首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Treatment for 2 h with 200 microM cadmium chloride, followed by recovery, caused apoptosis and induced heat-shock protein 70 (HSP70) expression in U-937 promonocytic cells. However, pre-incubation with the GSH depleting agent L-buthionine-[S,R]-sulfoximine (BSO, 1 mM for 24 h) caused necrosis instead of apoptosis and failed to induce HSP70 expression. This failure was a consequence of necrosis instead of GSH depletion, since BSO allowed or even potentiated HSP70 induction when used in combination with heat shock (2 h at 42.5 degrees C) or with 50 microM cadmium, which caused apoptosis. The administration of N-acetyl-L-cysteine (NAC) at the beginning of recovery after BSO/200 microM cadmium treatment prevented the execution of necrosis and restored the execution of apoptosis, but did not restore HSP70 induction, indicating that the inhibition by BSO of HSP70 expression is an early regulated event. This contrasted with the capacity of NAC to prevent the alterations caused by BSO/200 microM cadmium in other proteins, namely the suppression of Bax expression and the increase in Bcl-2 and HSP-60 expression. Finally, it was observed that treatment with 200 microM cadmium rapidly increased the HSP70 mRNA level and stimulated heat-shock factor 1 (HSF1) trimerization and binding, and that these effects were prevented by pre-incubation with BSO. Taken together, these results indicate that the stress response is compatible with apoptosis but not with necrosis in cadmium-treated promonocytic cells. The suppression of the stress response is specifically due to the early inhibition of HSF1 activation.  相似文献   

4.
5.
Heat stress is one of a wide variety of factors causing liver injury, a small heat shock protein (HSP), HSP32, is induced by heat stress in the liver. But the biological function of HSP32 in this injury is unclear. To investigate the underlying role of HSP32, RT-PCR, immunocytochemical staining and ELISA were applied to confirm the expression of HSP32. And the underlying mechanism in the pathogenesis of hepatic dysfunction following hyperthermic challenge and the possible involvement of oxidative stress to induce oxidative deterioration of liver functions in developing mice were investigated in this study. Caspase-3mRNA expression and caspase-3 activity of heated liver were also analysed. The results showed that liver injury caused by chronic heat stress(39 °C, 1.5 h/day for 6 weeks) was reversible, caspase-3mRNA expression and caspase-3 activity of heat treated mice were increased after the first three weeks of heat exposure (P<0.05) and high expression levels of HSP32 were observed throughout the duration of experiment (P<0.01). A strong correlation exists between heat-induced liver injury and the induction of HSP32, which suggested that the reversibility of liver injury is involved in the induction of HSP32 in the hepatic cells under continuing heat stress.  相似文献   

6.
The effects of proteasome inhibition (PI) on heat-shock protein (HSP) expression in cardiomyocytes were investigated. Neonatal rat cardiomyocytes were incubated with MG132 (0.1-10 microM) for 1 h. Induction of various HSPs was determined by real-time PCR and Western blotting. PI induced a 2- to 3-fold increase in HSP27, HSP60, and HSP90, and a 18-fold increase in HSP70 mRNA expression, whereas HSP40 levels were unaffected. Western blotting revealed increased protein expression for HSP70 after PI. Similar results were obtained with MG262. HSP induction correlated with enhanced survival of neonatal cardiomyocytes after sublethal heat stress in XTT testing. In papillary muscles, pretreatment with MG132 (10 microM, 90 min) was associated with enhanced recovery of the contractile parameters after a 40-min hypoxia. In these proof-of-principle experiments, we show that PI induces differential heat-shock response in cardiomyocytes, accompanied by enhanced cell survival and functional recovery after various forms of stress.  相似文献   

7.
8.
The regulation of food intake in chickens (Gallus gallus domesticus) represents a complex homeostatic mechanism involving multiple levels of control, and regulation during high ambient temperatures (HT) is poorly understood. In this study, we examined hypothalamic mRNA expression of gonadotropin-inhibitory hormone (GnIH) to understand the effect of HT on an orexigenic neuropeptide. We examined the effects of HT (35 °C ambient temperature for 1, 24 or 48 h) on 14-day old chicks. HT significantly increased rectal temperature and suppressed food intake, and also influenced plasma metabolites. The expression of GnIH precursor mRNA in the diencephalon was significantly increased in chicks at 24-and 48 h of HT when food intake was suppressed significantly, whilst no change was observed for GnIH precursor mRNA and food intake at 1h of HT. In situ hybridization and immunocytochemistry further revealed the cellular localization of chicken GnIH precursor mRNA and its peptide in the paraventricular nucleus (PVN) in the chick hypothalamus. We examined plasma metabolites in chicks exposed to HT for 1 or 48 h and found that triacylglycerol concentration was significantly higher in HT than control chicks at 1h. Total protein, uric acid and calcium were significantly lower in HT chicks than control chicks at 48h. These results indicate that not only a reduction in food intake and alteration in plasma metabolites but also the PVN-specific expression of GnIH, an orexigenic agent, may be induced by HT. The reduced food intake at the same time as GnIH expression was increased during HT suggests that HT-induced GnIH expression may oppose HT-induced feeding suppression, rather than promote it. We suggest that the increased GnIH expression could be a consequence of the reduced food intake, and would not be a direct response to HT.  相似文献   

9.
The American lobster, Homarus americanus, encounters osmotic stress throughout its life cycle. To understand the molecular basis of osmotic stress responses in vivo, we used homologous cDNA probes to characterize the mRNA patterns of lobster HSP70 (=70-kDa heat-shock protein), HSP90 (=90-kDa heat-shock protein), and polyubiquitin during hypo- and hyper-osmotic stress in abdominal muscle and hepatopancreas (a digestive tissue) at 30, 60, and 120 min of osmotic stress. Hypo- and hyper-osmotic stress significantly increased the levels of the mRNAs encoding HSP70 and HSP90 in abdominal muscle. Hyper-osmotic stress increased HSP90 mRNA levels in hepatopancreas, but hypo-osmotic stress did not. Both abdominal muscle and hepatopancreas exhibited significant changes in polyubiquitin gene expression during osmotic stress. In abdominal muscle, polyubiquitin mRNA levels increased during both hypo- and hyper-osmotic stress. Hepatopancreas, however, showed a significant elevation in polyubiquitin mRNA only during hypo-osmotic stress.  相似文献   

10.
11.
BackgroundLead exposure results in a terrible rise in heat shock protein levels.ObjectiveThis research was conducted to look at the effects of lead poisoning on heat shock response, oxidative stress, and inflammatory markers in albino rats, as well as the power of selenium and vitamin E to resist lead toxic effects.MethodsEight groups of albino rats are used. Each group contained six rats where the first group represented the negative control, and the other groups were treated with olive oil, vitamin E, selenium, lead, (vitamin E + lead), (selenium + lead), and (vitamin E + selenium + lead). All the treatments lasted for 28 days. Then, the mRNA expression of interested heat shock proteins (HSP90, HSP70, and HSP60) was assessed. For oxidative stress disruption, we investigated nitric oxide (NO) and malondialdehyde (MDA) content, and enzymatic and non-enzymatic antioxidants activity respectively in rat livers.Resultsour results revealed the synergetic protective effect of the combination of two antioxidants (vitamin E and selenium) against lead poising. This was clear in regulating HSPs expression, inflammatory markers, glucose, lipid profile, liver functions, and antioxidant enzymes more than the treatment with one antioxidant.ConclusionPb is a toxic material that can induce HSPs and inflammatory markers expression. Selenium and vitamin E can give excellent effects in ameliorating Pb toxicity when used together.  相似文献   

12.
One postulated mechanism for the reduction in stress tolerance with aging is a decline in the regulation of stress-responsive genes, such as inducible heat shock protein 72 (HSP70). Increased levels of oxidative stress are also associated with aging, but it is unclear what impact a prooxidant environment might have on HSP70 gene expression. This study utilized a superoxide dismutase/catalase mimetic (Eukarion-189) to evaluate the impact of a change in redox environment on age-related HSP70 responses to a physiologically relevant heat challenge. Results demonstrate that liver HSP70 mRNA and protein levels are reduced in old compared with young rats at selected time points over a 48-h recovery period following a heat-stress protocol. While chronic systemic administration of Eukarion-189 suppressed hyperthermia-induced liver HSP70 mRNA expression in both age groups, HSP70 protein accumulation was blunted in old rats but not in their young counterparts. These data suggest that a decline in HSP70 mRNA levels may be responsible for the reduction in HSP70 protein observed in old animals after heat stress. Furthermore, improvements in redox status were associated with reduced HSP70 mRNA levels in both young and old rats, but differential effects were manifested on protein expression, suggesting that HSP70 induction is differentially regulated with aging. These findings highlight the integrated mechanisms of stress protein regulation in eukaryotic organisms responding to environmental stress, which likely involve interactions between a wide range of cellular signals.  相似文献   

13.
Rising temperatures are severely affecting the mortality, laying performance, and meat quality of duck. Our aim was to investigate the effect of acute heat stress on the expression of heat shock proteins (HSPs: HSP90, 70, 60, 40, and 10) and inflammatory factors (nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2)) and antioxidant enzyme activity (superoxide dismutase (SOD), malondialdehybe (MDA), catalase (CAT), total antioxidant capacity (T-AOC)) in livers of ducks and to compare the thermal tolerance of Pekin and Muscovy ducks exposed to acute heat stress. Ducks were exposed to heat at 39 ± 0.5 °C for 1 h and then returned to 20 °C for 1 h followed by a 3-h recovery period. The liver and other tissues were collected from each individual for analysis. The mRNA levels of HSPs (70, 60, and 40) increased in both species, except for HSP10, which was upregulated in Muscovy ducks and had no difference in Pekin ducks after heat stress. Simultaneously, the mRNA level of HSP90 decreased in the stress group in both species. Morphological analysis indicated that heat stress induced tissue injury in both species, and the liver of Pekin ducks was severely damaged. The activities of several antioxidant enzymes increased in Muscovy duck liver, but decreased in Pekin duck. The mRNA levels of inflammatory factors were increased after heat stress in both duck species. These results suggested that heat stress could influence HSPs, inflammatory factors expression, and the activities of antioxidant enzymes. Moreover, the differential response to heat stress indicated that the Muscovy duck has a better thermal tolerance than does the Pekin duck.  相似文献   

14.
Recombinant adeno-associated virus 2 (AAV) vectors transduction efficiency varies greatly in different cell types. We have described that a cellular protein, FKBP52, in its phosphorylated form interacts with the D-sequence in the viral inverted terminal repeat, inhibits viral second strand DNA synthesis, and limits transgene expression. Here we investigated the role of cellular heat-shock protein 90 (HSP90) in AAV transduction because FKBP52 forms a complex with HSP90, and because heat-shock treatment augments AAV transduction efficiency. Heat-shock treatment of HeLa cells resulted in tyrosine dephosphorylation of FKBP52, led to stabilization of the FKBP52-HSP90 complex, and resulted in approximately 6-fold increase in AAV transduction. However, when HeLa cells were pre-treated with tyrphostin 23, a specific inhibitor of cellular epidermal growth factor receptor tyrosine kinase, which phosphorylates FKBP52 at tyrosine residues, heat-shock treatment resulted in a further 18-fold increase in AAV transduction. HSP90 was shown to be a part of the FKBP52-AAV D-sequence complex, but HSP90 by itself did not bind to the D-sequence. Geldanamycin treatment, which disrupts the HSP90-FKBP52 complex, resulted in >22-fold increase in AAV transduction in heat-shock-treated cells compared with heat shock alone. Deliberate overexpression of the human HSP90 gene resulted in a significant decrease in AAV-mediated transduction in tyrphostin 23-treated cells, whereas down-modulation of HSP90 levels led to a decrease in HSP90-FKBP52-AAV D-sequence complex formation, resulting in a significant increase in AAV transduction following pre-treatment with tyrphostin 23. These studies suggest that the observed increase in AAV transduction efficiency following heat-shock treatment is unlikely to be mediated by HSP90 alone and that increased levels of HSP90, in the absence of heat shock, facilitate binding of FKBP52 to the AAV D-sequence, thereby leading to inhibition of AAV-mediated transgene expression. These studies have implications in the optimal use of recombinant AAV vectors in human gene therapy.  相似文献   

15.
Heat stress reduces oocyte competence, thereby causing lower fertility in animals. Chronic and acute heat stresses cause extensive morphological damage in animals, but few reports have focused on the effects of chronic and acute heat stresses on ovarian function and heat shock protein (HSP) gene expression during ovarian injury. In this study, we subjected female mice to chronic and acute heat stresses; we then calculated the ovary index, examined ovary microstructure, and measured the expression of multiple HSP family genes. Chronic heat stress reduced whole-body and ovarian growth but had little effect on the ovarian index; acute heat stress did not alter whole-body or ovarian weight. Both chronic and acute heat stresses impaired ovary function by causing the dysfunction of granular cells. Small HSP genes increased rapidly after heat treatment, and members of the HSP40, HSP70, and HSP90 families were co-expressed to function in the regulation of the heat stress response. We suggest that the HSP chaperone machinery may regulate the response to heat stress in the mouse ovary.  相似文献   

16.
17.
目的探讨热应激对小鼠器官指数、小肠形态、胃黏膜HSP70 mRNA表达量及糖代谢相关激素的影响。方法采用单因子实验设计,将年龄和体重相近的18只KM小鼠随机分为对照组和热应激组,分别测定心、肝、脾、肺、肾重量,小鼠胃黏膜HSP70 mRNA表达量、血浆中胰岛素和胰高血糖素浓度以及十二指肠和空肠的绒毛高度、隐窝深度,并对肝脏、十二指肠和空肠进行病理组织学检查。结果与结论热应激对小鼠器官指数无影响,可显著提高小鼠胃黏膜HSP70 mRNA表达量,降低血浆中胰岛素的含量,并造成小鼠肝脏、十二指肠和空肠严重损伤。  相似文献   

18.
19.
Release of corticosterone in hungry kittiwake chicks facilitates begging and allows them to restore depleted energy reserves by increasing parental food provisioning. However, in order to avoid detrimental effects of chronic elevation of corticosterone, chicks might suppress adrenocortical activity in response to prolonged food shortages. In this study we examined temporal dynamics of corticosterone release in red-legged kittiwake (Rissa brevirostris) chicks exposed to prolonged restrictions in energy content and/or nutritional quality (low versus high lipid content) of their food. Starting at the age of 15 days, chicks were fed either high- or low-lipid fish at 40%, 65%, and 100% of ad libitum energy intake. Body mass measurements and baseline plasma samples were taken on a weekly basis after beginning of the treatment. After 3 weeks of treatment, chicks were exposed to a standardized acute handling and restraint stress protocol, where in addition to a baseline sample, three plasma samples were taken at intervals up to 50 min. We found that food-restricted chicks had lower body mass, chronically (during 2-3 weeks) elevated baseline and higher acute stress-induced levels of corticosterone compared to chicks fed ad libitum. Low lipid content of food further exacerbated these effects. An increase in baseline levels of corticosterone was observed within a week after energy requirements of food-restricted chicks exceeded their daily energy intake. A tendency for suppression of adrenocortical activity was observed in treatments fed low-lipid diets only at the end of the experiment. We suggest that nest-bound chicks, if food-stressed, might suffer deleterious effects of chronic elevation of corticosterone.  相似文献   

20.
The human heat-shock protein multigene family comprises several highly conserved proteins with structural and functional properties in common, but which vary in the extent of their inducibility in response to metabolic stress. We have isolated and characterized a novel human HSP70 cDNA, HSP70B' cDNA, and its corresponding gene sequence. HSP70B' cDNA hybrid-selected an mRNA encoding a more basic 70 kDa heat-shock protein that both the major stress-inducible HSP70 and constitutively expressed HSC70 heat-shock proteins, which in common with other heat-shock 70 kDa proteins bound ATP. The complete HSP70B' gene was sequenced and, like the major inducible HSP70 gene, is devoid of introns. The HSP70B' gene has 77% sequence similarity to the HSP70 gene and 70% similarity to HSC70 cDNA, with greatest sequence divergence towards the 3'-terminus. The HSP70B' gene represents a functional gene, as indicated by Northern-blot analysis with specific oligonucleotides, hybrid-selected translation with a specific 3' cDNA sequence and S1 nuclease protection experiments. In contrast with HSP70 mRNA, which is present at low concentrations in HeLa cells and readily induced by heat or CdCl2 treatment in both fibroblasts and HeLa cells, HSP70B' mRNA was induced only at higher temperature and showed no basal expression. The differences in patterns of induction may be due to the special features of the promoter region of the HSP70B' gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号