首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Global biodiversity in freshwater and the oceans is declining at high rates. Reliable tools for assessing and monitoring aquatic biodiversity, especially for rare and secretive species, are important for efficient and timely management. Recent advances in DNA sequencing have provided a new tool for species detection from DNA present in the environment. In this study, we tested whether an environmental DNA (eDNA) metabarcoding approach, using water samples, can be used for addressing significant questions in ecology and conservation. Two key aquatic vertebrate groups were targeted: amphibians and bony fish. The reliability of this method was cautiously validated in silico, in vitro and in situ. When compared with traditional surveys or historical data, eDNA metabarcoding showed a much better detection probability overall. For amphibians, the detection probability with eDNA metabarcoding was 0.97 (CI = 0.90–0.99) vs. 0.58 (CI = 0.50–0.63) for traditional surveys. For fish, in 89% of the studied sites, the number of taxa detected using the eDNA metabarcoding approach was higher or identical to the number detected using traditional methods. We argue that the proposed DNA‐based approach has the potential to become the next‐generation tool for ecological studies and standardized biodiversity monitoring in a wide range of aquatic ecosystems.  相似文献   

2.
Environmental DNA (eDNA) analysis is a rapid, cost‐effective, non‐invasive biodiversity monitoring tool which utilises DNA left behind in the environment by organisms for species detection. The method is used as a species‐specific survey tool for rare or invasive species across a broad range of ecosystems. Recently, eDNA and “metabarcoding” have been combined to describe whole communities rather than focusing on single target species. However, whether metabarcoding is as sensitive as targeted approaches for rare species detection remains to be evaluated. The great crested newt Triturus cristatus is a flagship pond species of international conservation concern and the first UK species to be routinely monitored using eDNA. We evaluate whether eDNA metabarcoding has comparable sensitivity to targeted real‐time quantitative PCR (qPCR) for T. cristatus detection. Extracted eDNA samples (N = 532) were screened for T. cristatus by qPCR and analysed for all vertebrate species using high‐throughput sequencing technology. With qPCR and a detection threshold of 1 of 12 positive qPCR replicates, newts were detected in 50% of ponds. Detection decreased to 32% when the threshold was increased to 4 of 12 positive qPCR replicates. With metabarcoding, newts were detected in 34% of ponds without a detection threshold, and in 28% of ponds when a threshold (0.028%) was applied. Therefore, qPCR provided greater detection than metabarcoding but metabarcoding detection with no threshold was equivalent to qPCR with a stringent detection threshold. The proportion of T. cristatus sequences in each sample was positively associated with the number of positive qPCR replicates (qPCR score) suggesting eDNA metabarcoding may be indicative of eDNA concentration. eDNA metabarcoding holds enormous potential for holistic biodiversity assessment and routine freshwater monitoring. We advocate this community approach to freshwater monitoring to guide management and conservation, whereby entire communities can be initially surveyed to best inform use of funding and time for species‐specific surveys.  相似文献   

3.
环境DNA(EnvironmentalDNA,eDNA)可用于监测湖泊生物多样性,该技术对湖泊生态环境破坏性小,对于开展湖泊生态保护具有重要意义.湖泊流速较为缓慢,相对于河流更容易富集DNA,更适合于应用eDNA方法开展生物多样性研究.文章对eDNA在湖泊生物多样性上的应用进行了回顾,综述了其实验设计,分析了该技术存在...  相似文献   

4.
Environmental DNA metabarcoding is a non-invasive method for discovering and identifying rare and endangered species in a variety of ecosystems, including aquatic environments, based on the retrieval of genetic traces emitted into the environment by animals. Environmental (e) DNA research has grown in popularity over the last decade as a result of a rise in the number of studies that employ DNA taken from the environment, particularly in freshwater and marine ecosystems. In terms of detecting diversity patterns, we may claim that DNA retrieved from the environment (eDNA) is altering the game. For resource management in fisheries, information on species composition and biomass/abundance of commercially and noncommercially harvested species is critical. The eDNA is a truly non-invasive method that inflicts no damage on the species or habitats under study even during sampling, the eDNA technique never harms any ecosystems or threatened species. This novel molecular method never affects any endangered species or ecosystem during sampling. Environmental DNA analysis has become more widely accepted and is used in the detection of the presence and absence of aquatic macrofauna, such as freshwater and marine fish. This review study may aid researchers in better understanding the current state of eDNA technology. Despite the fact that various scientists have used eDNA to investigate the worldwide biodiversity of aquatic environments, no one in India is focusing on this new technology. We conclude that the eDNA technique has the potential to become a next-generation tool for biodiversity research and aquatic ecosystem conservation.  相似文献   

5.
冯芸芝  孙栋  邵倩文  王春生 《生态学报》2022,42(21):8544-8554
浮游动物是海洋生态系统的关键类群,其覆盖门类广泛,多样性高。传统形态鉴定技术需要检测人员具备专业的形态鉴定知识,且费时费力。宏条形码技术无需分离生物个体,而是提取拖网采集到的浮游动物混合样本的总DNA,或者水体中的环境DNA (eDNA),依托高通量测序平台测序,能够实现对大规模样本快速、准确、经济的分析,在海洋浮游动物生态学研究中得到越来越广泛的应用。分析了DNA宏条形码技术常用的核糖体和线粒体分子标记,在浮游动物多样性和数量研究中的可靠性和不足,并给出在海洋浮游动物群落监测,食物关系分析及生物入侵早期预警等研究中的应用。未来,开发多基因片段组合条形码,发展完备的参考数据库及实现准确的量化研究是DNA宏条形码技术发展的重要方向。  相似文献   

6.
研究使用环境DNA宏条形码技术(eDNA metabarcoding)检测辽东湾东北部河口区围海养殖池塘水母种类多样性,探索适用于水母种类物种鉴定和监测的新方法。利用环境DNA宏条形码技术,分别基于18S rDNA和COI宏条形码检测了辽东湾东北部河口区围海养殖池塘水母种类多样性,通过水样采集、过滤、eDNA提取、遗传标记扩增、测序与生物信息分析的环境DNA宏条形码标准化分析流程,从围海养殖池塘7个采样点中获得可检测的采样点数据。结果显示,基于18S rDNA宏条形码检测出8种水母种类,其中钵水母纲大型水母2种、水螅水母总纲小型水母6种;基于COI宏条形码技术共检测出19种水母种类,其中钵水母纲大型水母5种、水螅水母总纲小型水母14种;两种DNA条形码标记都显示养殖种类海蜇(Rhopilema esculentum)为优势种。研究结果表明,环境DNA宏条形码技术作为一种新兴的生物多样性监测手段可用于快速检测水母种类多样性,在水母类物种鉴定、监测及早期预警中有较大的应用潜能。  相似文献   

7.
DNA extraction from environmental samples (environmental DNA; eDNA) for metabarcoding‐based biodiversity studies is gaining popularity as a noninvasive, time‐efficient, and cost‐effective monitoring tool. The potential benefits are promising for marine conservation, as the marine biome is frequently under‐surveyed due to its inaccessibility and the consequent high costs involved. With increasing numbers of eDNA‐related publications have come a wide array of capture and extraction methods. Without visual species confirmation, inconsistent use of laboratory protocols hinders comparability between studies because the efficiency of target DNA isolation may vary. We determined an optimal protocol (capture and extraction) for marine eDNA research based on total DNA yield measurements by comparing commonly employed methods of seawater filtering and DNA isolation. We compared metabarcoding results of both targeted (small taxonomic group with species‐level assignment) and universal (broad taxonomic group with genus/family‐level assignment) approaches obtained from replicates treated with the optimal and a low‐performance capture and extraction protocol to determine the impact of protocol choice and DNA yield on biodiversity detection. Filtration through cellulose‐nitrate membranes and extraction with Qiagen's DNeasy Blood & Tissue Kit outperformed other combinations of capture and extraction methods, showing a ninefold improvement in DNA yield over the poorest performing methods. Use of optimized protocols resulted in a significant increase in OTU and species richness for targeted metabarcoding assays. However, changing protocols made little difference to the OTU and taxon richness obtained using universal metabarcoding assays. Our results demonstrate an increased risk of false‐negative species detection for targeted eDNA approaches when protocols with poor DNA isolation efficacy are employed. Appropriate optimization is therefore essential for eDNA monitoring to remain a powerful, efficient, and relatively cheap method for biodiversity assessments. For seawater, we advocate filtration through cellulose‐nitrate membranes and extraction with Qiagen's DNeasy Blood & Tissue Kit or phenol‐chloroform‐isoamyl for successful implementation of eDNA multi‐marker metabarcoding surveys.  相似文献   

8.
The genomic revolution has fundamentally changed how we survey biodiversity on earth. High‐throughput sequencing (“HTS”) platforms now enable the rapid sequencing of DNA from diverse kinds of environmental samples (termed “environmental DNA” or “eDNA”). Coupling HTS with our ability to associate sequences from eDNA with a taxonomic name is called “eDNA metabarcoding” and offers a powerful molecular tool capable of noninvasively surveying species richness from many ecosystems. Here, we review the use of eDNA metabarcoding for surveying animal and plant richness, and the challenges in using eDNA approaches to estimate relative abundance. We highlight eDNA applications in freshwater, marine and terrestrial environments, and in this broad context, we distill what is known about the ability of different eDNA sample types to approximate richness in space and across time. We provide guiding questions for study design and discuss the eDNA metabarcoding workflow with a focus on primers and library preparation methods. We additionally discuss important criteria for consideration of bioinformatic filtering of data sets, with recommendations for increasing transparency. Finally, looking to the future, we discuss emerging applications of eDNA metabarcoding in ecology, conservation, invasion biology, biomonitoring, and how eDNA metabarcoding can empower citizen science and biodiversity education.  相似文献   

9.
底栖动物是淡水生态系统中物种多样性最高的类群,也是应用最广泛的水质监测指示生物之一。传统的底栖动物监测以形态学为基础,耗时费力,无法满足流域尺度大规模监测的需求。环境DNA-宏条形码技术是一种新兴的生物监测方法,其与传统方法相比优势在于采样方法简单、低成本、高灵敏度,不受生物样本和环境状况的影响,不依赖分类专家和鉴定资料,能够快速准确地对多个类群进行大规模、高通量的物种鉴定。然而,在实际应用中该方法的效果受诸多因素的影响,不同的方法、流程往往会产生差异较大的结果。鉴于此,着重分析总结了应用环境DNA-宏条形码技术监测底栖动物的关键影响因素,包括样品采集与处理流程、分子标记选择、引物设计、PCR偏好性、参考数据库的完整性及相应的优化。并基于此探讨了提高环境DNA-宏条形码技术在底栖动物监测效率和准确率的途径,以期为底栖动物环境DNA-宏条形码监测方案的制定提供可靠的参考。最后对该技术在底栖动物监测和水质评价中的最新发展方向进行了展望。  相似文献   

10.
Environmental DNA (eDNA) techniques refer to utilizing the organisms’ DNA extracted from environment samples to genetically identify target species without capturing actual organisms. eDNA metabarcoding via high‐throughput sequencing can simultaneously detect multiple fish species from a single water sample, which is a powerful tool for the qualitative detection and quantitative estimates of multiple fish species. However, sequence counts obtained from eDNA metabarcoding may be influenced by many factors, of which primer bias is one of the foremost causes of methodological error. The performance of 18 primer pairs for COI, cytb, 12S rRNA, and 16S rRNA mitochondrial genes, which are all frequently used in fish eDNA metabarcoding, were evaluated in the current study. The ribosomal gene markers performed better than the protein‐coding gene markers during in silico screening, resulting in higher taxonomic coverage and appropriate barcode lengths. Four primer pairs—AcMDB07, MiFish‐U, Ve16S1, and Ve16S3—designed for various regions of the 12S and 16S rRNA genes were screened for tank metabarcoding in a case study targeting six freshwater fish species. The four primer pairs were able to accurately detect all six species in different tanks, while only MiFish‐U, Ve16S1, and Ve16S3 revealed a significant positive relationship between species biomass and read count for the pooled tank data. The positive relationship could not be found in all species within the tanks. Additionally, primer efficiency differed depending on the species while primer preferential species varied in different fish assemblages. This case study supports the potential for eDNA metabarcoding to assess species diversity in natural ecosystems and provides an alternative strategy to evaluate the performance of candidate primers before application of eDNA metabarcoding in natural ecosystems.  相似文献   

11.
Invasive species are one of the most significant problem in freshwater ecosystems. Most common non-native freshwater species in Turkish freshwater fish fauna are Prussian Carp (Carassius gibelio), North African Catfish (Clarias gariepinus), Nile Tilapia (Oreochromis niloticus) and Topmouth Gudgeon (Pseudorasbora parva).Recent studies showed that environmental DNA could be used to detect target species inhabiting the ecosystem with higher precision and less effort compared to traditional field surveys. In this study, eDNA approach was used to investigate non-native freshwater fish species from fifteen different locations of Upper Sakarya Basin. eDNA was successfully extracted from the water samples of locations where the species were visually observed. Mean amplification rate of eDNA was calculated as 77.03%.This study is the first environmental DNA study used in detection of four of the most common invasive freshwater fish species. Results clearly indicating that eDNA surveys could be used as an important molecular tool to monitor invasive fish species in freshwater ecosystems.  相似文献   

12.
研究使用环境DNA宏条形码(eDNA metabarcoding)检测洱海鱼类多样性,探索适用于洱海鱼类多样性监测和保护的新方法。通过水样采集、过滤、eDNA提取、遗传标记扩增、测序与生物信息分析的环境DNA宏条形码标准化分析流程,从洱海16个采样点中获得可检测的9个采样点数据,共检测出17种鱼类,其中土著种5种、外来种12种;鲫(Carassius auratus)、鳙(Hypophthalmichthys nobilis)、麦穗鱼(Pseudorasbora parva)、泥鳅(Misgurnus anguillicaudatus)和食蚊鱼(Gambusia affinis)为优势种。研究结果表明虽然环境DNA宏条形码无法完全替代传统的鱼类监测方法,但作为一种新兴的生物多样性监测手段,其可用于快速检测洱海鱼类多样性及其空间分布。  相似文献   

13.
Environmental DNA (eDNA) metabarcoding, a technique for retrieving multispecies DNA from environmental samples, can detect a diverse array of marine species from filtered seawater samples. There is a growing potential to integrate eDNA alongside existing monitoring methods in order to establish or improve the assessment of species diversity. Remote island reefs are increasingly vulnerable to climate‐related threats and as such there is a pressing need for cost‐effective whole‐ecosystem surveying to baseline biodiversity, study assemblage changes and ultimately develop sustainable management plans. We investigated the utility of eDNA metabarcoding as a high‐resolution, multitrophic biomonitoring tool at the Cocos (Keeling) Islands, Australia (CKI)—a remote tropical coral reef atoll situated within the eastern Indian Ocean. Metabarcoding assays targeting the mitochondrial 16S rRNA and CO1 genes, as well as the 18S rRNA nuclear gene, were applied to 252 surface seawater samples collected from 42 sites within a 140 km2 area. Our assays successfully detected a wide range of bony fish and elasmobranchs (244 taxa), crustaceans (88), molluscs (37) and echinoderms (7). Assemblage composition varied significantly between sites, reflecting habitat partitioning across the island ecosystem and demonstrating the localisation of eDNA signals, despite extensive tidal and oceanic movements. In addition, we document putative new occurrence records for 46 taxa and compare the efficiency of our eDNA approach to visual survey techniques at CKI. Our study demonstrates the utility of a multimarker metabarcoding approach in capturing multitrophic biodiversity across an entire coral reef atoll and sets an important baseline for ongoing monitoring and management.  相似文献   

14.
High‐throughput sequencing of environmental DNA (i.e., eDNA metabarcoding) has become an increasingly popular method for monitoring aquatic biodiversity. At present, such analyses require target‐specific primers to amplify DNA barcodes from co‐occurring species, and this initial amplification can introduce biases. Understanding the performance of different primers is thus recommended prior to undertaking any metabarcoding initiative. While multiple software programs are available to evaluate metabarcoding primers, all programs have their own strengths and weaknesses. Therefore, a robust in silico workflow for the evaluation of metabarcoding primers will benefit from the use of multiple programs. Furthermore, geographic differences in species biodiversity are likely to influence the performance of metabarcoding primers and further complicate the evaluation process. Here, an in silico workflow is presented that can be used to evaluate the performance of metabarcoding primers on an ecoregion scale. This workflow was used to evaluate the performance of published and newly developed eDNA metabarcoding primers for the freshwater fish biodiversity of the Murray–Darling Basin (Australia). To validate the in silico workflow, a subset of the primers, including one newly designed primer pair, were used in metabarcoding analyses of an artificial DNA community and eDNA samples. The results show that the in silico workflow allows for a robust evaluation of metabarcoding primers and can reveal important trade‐offs that need to be considered when selecting the most suitable primer. Additionally, a new primer pair was described and validated that allows for more robust taxonomic assignments and is less influenced by primer biases compared to commonly used fish metabarcoding primers.  相似文献   

15.
Organisms continuously release DNA into their environments via shed cells, excreta, gametes and decaying material. Analysis of this ‘environmental DNA’ (eDNA) is revolutionizing biodiversity monitoring. eDNA outperforms many established survey methods for targeted detection of single species, but few studies have investigated how well eDNA reflects whole communities of organisms in natural environments. We investigated whether eDNA can recover accurate qualitative and quantitative information about fish communities in large lakes, by comparison to the most comprehensive long‐term gill‐net data set available in the UK. Seventy‐eight 2L water samples were collected along depth profile transects, gill‐net sites and from the shoreline in three large, deep lakes (Windermere, Bassenthwaite Lake and Derwent Water) in the English Lake District. Water samples were assayed by eDNA metabarcoding of the mitochondrial 12S and cytochrome b regions. Fourteen of the 16 species historically recorded in Windermere were detected using eDNA, compared to four species in the most recent gill‐net survey, demonstrating eDNA is extremely sensitive for detecting species. A key question for biodiversity monitoring is whether eDNA can accurately estimate abundance. To test this, we used the number of sequence reads per species and the proportion of sampling sites in which a species was detected with eDNA (i.e. site occupancy) as proxies for abundance. eDNA abundance data consistently correlated with rank abundance estimates from established surveys. These results demonstrate that eDNA metabarcoding can describe fish communities in large lakes, both qualitatively and quantitatively, and has great potential as a complementary tool to established monitoring methods.  相似文献   

16.
Because significant global changes are currently underway in the Arctic, creating a large‐scale standardized database for Arctic marine biodiversity is particularly pressing. This study evaluates the potential of aquatic environmental DNA (eDNA) metabarcoding to detect Arctic coastal biodiversity changes and characterizes the local spatio‐temporal distribution of eDNA in two locations. We extracted and amplified eDNA using two COI primer pairs from ~80 water samples that were collected across two Canadian Arctic ports, Churchill and Iqaluit, based on optimized sampling and preservation methods for remote regions surveys. Results demonstrate that aquatic eDNA surveys have the potential to document large‐scale Arctic biodiversity change by providing a rapid overview of coastal metazoan biodiversity, detecting nonindigenous species, and allowing sampling in both open water and under the ice cover by local northern‐based communities. We show that DNA sequences of ~50% of known Canadian Arctic species and potential invaders are currently present in public databases. A similar proportion of operational taxonomic units was identified at the species level with eDNA metabarcoding, for a total of 181 species identified at both sites. Despite the cold and well‐mixed coastal environment, species composition was vertically heterogeneous, in part due to river inflow in the estuarine ecosystem, and differed between the water column and tide pools. Thus, COI‐based eDNA metabarcoding may quickly improve large‐scale Arctic biomonitoring using eDNA, but we caution that aquatic eDNA sampling needs to be standardized over space and time to accurately evaluate community structure changes.  相似文献   

17.
Determining the species compositions of local assemblages is a prerequisite to understanding how anthropogenic disturbances affect biodiversity. However, biodiversity measurements often remain incomplete due to the limited efficiency of sampling methods. This is particularly true in freshwater tropical environments that host rich fish assemblages, for which assessments are uncertain and often rely on destructive methods. Developing an efficient and nondestructive method to assess biodiversity in tropical freshwaters is highly important. In this study, we tested the efficiency of environmental DNA (eDNA) metabarcoding to assess the fish diversity of 39 Guianese sites. We compared the diversity and composition of assemblages obtained using traditional and metabarcoding methods. More than 7,000 individual fish belonging to 203 Guianese fish species were collected by traditional sampling methods, and ~17 million reads were produced by metabarcoding, among which ~8 million reads were assigned to 148 fish taxonomic units, including 132 fish species. The two methods detected a similar number of species at each site, but the species identities partially matched. The assemblage compositions from the different drainage basins were better discriminated using metabarcoding, revealing that while traditional methods provide a more complete but spatially limited inventory of fish assemblages, metabarcoding provides a more partial but spatially extensive inventory. eDNA metabarcoding can therefore be used for rapid and large‐scale biodiversity assessments, while at a local scale, the two approaches are complementary and enable an understanding of realistic fish biodiversity.  相似文献   

18.
文章采用环境DNA宏条码和底拖网对珠江河口鱼类多样性进行了研究, 并对两种方法进行了比较。利用环境DNA宏条码检测到了175种鱼类, 而利用底拖网采集到了47种鱼类, 结合两种方法共检测出179种鱼类, 隶属于15 目63科128属。其中两种方法共同识别了鱼类43种, 占总检测物种的24.02%, 基于底拖网的调查未能收集到基于环境DNA宏条码检测到的大多数物种。根据Shannon指数和Simpson指数显示, DNA宏条码所检测珠江河口鱼类群落α多样性显著高于底拖网方法(P<0.05)。两种方法的PCoA结果均显示珠江河口鱼类群落存在空间结构, 基于环境DNA宏条码的分析显示空间重叠更多。两种方法基于冗余分析均显示溶解氧和盐度是影响鱼类群落结构的主要环境因子。研究表明, 环境DNA 宏条形码是一种环保且可靠的评估方法, 将其搭载到现有调查可以更好地了解河口鱼类多样性。  相似文献   

19.
Current biodiversity assessment and biomonitoring are largely based on the morphological identification of selected bioindicator taxa. Recently, several attempts have been made to use eDNA metabarcoding as an alternative tool. However, until now, most applied metabarcoding studies have been based on the taxonomic assignment of sequences that provides reference to morphospecies ecology. Usually, only a small portion of metabarcoding data can be used due to a limited reference database and a lack of phylogenetic resolution. Here, we investigate the possibility to overcome these limitations using a taxonomy‐free approach that allows the computing of a molecular index directly from eDNA data without any reference to morphotaxonomy. As a case study, we use the benthic diatoms index, commonly used for monitoring the biological quality of rivers and streams. We analysed 87 epilithic samples from Swiss rivers, the ecological status of which was established based on the microscopic identification of diatom species. We compared the diatom index derived from eDNA data obtained with or without taxonomic assignment. Our taxonomy‐free approach yields promising results by providing a correct assessment for 77% of examined sites. The main advantage of this method is that almost 95% of OTUs could be used for index calculation, compared to 35% in the case of the taxonomic assignment approach. Its main limitations are under‐sampling and the need to calibrate the index based on the microscopic assessment of diatoms communities. However, once calibrated, the taxonomy‐free molecular index can be easily standardized and applied in routine biomonitoring, as a complementary tool allowing fast and cost‐effective assessment of the biological quality of watercourses.  相似文献   

20.
Effective biomonitoring is critical for driving management outcomes that ensure long‐term sustainability of the marine environment. In recent years, environmental DNA (eDNA), coupled with metabarcoding methodologies, has emerged as a promising tool for generating biotic surveys of marine ecosystems, including those under anthropogenic pressure. However, more empirical data are needed on how to best implement eDNA field sampling approaches to maximize their utility for each specific application. The effect of the substrate chosen for eDNA sampling on the diversity of marine taxa detected by DNA metabarcoding has not yet been systematically analysed, despite aquatic systems being those most commonly targeted for eDNA studies. We investigated the effect of four commonly used eDNA substrates to explore taxonomic diversity: (a) surface water, (b) marine sediment, (c) settlement plates and (d) planktonic tows. With a focus on coastal ports, 332 eDNA samples from Australia (Indian and Southern oceans) and Kazakhstan (Caspian Sea) were collected and analysed by multi‐assay DNA metabarcoding. Across study locations, between 30% and 52% of eukaryotic families detected were unique to a particular substrate and <6% of families were found in all four substrates. Taxonomic composition varied significantly depending on the substrate sampled implying that the suitability (and bias) of an eDNA substrate will depend on the focal taxa. These findings demonstrate that single substrate eDNA metabarcoding likely underestimates the total eukaryotic diversity. Future eDNA experimental design should consider incorporating multiple substrates or select substrate(s) best suited to the specific detection of target taxa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号