首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Uridine diphosphate-glucuronosyltransferase 2 (UGT2)B15 and B17 enzymes conjugate dihydrotestosterone (DHT) and its metabolites androstane-3alpha, 17beta-diol (3alpha-DIOL) and androsterone (ADT). The presence of UGT2B15/B17 in the epithelial cells of the human prostate has been clearly demonstrated, and significant 3alpha-DIOL glucuronide and ADT-glucuronide concentrations have been detected in this tissue. The human androgen-dependent cancer cell line, LNCaP, expresses UGT2B15 and -B17 and is also capable of conjugating androgens. To assess the impact of these two genes in the inactivation of androgens in LNCaP cells, their expression was inhibited using RNA interference. The efficient inhibitory effects of a UGT2B15/B17 small interfering RNA (siRNA) probe was established by the 70% reduction of these UGT mRNA levels, which was further confirmed at the protein levels. The glucuronidation of dihydrotestosterone (DHT), 3alpha-DIOL, and ADT by LNCaP cell homogenates was reduced by more than 75% in UGT2B15/B17 siRNA-transfected LNCaP cells when compared with cells transfected with a non-target probe. In UGT2B15/B17-deficient LNCaP cells, we observe a stronger response to DHT than in control cells, as determined by cell proliferation and expression of eight known androgen-sensitive genes. As expected, the amounts of DHT in cell culture media from control cells were significantly lower than that from UGT2B15/B17 siRNA-treated cells, which was caused by a higher conversion to its corresponding glucuronide derivative. Taken together these data support the idea that UGT2B15 and -B17 are critical enzymes for the local inactivation of androgens and that glucuronidation is a major determinant of androgen action in prostate cells.  相似文献   

2.
DNA methylation plays an important role in carcinogenesis and the reversibility of this epigenetic modification makes it a potential therapeutic target. To date, DNA methyltransferase inhibitors (DNMTi) have not demonstrated clinical efficacy in prostate cancer, with one of the major obstacles being the inability to monitor drug activity during the trial. Given the high frequency and specificity of GSTP1 DNA methylation in prostate cancer, we investigated whether GSTP1 is a useful marker of DNMTi treatment efficacy. LNCaP prostate cancer cells were treated with 5-aza-2'-deoxycytidine (5-aza-CdR) either with a single high dose (5-20 μM), every alternate day (0.1-10 μM) or daily (0.005-2.5 μM). A daily treatment regimen with 5-aza-CdR was optimal, with significant suppression of cell proliferation achieved with doses of 0.05 μM or greater (p<0.0001) and induction of cell death from 0.5 μM (p<0.0001). In contrast, treatment with a single high dose of 20 μM 5-aza-CdR inhibited cell proliferation but was not able to induce cell death. Demethylation of GSTP1 was observed with doses of 5-aza-CdR that induced significant suppression of cell proliferation (≥ 0.05 μM). Re-expression of the GSTP1 protein was observed only at doses of 5-aza-CdR (≥ 0.5 μM) associated with induction of cell death. Treatment of LNCaP cells with a more stable DNMTi, Zebularine required at least a 100-fold higher dose (≥ 50 μM) to inhibit proliferation and was less potent in inducing cell death, which corresponded to a lack of GSTP1 protein re-expression. We have shown that GSTP1 DNA methylation and protein expression status is correlated with DNMTi treatment response in prostate cancer cells. Since GSTP1 is methylated in nearly all prostate cancers, our results warrant its testing as a marker of epigenetic therapy response in future clinical trials. We conclude that the DNA methylation and protein expression status of GSTP1 are good indicators of DNMTi efficacy.  相似文献   

3.
Cyclooxygenase 2 (COX2) is the inducible isozyme of COX, a key enzyme in arachidonate metabolism and the conversion of arachidonic acid (AA) to prostaglandins (PGs) and other eicosanoids. Previous studies have demonstrated that the COX2 protein is up-regulated in prostate cancer cells after irradiation and that this results in elevated levels of PGE(2). In the present study, we further investigated whether radiation-induced COX2 up-regulation is dependent on the redox status of cells from the prostate cancer cell line PC-3. l-Buthionine sulfoximine (BSO), which inhibits gamma glutamyl cysteine synthetase (gammaGCS), and the antioxidants alpha-lipoic acid and N-acetyl-l-cysteine (NAC) were used to modulate the cellular redox status. BSO decreased the cellular GSH level and increased cellular reactive oxygen species (ROS) in PC-3 cells, whereas alpha-lipoic acid and NAC increased the GSH level and decreased cellular ROS. Both radiation and the oxidant H(2)O(2) had similar effects on COX2 up-regulation and PGE(2) production in PC-3 cells, suggesting that radiation-induced COX2 up-regulation is secondary to the production of ROS. The relative increases in COX2 expression and PGE(2) production induced by radiation and H(2)O(2) were even greater when PC-3 cells were pretreated with BSO. When the cells were pretreated with alpha-lipoic acid or NAC for 24 h, both radiation- and H(2)O(2)-induced COX2 up-regulation and PGE(2) production were markedly inhibited. These results demonstrate that radiation-induced COX2 up-regulation in prostate cancer cells is modulated by the cellular redox status. Radiation-induced increases in ROS levels contribute to the adaptive response of PC-3 cells, resulting in elevated levels of COX2.  相似文献   

4.
Molecular and Cellular Biochemistry - We explored the association of fecal bacterial species and somatic telomere changes in patients with chronic disease. The results showed that the length of the...  相似文献   

5.
The genetic impact of UGT2B17 gene copy number variation (CNV) on tobacco-smoking related cancers is of interest since this enzyme plays an important role in glucuronidation of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), a major metabolite from the nicotine-derived tobacco-specific nitrosamine, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). This is an important mechanism for NNK detoxification. The UGT2B17 gene varies in copy number from zero to two per individual in humans and this CNV was genotyped in 148 lung cancer and 92 control Chinese Han samples by a PCR-based method. The frequency of the UGT2B17 undeleted allele was higher in lung cancer patients than in controls but not significantly so (p = 0.042, OR 1.6; 95% CI: 0.97–2.57); however, in smokers with lung cancer its frequency is significantly higher than in controls, (p = 0.016, OR 1.8; 95% CI: 1.08–3.18). The undeleted allele was also significantly higher in the male lung cancer group (p = 0.015, OR 1.86; 95% CI: 1.09–3.16), and even higher in the male smoker lung cancer group (p = 0.004, OR 2.23; 95% CI: 1.27–3.89). In subsets of the male smoker lung cancer group defined by their histopathology, the undeleted allele was significantly higher in squamous cell carcinoma (p = 0.026, OR 2.09; 95% CI: 1.06–4.10). These results show that UGT2B17 copy number is associated with male smoker lung cancer in China, especially squamous cell carcinoma.  相似文献   

6.
Molecular biomarkers may facilitate the distinction between aggressive and clinically insignificant prostate cancer (PCa), thereby potentially aiding individualized treatment. We analyzed cysteine dioxygenase 1 (CDO1) promoter methylation and mRNA expression in order to evaluate its potential as prognostic biomarker. CDO1 methylation and mRNA expression were determined in cell lines and formalin-fixed paraffin-embedded prostatectomy specimens from a first cohort of 300 PCa patients using methylation-specific qPCR and qRT-PCR. Univariate and multivariate Cox proportional hazards and Kaplan-Meier analyses were performed to evaluate biochemical recurrence (BCR)-free survival. Results were confirmed in an independent second cohort comprising 498 PCa cases. Methylation and mRNA expression data from the second cohort were generated by The Cancer Genome Atlas (TCGA) Research Network by means of Infinium HumanMethylation450 BeadChip and RNASeq. CDO1 was hypermethylated in PCa compared to normal adjacent tissues and benign prostatic hyperplasia (P < 0.001) and was associated with reduced gene expression (ρ = ?0.91, P = 0.005). Using two different methodologies for methylation quantification, high CDO1 methylation as continuous variable was associated with BCR in univariate analysis (first cohort: HR = 1.02, P = 0.002, 95% CI [1.01–1.03]; second cohort: HR = 1.02, P = 0.032, 95% CI [1.00–1.03]) but failed to reach statistical significance in multivariate analysis. CDO1 promoter methylation is involved in gene regulation and is a potential prognostic biomarker for BCR-free survival in PCa patients following radical prostatectomy. Further studies are needed to validate CDO1 methylation assays and to evaluate the clinical utility of CDO1 methylation for the management of PCa.  相似文献   

7.
Previous studies on monocarboxylate transporters expression in prostate cancer (PCa) have shown that monocarboxylate transporter 2 (MCT2) was clearly overexpressed in prostate malignant glands, pointing it out as a putative biomarker for PCa. However, its localization and possible role in PCa cells remained unclear. In this study, we demonstrate that MCT2 localizes mainly at peroxisomes in PCa cells and is able to take advantage of the peroxisomal transport machinery by interacting with Pex19. We have also shown an increase in MCT2 expression from non‐malignant to malignant cells that was directly correlated with its peroxisomal localization. Upon analysis of the expression of several peroxisomal β‐oxidation proteins in PIN lesions and PCa cells from a large variety of human prostate samples, we suggest that MCT2 presence at peroxisomes is related to an increase in β ‐oxidation levels which may be crucial for malignant transformation. Our results present novel evidence that may not only contribute to the study of PCa development mechanisms but also pinpoint novel targets for cancer therapy.  相似文献   

8.
Prostate cancer is known as the fifth most common cancer in Korean male. The etiology of the prostate cancer remains unknown, but age, race, drug, family history, dietary habit and steroid hormone levels have been suggested as causative factors. Among these factors, variations in androgen hormone levels have been suggested as one of risk factors for the cancer. The glucuronidation is a major pathway of detoxification process of toxin and hormones within human body by UDP-glucuronosyltransferase (UGT) enzymes. Known as the androgen inactivating UGT2B enzyme family, UGT2B17 and UGT2B28 have common deletion region by copy number variation (CNV) and UGT2B15 has a single nucleotide polymorphism (SNP) (rs1902023: G > T) locus which contains the change from Asp to Tyr on exon 1. These polymorphisms were analyzed with genomic DNA extracted from 555 prostate cancer cases and 404 control males. There was no difference in the frequency of CNV and SNP of each UGT2B genes between prostate cancer cases and control males. In this study, we found the decreased risk (OR, 0.39; 95 % CI, 0.19–0.83; P = 0.011) of prostate cancer in individuals with UGT2B17 del/del type, UGT2B28 in/del type and UGT2B15 SNP TT type. Additionally, we found the length polymorphisms of the short tandem repeat (STR) in the allelic loci of UGT2B28 deletion regions and suggest that this locus can be used for a personal identification marker.  相似文献   

9.
This study was conducted to evaluate the influence of DNA methylation of metastasis suppressor 1 (MTSS1) on prostate cancer (PCa) progression. Forty-nine paired PCa tissue samples and normal tissue samples from The Cancer Genome Atlas were analyzed. Methylome analysis, CpG island arrays and Hierarchical clustering were used to analyze methylation profiles of PCa tissues. MTSS1 methylation level was detected by methylation-specific PCR. Relative messenger RNA and the expression level of MTSS1 protein were identified by quantitative real-time PCR (qRT-PCR) and western blot analysis. The migration, invasion, proliferation, and cell cycle were detected separately by wound-healing assay, transwell chamber assay, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay and flow cytometry. The roles of MTSS1 in PCa progression were demonstrated in vivo by tumor formation assays in nude mice. MTSS1 expression was decreased in PCa tissues in comparison with paired adjacent normal prostate tissues. Compared to the methylation of MTSS1 in normal prostate tissues based on the MethHC website, the MTSS1 in PCa tissues was hypermethylated. The expression of MTSS1 detected by qRT-PCR and western blot analysis was found to be downregulated in PCa cells and tissues. The reduced expression of MTSS1 by small interfering RNA-MTSS1 was recovered by 5-aza-2′-deoxycytidine treatment. Besides, MTSS1 demethylation inhibited migration, invasion, and proliferation of PCa cells, and induced cell cycle to be arrested at G0/G1 phase. Furthermore, it was shown by tumor xenograft assay that MTSS1 inhibited the growth of tumor in vivo. Hypermethylated MTSS1 promoted PCa cells migration, invasion, and proliferation, and suppressed cell cycle arrest at the G0/G1 phase.  相似文献   

10.
Cysteine‐rich 61 (Cyr61) is a member of the CCN protein family that has been implicated in diverse biological processes such as cell adhesion, proliferation, angiogenesis, and tumorigenesis. Altered expression of Cyr61 is found to be associated with human cancers. Here we show that Cyr61 was up‐regulated in prostate cancer cell lines and tumor tissues. A significant correlation of Cyr61 expression was found between benign prostatic hyperplasia and prostate cancer (P = 0.002). However, there was no significant correlation between levels of PSA and Cyr61 expression (P = 0.2). Cyr61 may represent an independent prostate cancer biomarker and potentially a useful therapeutic target for prostate cancer treatment. In addition, our analysis based on published data and data present in this report indicted that levels of Cyr61 expression associated with the status of the tumor suppressor gene p53 in 32 cancer cell lines analyzed, high levels of Cyr61 expression were found in cell lines with mutant or null p53 gene, whereas lower expression levels of Cyr61 in the cell lines with wild‐type p53. We further show that over‐expression of dominant negative p53 or down‐expression of endogenous wild‐type p53 resulted in up‐regulation of Cyr61 expression, suggesting a functional link between Cyr61 and p53 in cancers. J. Cell. Biochem. 106: 738–744, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

11.
12.
13.
14.
15.
Aberrant DNA methylation seems to be associated with prostate cancer behavior. We investigated LINE-1 methylation in prostate cancer and non-neoplastic tissue adjacent to tumor (NTAT) in association with mortality from prostate cancer. We selected 157 prostate cancer patients with available NTAT from 2 cohorts of patients diagnosed between 1982–1988 and 1993–1996, followed up until 2010. An association between LINE-1 hypomethylation and prostate cancer mortality in tumor was suggested [hazard ratio per 5% decrease in LINE-1 methylation levels: 1.40, 95% confidence interval (CI): 0.95–2.01]. After stratification of the patients for Gleason score, the association was present only for those with a Gleason score of at least 8. Among these, low (<75%) vs. high (>80%) LINE-1 methylation was associated with a hazard ratio of 4.68 (95% CI: 1.03–21.34). LINE-1 methylation in the NTAT was not associated with prostate cancer mortality. Our results are consistent with the hypothesis that tumor tissue global hypomethylation may be a late event in prostate cancerogenesis and is associated with tumor progression.  相似文献   

16.
We previously reported that 12-O-tetra-decanoylphorbol-13-acetate (TPA) induces microglia-like differentiation and decreases malignancy in human prostate cancer TSU-Pr1 cells. To investigate the mechanism underlying differentiation and decrease of malignancy in TSU-Pr1 cells treated with TPA, we attempted to identify genes expressed differentially during the differentiation using differential display. We successfully detected plasminogen activator inhibitor type-2 (PAI-2) as one gene up-regulated by TPA treatment. The change in expression of PAI-2 by TPA was blocked by treatment with protein kinase C or mitogen-activated protein kinase inhibitors. We also found that secretion of PAI-2 protein was increased by TPA treatment. Moreover, we demonstrated that suppression of invasive activity of TSU-Pr1 cells by TPA treatment was blocked by co-treatment with anti-PAI-2 antibody. These results suggest that induction of PAI-2 is associated with suppression of invasive activity in TSU-Pr1 cells treated with TPA.  相似文献   

17.
18.
The methylation of B-cell CLL/lymphoma 6 member B (BCL6B) DNA promoter was detected in several malignancies. Here, we quantitatively detect the methylated status of CpG sites of BCL6B DNA promoter of 459 patients with gastric cancer (GC) by using bisulfite gene sequencing. We show that patients with three or more methylated CpG sites in the BCL6B promoter were significantly associated with poor survival. Furthermore, by using the Akaike information criterion value calculation, we show that the methylated count of BCL6B promoter was identified to be the optimal prognostic predictor of GC patients.  相似文献   

19.
20.
The serotonin receptor, HTR2A, exhibits placental expression and function and can be controlled through DNA methylation. The relationship between methylation of HTR2A in the placenta and neurodevelopmental outcomes, evaluated using the NICU Network Neurobehavioral Scales (NNNS), was assessed in newborn infants (n = 444). HTR2A methylation was significantly higher in males and marginally higher in infants whose mothers reported tobacco use during pregnancy. Controlling for confounding variables, HTR2A methylation was negatively associated with infant quality of movement (p = 0.05) and positively associated with infant attention (p = 0.0001). These results suggest that methylation of the HTR2A gene can be biologically and environmentally modulated and is associated with key measures of neurodevelopment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号