence, they could be visible indicators of anaerobic oxidation of methane (AOM) and methane cycling processes in underlying sediments. The Napoli mud volcano is situated in the Olimpi Area that lies on saline deposits; from there, brine fluids migrate upward to the seafloor. Sediments associated with a brine pool and microbial orange mats of the Napoli mud volcano were recovered during the Medeco cruise. Based on analysis of RNA-derived sequences, the "active" archaeal community was composed of many uncultured lineages, such as rice cluster V or marine benthic group D. Function methyl coenzyme M reductase (mcrA) genes were affiliated with the anaerobic methanotrophic Archaea (ANME) of the ANME-1, ANME-2a, and ANME-2c groups, suggesting that AOM occurred in these sediment layers. Enrichment cultures showed the presence of viable marine methylotrophic Methanococcoides in shallow sediment layers. Thus, the archaeal community diversity seems to show that active methane cycling took place in the hypersaline microbial mat-associated sediments of the Napoli mud volcano.  相似文献   

18.
Meromictic Lake Kivu is renowned for its enormous quantity of methane dissolved in the hypolimnion. The methane is primarily of biological origin, and its concentration has been increasing in the past half-century. Insight into the origin of methane production in Lake Kivu has become relevant with the recent commercial extraction of methane from the hypolimnion. This study provides the first culture-independent approach to identifying the archaeal communities present in Lake Kivu sediments at the sediment-water interface. Terminal restriction fragment length polymorphism analysis suggests considerable heterogeneity in the archaeal community composition at varying sample locations. This diversity reflects changes in the geochemical conditions in the sediment and the overlying water, which are an effect of local groundwater inflows. A more in-depth look at the archaeal community composition by clone library analysis revealed diverse phylogenies of Euryarchaeota and Crenarachaeota. Many of the sequences in the clone libraries belonged to globally distributed archaeal clades such as the rice cluster V and Lake Dagow sediment environmental clusters. Several of the determined clades were previously thought to be rare among freshwater sediment Archaea (e.g., sequences related to the SAGMEG-1 clade). Surprisingly, there was no observed relation of clones to known hydrogentrophic methanogens and less than 2 % of clones were related to acetoclastic methanogens. The local variability, diversity, and novelty of the archaeal community structure in Lake Kivu should be considered when making assumptions on the biogeochemical functioning of its sediments.  相似文献   

19.
The phylogenetic diversity of Bacteria and Archaea within a biodegraded, mesothermic petroleum reservoir in the Schrader Bluff Formation of Alaska was examined by two culture-independent methods based on fosmid and small-subunit rRNA gene PCR clone libraries. Despite the exclusion of certain groups by each method, there was overall no significant qualitative difference in the diversity of phylotypes recovered by the two methods. The resident Bacteria belonged to at least 14 phylum-level lineages, including the polyphyletic Firmicutes , which accounted for 36.2% of all small-subunit rRNA gene-containing (SSU+) fosmid clones identified. Members of uncultured divisions were also numerous and made up 35.2% of the SSU+ fosmid clones. Clones from domain Archaea accounted for about half of all SSU+ fosmids, suggesting that their cell numbers were comparable to those of the Bacteria in this microbial community. In contrast to the Bacteria , however, nearly all archaeal clones recovered by both methods were related to methanogens, especially acetoclastic methanogens, while the plurality of bacterial fosmid clones was affiliated with Synergistes -like acetogenic Firmicutes that possibly degrade longer-chain carboxylic acid components in the crude oil to acetate. These data suggest that acetate may be a key intermediary metabolite in this subsurface anaerobic food chain, which leads to methane production as the primary terminal electron sink.  相似文献   

20.
Biology is believed to play a large role in the cycling of iron and manganese in many freshwater environments, but specific microbial groups indigenous to these systems have not been well characterized. To investigate the populations of Bacteria and Archaea associated with metal-rich sediments from Green Bay, WI, we extracted nucleic acids and analysed the phylogenetic relationships of cloned 16S rRNA genes. Because nucleic acids have not been routinely extracted from metal-rich samples, we investigated the bias inherent in DNA extraction and gene amplification from pure MnO2 using defined populations of whole cells or naked DNA. From the sediments, we screened for manganese-oxidizing bacteria using indicator media and found three isolates that were capable of manganese oxidation. In the phylogenetic analysis of bacterial 16S rRNA gene clones, we found two groups related to known metal-oxidizing genera, Leptothrix of the β-Proteobacteria and Hyphomicrobium of the α-Proteobacteria, and a Fe(III)-reducing group related to the Magnetospirillum genus of the α-Proteobacteria. Groups related to the metal-reducing δ-Proteobacteria constituted 22% of the gene clones. In addition, gene sequences from one group of methanogens and a group of Crenarchaeota, identified in the archaeal gene clone library, were related to those found previously in Lake Michigan sediments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号