首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Using NIH 3T3 cells, we have investigated nuclear phosphoinositide metabolism in response to insulin, a molecule which acts as a proliferating factor for this cell line and which is known as a powerful activator of the mitogen-activated protein (MAP) kinase pathway. Insulin stimulated inositol lipid metabolism in the nucleus, as demonstrated by measurement of the diacylglycerol mass produced in vivo and by in vitro nuclear phosphoinositide-specific phospholipase C (PI-PLC) activity assay. Despite the fact that nuclei of NIH 3T3 cells contained all of the four isozymes of the beta family of PI-PLC (i.e. beta1, beta2, beta3, and beta4), insulin only activated the beta1 isoform. Insulin also induced nuclear translocation of MAP kinase, as demonstrated by Western blotting analysis, enzyme activity assays, and immunofluorescence staining, and this translocation was blocked by the specific MAP kinase kinase inhibitor PD98059. By means of both a monoclonal antibody recognizing phosphoserine and in vivo labeling with [(32)P]orthophosphate, we ascertained that nuclear PI-PLC-beta1 (and in particular the b subtype) was phosphorylated on serine residues in response to insulin. Both phosphorylation and activation of nuclear PI-PLC-beta1 were substantially reduced by PD98059. Our results conclusively demonstrate that activation of nuclear PI-PLC-beta1 strictly depends on its phosphorylation which is mediated through the MAP kinase pathway.  相似文献   

2.
Diacylglycerol kinases (DGKs) catalyze phosphorylation of diacylglycerol (DG) to yield phosphatidic acid (PA). Previous evidence has shown that the nucleus contains several DGK isoforms. In this study, we have analyzed the expression and subnuclear localization of DGK-zeta employing C2C12 mouse myoblasts. Immunocytochemistry coupled to confocal laser scanning microscopy showed that both endogenous and green fluorescent protein-tagged overexpressed DGK-zeta localized mostly to the nucleus. In contrast, overexpressed DGK-alpha, -beta, -delta, and -iota did not migrate to the nucleus. DGK-zeta was present in the nuclear speckle domains, as also revealed by immuno-electron microscopy analysis. Moreover, DGK-zeta co-localized and interacted with phosphoinositide-specific phospholipase Cbeta1 (PLCbeta1), that is involved in inositide-dependent signaling pathways important for the regulation of cell proliferation and differentiation. Furthermore, we report that DGK-zeta associated with nuclear matrix, the fundamental organizing principle of the nucleus where many cell functions take place, including DNA replication, gene expression, and protein phosphorylation. Nuclear DGK-zeta increased during myogenic differentiation of C2C12 cells, while DGK-zeta down-regulation by siRNA markedly impaired differentiation. Overall, our findings further support the importance of speckles and nuclear matrix in lipid-dependent signaling and suggest that nuclear DGK-zeta might play some fundamental role during myogenic differentiation of C2C12 cells.  相似文献   

3.
During the past years, several independent laboratories have highlighted the presence of nuclear signaling pathways based on lipid hydrolysis, which are not a mere duplication of those occurring at the plasma membrane. Among the enzymes of the cycle, nuclear phosphoinositide-specific phospholipase C (PI-PLC) has been analyzed quite extensively. In this context, PI-PLCbeta1 appears to play a key role as a check point in the G1 phase of the cell cycle. It has also been shown that its activation and/or up-regulation is upon the control of type 1 insulin-like growth factor receptor (IGF-R) in both mouse fibroblast and myoblasts, suggesting that its signaling activity is essential for the normal behavior of the cell, at least in culture. The recent discovery of a possible involvement of the deletion of PI-PLCbeta1 gene in the progression of myelodysplastic syndrome (MDS) to acute myeloid leukemia (AML) in humans strengthens the contention that nuclear PI-PLC signaling is essential for physiological processes such as cell growth and differentiation. Even though PI-PLCbeta1 is present and does not translocate to eukaryotic nuclei, this organelle, even though only in some conditions contains also PI-PLCgamma1 which acts not only as a PI-PLC but also as guanine nucleotide exchange factor (GEF) for PI 3-kinase enhancer (PIKE) and is somehow linked to PI 3-kinase (PI3K) activity. Also members of PI-PLCdelta family are shuttling from the nucleus to the cytoplasm and return and are possibly involved in the control of cell growth. We must also take into account the presence in the nucleus of other phospholipases such as phospholipase A2 (PLA2) and phospholipase D (PLD), which also exert a signaling activity upon external stimuli. On the whole this review highlights the latest development in the PI-PLC cycle in the nucleus, which in terms of activation, regulation and down-stream targets differs substantially from that located at the plasma membrane.  相似文献   

4.
Mammalian phosphoinositide-specific phospholipase C isoenzymes   总被引:4,自引:0,他引:4  
Procaryotic and eucaryotic cells have evolved multiple pathways for communication with their external environment. The inositol 1,4,5-trisphosphate/diacylglycerol second messenger system is an example of such a signal transduction pathway which is present in multicellular eucaryotic organisms. Binding of an agonist to a specific cell surface receptor promotes rapid hydrolysis of phosphatidylinositol 4,5-bisphosphate. The pivotal enzyme for this second messenger system is phosphoinositide-specific phospholipase C which hydrolyzes phosphatidylinositol 4,5-bisphosphate to generate the two second messengers, inositol 1,4,5-trisphosphate and diacylglycerol. Recently, much progress has been made in the purification, characterization and cDNA cloning of multiple PI-PLC isoenzymes. The results of the recent studies on phosphoinositide-specific phospholipase C are reviewed.  相似文献   

5.
Previous studies from several independent laboratories have demonstrated the existence of an autonomous phosphoinositide (PI) cycle within the nucleus, where it is involved in both cell proliferation and differentiation. Stimulation of Swiss 3T3 cells with insulin-like growth factor-I (IGF-I) has been shown to induce a transient and rapid increase in the activity of nuclear-localized phospholipase C (PLC) beta1, which in turn leads to the production of inositol trisphosphate and diacylglycerol in the nucleus. Nuclear diacylglycerol provides the driving force for the nuclear translocation of protein kinase C (PKC) alpha. Here, we report that treatment of Swiss 3T3 cells with Go6976, a selective inhibitor of PKC alpha, caused a sustained elevation of IGF-I-stimulated nuclear PLC activity. A time course study revealed an inverse relationship between nuclear PKC activity and the activity of nuclear PLC in IGF-I-treated cells. A time-dependent association between PKC alpha and PLC beta1 in the nucleus was also observed following IGF-I treatment. Two-dimensional phosphopeptide mapping and site-directed mutagenesis demonstrated that PKC promoted phosphorylation of PLC beta1 at serine 887 in the nucleus of IGF-I-treated cells. Overexpression of either a PLC beta1 mutant in which the PKC phosphorylation site Ser(887) was replaced by alanine, or a dominant-negative PKC alpha, resulted in a sustained activation of nuclear PLC following IGF-I stimulation. These results indicate that a negative feedback regulation of PLC beta1 by PKC alpha plays a critical role in the termination of the IGF-I-dependent signal that activates the nuclear PI cycle.  相似文献   

6.
7.
Since the late 1980s, a growing body of evidence has documented that phosphoinositides and their metabolizing enzymes, which regulate a large variety of cellular functions both in the cytoplasm and at the plasma membrane, are present also within the nucleus, where they are involved in processes such as cell proliferation, differentiation, and survival. Remarkably, nuclear phosphoinositide metabolism operates independently from that present elsewhere in the cell. Although nuclear phosphoinositides generate second messengers such as diacylglycerol and inositol 1,4,5 trisphosphate, it is becoming increasingly clear that they may act by themselves to influence chromatin structure, gene expression, DNA repair, and mRNA export. The understanding of the biological roles played by phosphoinositides is supported by the recent acquisitions demonstrating the presence in the nuclear compartment of several proteins harboring phosphoinositide-binding domains. Some of these proteins have functional roles in RNA splicing/processing and chromatin assembly. Moreover, recent evidence shows that nuclear phospholipase Cβ1 (a key phosphoinositide metabolizing enzyme) could somehow be involved in the myelodysplastic syndrome, i.e. a hematopoietic disorder that frequently evolves into an acute leukemia. This review aims to highlight the most significant and updated findings about phosphoinositide metabolism in the nucleus under both physiological and pathological conditions.  相似文献   

8.
Since the late 1980s, a growing body of evidence has documented that phosphoinositides and their metabolizing enzymes, which regulate a large variety of cellular functions both in the cytoplasm and at the plasma membrane, are present also within the nucleus, where they are involved in processes such as cell proliferation, differentiation, and survival. Remarkably, nuclear phosphoinositide metabolism operates independently from that present elsewhere in the cell. Although nuclear phosphoinositides generate second messengers such as diacylglycerol and inositol 1,4,5 trisphosphate, it is becoming increasingly clear that they may act by themselves to influence chromatin structure, gene expression, DNA repair, and mRNA export. The understanding of the biological roles played by phosphoinositides is supported by the recent acquisitions demonstrating the presence in the nuclear compartment of several proteins harboring phosphoinositide-binding domains. Some of these proteins have functional roles in RNA splicing/processing and chromatin assembly. Moreover, recent evidence shows that nuclear phospholipase Cβ1 (a key phosphoinositide metabolizing enzyme) could somehow be involved in the myelodysplastic syndrome, i.e. a hematopoietic disorder that frequently evolves into an acute leukemia. This review aims to highlight the most significant and updated findings about phosphoinositide metabolism in the nucleus under both physiological and pathological conditions.  相似文献   

9.
Guanine nucleotides are thought to mediate the interaction of the receptors for calcium-mobilizing hormones and phosphoinositide-specific phospholipase C. In the present study the characteristics of guanine nucleotide-dependent phospholipase C activation were studied in [3H]inositol-labeled permeabilized hepatocytes. The nonhydrolyzable GTP analogs guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) and guanyl-5'-yl imidodiphosphate stimulated the production of inositol phosphates by phospholipase C. The effect was concentration-dependent with half-maximal and maximal stimulation occurring with 0.6 and 10 microM GTP gamma S, respectively. The guanine nucleotide-induced stimulation of phosphoinositide breakdown was selective for phosphatidylinositol (4,5)-bisphosphate over phosphatidylinositol (4)-phosphate. The individual inositol phosphates formed after maximal GTP gamma S exposure were analyzed by high-performance liquid chromatography. Inositol 1,4,5-trisphosphate was rapidly produced, followed by the formation of inositol 1,3,4,5-tetrakisphosphate and inositol 1,3,4-trisphosphate. Ethanol is known to activate hormone-sensitive phospholipase C in intact rat hepatocytes. Ethanol (0.3 M) was ineffective in altering the characteristics of GTP gamma S-stimulated phospholipase C activation, in both digitonin-treated and sonicated hepatocytes. The metabolism of the various inositol phosphate isomers was unaffected by ethanol. The findings demonstrate the potential for the use of permeabilized hepatocytes in the analysis of phospholipase C activation by guanine nucleotides. Ethanol does not activate phospholipase C by altering this process.  相似文献   

10.
Strong evidence has been obtained during the last 16 years suggesting that phosphoinositides, which are involved in the regulation of a large variety of cellular processes in the cytoplasm and in the plasma membrane, are present within the nucleus. A number of advances has resulted in the discovery that nuclear phosphoinositides and their metabolizing enzymes are deeply involved in cell growth and differentiation. Remarkably, the nuclear inositide metabolism is regulated independently from that present elsewhere in the cell. Even though nuclear inositol lipids generate second messengers such as diacyglycerol and inositol 1,4,5-trisphosphate, it is becoming increasingly clear that in the nucleus polyphosphoinositides may act by themselves to influence functions such as pre-mRNA splicing and chromatin structure. This review aims at highlighting the most significant and up-dated findings about inositol lipid metabolism in the nucleus.  相似文献   

11.
12.
Kaposi's sarcoma-associated herpesvirus (KSHV; human herpesvirus 8) encodes a chemokine-like G protein-coupled receptor (KSHV-GPCR) that is implicated in the pathogenesis of Kaposi's sarcoma (KS). Since endothelial cells appear to be targets for the virus, we developed an in vitro mouse lung endothelial cell model in which KSHV-GPCR is stably expressed and KSHV-GPCR signaling was studied. In mouse lung endothelial cells: 1) KSHV-GPCR does not exhibit basal signaling through the phosphoinositide-specific phospholipase C pathway but inositol phosphate production is stimulated by growth-related oncogene alpha (Gro-alpha) via a pertussis toxin (PTX)-insensitive pathway; 2) KSHV-GPCR signals basally through a PTX-sensitive pathway leading to a lowering of intracellular cAMP level that can be lowered further by Gro alpha and increased by interferon gamma-inducible protein 10; 3) KSHV-GPCR stimulates phosphatidylinositol 3-kinase via a PTX-insensitive mechanism; and 4) KSHV-GPCR activates nuclear factor-kappa B (NF-kappa B) by a PTX-sensitive G beta gamma subunit-mediated pathway. These data show that KSHV-GPCR couples to at least two G proteins and initiates signaling via at least three cascades in endothelial cells thereby increasing the complexity of regulation of endothelial cell function by KSHV-GPCR that may occur during viral infection.  相似文献   

13.
Phosphoinositide-specific phospholipase C (PI-PLC) is a key signal transducing enzyme which generates the second messengers inositol trisphosphate and diacylglycerol in mammalian cells. A cDNA clone (PI-PLC1) encoding a phosphoinositide-specific phospholipase C was isolated from soybean by screening a cDNA expression library using an anti-(plasma membrane) serum. Genomic DNA gel blot analysis suggested that the corresponding gene is a member of a multigene family. The deduced amino acid sequence of the soybean PI-PLC1 isozyme contains the conserved X and Y regions, found in other PI-PLCs. It is closely related to mammalian δ-type PI-PLCs, Dictyostelium discoideum PI-PLC and yeast PI-PLC1 in terms of the arrangement of the conserved region. Unlike mammalian δ-type PI-PLCs and yeast PI-PLC1, the putative Ca2+-binding site of the soybean PI-PLC1 is located in the region spanning the X and Y domains, and the N-terminal region is truncated. FLAG epitope-tagged PI-PLC1 fusion protein purified from transgenic tobacco plants showed phosphoinositide-specific phospholipase C activity. Heterologous expression of the soybean PI-PLC1 cDNA in a yeast PI-PLC1 deletion mutant complemented the lethality phenotype of haploid PI-PLC1 disruptants. Immunoblot analysis of the cell fractions prepared from transgenic tobacco plants over-expressing the FLAG epitope-tagged PI-PLC1 fusion protein indicated that the protein encoded by the PI-PLC1 cDNA was localized in the cytosol and plasma membrane.  相似文献   

14.
We found phosphoinositide-specific phospholipase C (PtdIns-PLC) activity in nuclei isolated from rat liver. The enzyme hydrolyzed phosphatidylinositol, phosphatidylinositol 4-monophosphate (PIP) and phosphatidylinositol 4,5-bisphosphate in a Ca(2+)-dependent manner, and produced inositol mono-, bis-, and triphosphate, respectively. Neither phosphatidylcholine, phosphatidylethanolamine, nor phosphatidylserine was utilized as a substrate. After partial hepatectomy, the PtdIns-PLC activity in isolated nuclei increased transiently in the S phase (20-22 h post-hepatectomy), to 2.5-fold higher than in the control, when measured with PIP. This result suggests a close relationship between the nuclear PtdIns-PLC, especially its PIP-hydrolyzing activity, and cell proliferation.  相似文献   

15.
16.
Nuclear lipid metabolism is involved in the regulation of cell proliferation. Modulation of the expression and activity of nuclear PI-phospholipase C (PI-PLC) has been reported during liver regeneration after partial hepatectomy, although it has not been determined whether different PLC isoforms play specific roles in the regulation of cell cycle progression. Here, we report evidence that the increased activity of nuclear PLCs in regenerating rat liver occurs before the peak of DNA replication and involves the enzyme activity associated to the chromatin and not that associated to the nuclear membrane. Immunocytochemical analyses indicate that PI-PLC beta(1) isoform is exclusively localized at the chromatin level, PI-PLC beta(1) co-localizes with DNA replication sites much more than PI-PLC gamma(1), which is also present at the nuclear envelope. These findings and the increased amount of PI-PLC gamma(1) occurring after the peak of DNA replication suggest that PI-PLC beta(1) and gamma(1) play different roles in cell cycle progression during regenerating liver. The increased activity of PI-PLC beta(1) constitutively present within the hepatocyte nucleus, should trigger DNA replication, whereas PI-PLC gamma(1) should be involved in G2/M phase transition through lamin phosphorylation.  相似文献   

17.
Phosphoinositidase C activity was revealed in nuclei isolated from PC12 rat pheochromocytoma cells incubated with tritiated phosphatidylinositol, phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphoinositide breakdown was found to be optimal at neutral pH and Ca++ concentrations ranging from endogenous levels to millimolar values. To characterize the enzymes involved, three monoclonal antibodies directed against the beta, gamma and delta phosphoinositidase C isoforms were employed. A combination of Western blot immunochemical analysis on cytoplasmic and nuclear fractions and of in situ immunocytochemistry on intact cells and isolated nuclei indicated that phosphoinositidase C gamma, though predominantly cytoplasmic, was present in both cell compartments. On the contrary, phosphoinositidase C beta was exclusively localized in the nucleus, whereas phosphoinositidase C delta was restricted to the cytoplasm. These data suggest that inositol lipid breakdown is controlled by different phosphoinositidase C isozymes in the various cell compartments, and support the notion that a separate phosphoinositide signalling system is located in the nucleus.  相似文献   

18.
The activation of phospholipase D by platelet-activating factor (PAF) in the human promonocytic cell line U937 has been investigated. In cells prelabeled with [3H]palmitic acid, addition of PAF or phorbol 12-myristate 13-acetate (PMA) induced the synthesis of [3H]phosphatidylethanol, indicating phospholipase D activation. When U937 cells were preincubated for 5 min with PMA, and then stimulated with PAF, formation of phosphatidylethanol was greatly enhanced. In contrast, under the same experimental conditions PMA treatment blocked completely the PAF-induced inositol phosphates formation in cells prelabeled with [3H]inositol. Thus, PMA treatment demonstrates that phospholipase D activation can occur independently from phosphoinositide-specific phospholipase C activation during PAF stimulation in U937 cells. On the other hand, the data herein presented suggest that influx of external calcium is required for phospholipase D activation by PAF, as assessed by complete inhibition of the enzyme activity by chelation of extracellular calcium or by treatment with the calcium channel blocker verapamil. Based on these findings, a hypothetical model for phospholipase D activation is discussed.  相似文献   

19.
20.
Signal transduction from plasma membrane to cell nucleus is a complex process depending on various components including lipid signaling molecules, in particular phosphoinositides and their related enzymes, which act at cell periphery and/or plasma membrane as well as at nuclear level. As far as the nervous system may concern the inositol lipid cycle has been hypothesized to be involved in numerous neural as well as glial functions. In this context, however, a precise panel of glial PLC isoforms has not been determined yet. In the present experiments we investigated astrocytic PLC isoforms in astrocytes obtained from foetal primary cultures of rat brain and from an established cultured (C6) rat astrocytoma cell line, two well known cell models for experimental studies on glia. Identification of PLC isoforms was achieved by using a combination of RT-PCR and immunocytochemistry experiments. While in both cell models the most represented PI-PLC isoforms were beta4, gamma1, delta4, and epsilon, isoforms PI-PLC beta2 and delta3 were not detected. Moreover, in primary astrocyte cultures PI-PLC delta3 resulted well expressed in C6 cells but was absent in astrocytes. Immunocytochemistry performed with antibodies against specific PLC isoforms substantially confirmed this pattern of expression both in astrocytes and C6 glioma cells. In particular while some isoenzymes (namely isoforms beta3 and beta4) resulted mainly nuclear, others (isoforms delta4 and epsilon) were preferentially localized at cytoplasmic and plasma membrane level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号