首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
E N Grigorian 《Ontogenez》2001,32(2):85-105
Data on the use of various immunochemical markers specifically indicating cell types of the neural retina and pigment epithelium are reviewed. It is demonstrated how this approach can be applied to the analysis of specific features of vertebrate retinal development, including the order and timing of differentiation of the main cell types, their interdependence in the course of this process, and factors controlling the latter. Problems concerning the state of differentiation and its change in the cells of retinal pigment epithelium and glial cells are discussed in respect to their analysis with the aid of specific protein markers. The current state of retina regeneration research involving the use of labelled cell sources and regenerated cells in lower vertebrates is analyzed. Problems in the search for new markers of retinal photoreceptor, macroglial, and microglial cells and their use in experiments are addressed.  相似文献   

4.
Recent studies revealed a great variety of genes which control the early development of the central nervous system in vertebrates, including neural induction and differentiation of primary neurons. Most of these genes were first identified inDrosophila melanogaster, then their structural and functional homologs were found in vertebrates. Modern data on the molecular-genetic mechanisms of vertebrate neurogenesis are reviewed. The neurogenetic mechanisms are compared for vertebrates and invertebrates. Widely discussed hypotheses are considered along with the commonly accepted mechanisms.  相似文献   

5.
6.
7.
8.
9.
Targeting Drosophila eye development   总被引:1,自引:0,他引:1  
Jemc J  Rebay I 《Genome biology》2006,7(7):226-3
  相似文献   

10.
During eye development, cell death interplays dynamically with events of differentiation to achieve the remarkably patterned structure of the fly compound eye. Mutations in genes that affect the normal developmental process can lead to excessive death of progenitor cells, or, alternatively, to the differentiation of supernumerary neurons, pigment and cone cells due to survival of cells that would normally be eliminated. These data reveal that eye development contains cell selection processes: only certain cells are selected to undergo differentiation, and supernumerary cells are actively eliminated by cell death pathways to achieve the highly ordered lattice of the eye. The final number of cells that comprise the eye is controlled through a balance of cell proliferation with proper cell differentiation and removal by cell death.  相似文献   

11.
欧俊  郑思春  冯启理  刘琳 《昆虫学报》2013,56(8):917-924
翅原基发育分化与昆虫的个体发育紧密联系, 对昆虫翅发育的研究有助于阐述昆虫的发育过程。另外, 翅的形成是一些农林害虫泛滥的主要原因之一, 研究翅发育分化有助于我们从翅发育的角度控制农林害虫。目前, 翅发育分化在果蝇Drosophila中研究已较为深入详细。果蝇翅发育分化主要包括4个阶段: 翅原基(wing disc)的确定, 前-后(antero-posterior, A-P)和背-腹(dorso-ventral, D-V)组织中心(organizing center)的建立, 翅区(wing region)的确定, 以及翅区的进一步分化。具有homeobox序列的基因(homeobox 基因)如Engrailed (En)、 Apterous (Ap)和Ultrabithorax (Ubx), 分泌蛋白如Wnt家族成员Wingless (Wg)及TGF-β超家族成员Decapentaplegic (Dpp)和Hedgehog (Hh), 以及翅原基特有的核蛋白编码基因Vestigial (Vg), 共同调控了翅原基的正常发育分化。本文综述了果蝇翅原基发育分化的过程及分子机理方面的研究发现, 为翅原基的研究提供了参考。  相似文献   

12.
The tissue interactions between endodermal epithelium and mesenchyme originated from splanchnic mesoderm are essential during the formation of digestive tract. In this review, we introduce a series of works to elucidate the molecular mechanisms of the epithelial-mesenchymal interaction of stomach development in mainly the chicken embryo. We also describe some molecular studies in mouse stomach development.  相似文献   

13.
14.
15.
A number of Drosophila proteins have been identified that play key roles in the establishment of active or inactive states of selector gene expression. Interactions between these proteins and their target selector genes are beginning to be understood, shaping our molecular view as to how stable determination of cells is achieved.  相似文献   

16.
Kuklina EM 《Ontogenez》2003,34(5):342-357
A review of the main molecular events occurring during differentiation of T-lymphocytes in the thymus: T-cell specialization of early intrathymic precursors, formation and expression of antigen receptor, formation of antigen recognizing cell repertoire, and alpha beta/gamma beta- and CD4/CD8-commitment. The mechanisms of glucocorticoid-induced apoptosis of thymocytes and its blockade during antigen-dependent activation are considered. A special attention is paid to the analysis of intracellular signals underlying the clonal selection of thymocytes.  相似文献   

17.
18.
Wang Y  Werz C  Xu D  Chen Z  Li Y  Hafen E  Bergmann A 《PloS one》2008,3(1):e1447

Background

Activation of cell surface receptors transduces extracellular signals into cellular responses such as proliferation, differentiation and survival. However, as important as the activation of these receptors is their appropriate spatial and temporal down-regulation for normal development and tissue homeostasis. The Cbl family of E3-ubiquitin ligases plays a major role for the ligand-dependent inactivation of receptor tyrosine kinases (RTKs), most notably the Epidermal Growth Factor Receptor (EGFR) through ubiquitin-mediated endocytosis and lysosomal degradation.

Methodology/Principal Findings

Here, we report the mutant phenotypes of Drosophila cbl (D-cbl) during eye development. D-cbl mutants display overgrowth, inhibition of apoptosis, differentiation defects and increased ommatidial spacing. Using genetic interaction and molecular markers, we show that most of these phenotypes are caused by increased activity of the Drosophila EGFR. Our genetic data also indicate a critical role of ubiquitination for D-cbl function, consistent with biochemical models.

Conclusions/Significance

These data may provide a mechanistic model for the understanding of the oncogenic activity of mammalian cbl genes.  相似文献   

19.
It is clear that membrane transport is essential to the proper sorting and delivery of membrane bound receptors and ligands, and secreted signaling molecules. Molecular genetic studies in Drosophila are particularly well suited to studies of membrane transport in development. The conservation of cell signaling pathways and membrane transport molecules between Drosophila and other species makes the results obtained in these studies of general interest. In addition, the ability to generate gain- and loss-of-function genetic mutations of various strengths, and the ability to generate transgenic flies that direct protein expression to tissues during development are of particular advantage. Several recent papers suggest that interesting and novel roles for membrane transport processes will be uncovered by studying classically defined membrane transport proteins in developmental contexts. Together these studies suggest that regulation of membrane transport may represent an additional mechanism to regulate the strength of cell-cell signaling during development.  相似文献   

20.
Ras proteins associate with cellular membranes as a consequence of a series of posttranslational modifications of a C-terminal CAAX sequence that include prenylation and are thought to be required for biological activity. In Drosophila melanogaster, Ras1 is required for eye development. We found that Drosophila Ras1 is inefficiently prenylated as a consequence of a lysine in the A(1) position of its CAAX sequence such that a significant pool remains soluble in the cytosol. We used mosaic analysis with a repressible cell marker (MARCM) to assess if various Ras1 transgenes could restore photoreceptor fate to eye disc cells that are null for Ras1. Surprisingly, we found that whereas Ras1 with an enhanced efficiency of membrane targeting could not rescue the Ras1 null phenotype, Ras1 that was not at all membrane targeted by virtue of a mutation of the CAAX cysteine was able to fully rescue eye development. In addition, constitutively active Ras1(12V,C186S) not targeted to membranes produced a hypermorphic phenotype and stimulated mitogen-activated protein kinase (MAPK) signaling in S2 cells. We conclude that the membrane association of Drosophila Ras1 is not required for eye development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号