首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Background and Aims Some plant groups, especially on islands, have been shaped by strong ancestral bottlenecks and rapid, recent radiation of phenotypic characters. Single molecular markers are often not informative enough for phylogenetic reconstruction in such plant groups. Whole plastid genomes and nuclear ribosomal DNA (nrDNA) are viewed by many researchers as sources of information for phylogenetic reconstruction of groups in which expected levels of divergence in standard markers are low. Here we evaluate the usefulness of these data types to resolve phylogenetic relationships among closely related Diospyros species.Methods Twenty-two closely related Diospyros species from New Caledonia were investigated using whole plastid genomes and nrDNA data from low-coverage next-generation sequencing (NGS). Phylogenetic trees were inferred using maximum parsimony, maximum likelihood and Bayesian inference on separate plastid and nrDNA and combined matrices.Key Results The plastid and nrDNA sequences were, singly and together, unable to provide well supported phylogenetic relationships among the closely related New Caledonian Diospyros species. In the nrDNA, a 6-fold greater percentage of parsimony-informative characters compared with plastid DNA was found, but the total number of informative sites was greater for the much larger plastid DNA genomes. Combining the plastid and nuclear data improved resolution. Plastid results showed a trend towards geographical clustering of accessions rather than following taxonomic species.Conclusions In plant groups in which multiple plastid markers are not sufficiently informative, an investigation at the level of the entire plastid genome may also not be sufficient for detailed phylogenetic reconstruction. Sequencing of complete plastid genomes and nrDNA repeats seems to clarify some relationships among the New Caledonian Diospyros species, but the higher percentage of parsimony-informative characters in nrDNA compared with plastid DNA did not help to resolve the phylogenetic tree because the total number of variable sites was much lower than in the entire plastid genome. The geographical clustering of the individuals against a background of overall low sequence divergence could indicate transfer of plastid genomes due to hybridization and introgression following secondary contact.  相似文献   

3.
Cymbidium, which includes approximately 80 species, is one of the most ornamental and cultivated orchid genera. However, a lack of markers and sparse sampling have posed great challenges to resolving the phylogenetic relationships within the genus. In the present study, we reconstructed the phylogenetic relationships by utilizing one nuclear DNA (nrITS) and seven plastid genes (rbcL, trnS, trnG, matK, trnL, psbA, and atpI) from 70 species (varieties) in Cymbidium. We also examined the occurrence of phylogenetic conflict between nuclear (nrITS) and plastid loci and investigated how phylogenetic conflict bears on taxonomic classification within the genus. We found that phylogenetic conflict and low support values may be explained by hybridization and a lack of informative characteristics. Our results do not support previous classification of the subgenera and sections within Cymbidium. Discordance between gene trees and network analysis indicate that reticulate evolution occurred in the genus Cymbidium. Overall, our study indicates that Cymbidium has undergone a complex evolution.  相似文献   

4.
5.
Alders (Alnus spp.) represent keystone species trees of riparian and mountainous habitats of the northern hemisphere. Previous genetic studies have suggested a complex intrageneric diversification with numerous events of interspecific hybridization and polyploidization. Here, we first aim to test the present taxonomical treatment of Alnus by generating phylogenetic hypotheses based on plastid and nuclear data obtained from species belonging to the three main alder subgenera (Alnus, Alnobetula, and Clethropsis). A genome-skimming strategy was used to assemble the complete plastome and the nuclear ribosomal DNA cluster of 22 Eurasian and American alder individuals. Phylogenies based on these data strongly support an early diverging subgenus Alnobetula, while members of the subgenus Clethropsis do not constitute a monophyletic clade and are embedded within the subgenus Alnus. Incongruent topologies also sustain reticulate evolution within this group. Our results thus suggest considering the subgenera Clethropsis and Alnus within the same taxonomical unit. Our second aim is to test for the utility of highly variable plastid markers (microsatellites) to investigate the phylogeographic patterns of Eurasian alder species. Fifty-two polymorphic plastid microsatellite markers were developed and tested on 33 populations of the subgenus Alnus in western Eurasia. On average, 4.3 alleles per locus were revealed in 131 individuals of Alnus glutinosa, allowing the identification of 30 chlorotypes (multiloci profiles). Strong phylogeographic signals and recurrent cytoplasmic captures between co-occurring species are revealed, demonstrating that our plastid microsatellite profiling method is suitable for tracing the post-glacial spread of maternal lineages among alder species. All these results finally support the use of nuclear genomic regions for species identification and of plastid markers for phylogeographic aspects and origin certification in genetic resource management.  相似文献   

6.

Background and Aims

Apomictic species (with asexual seed production) make up for 20–50 % of all taxonomically recognized species in northern Europe, but the phylogenetic relationships of apomictic species and the mode of evolution and speciation remain largely unknown and their taxonomy is consequently disputed.

Methods

In the present study, plastid psbD-trnT sequences (349 accessions) and 12 nuclear microsatellite loci (478 accessions) were used to create an overview of the molecular variation in (mainly) northern European members of the most species-rich of all plant genera, Hieracium s.s. The results are discussed and interpreted in the context of morphological and cytological data on the same species.

Key Results and Conclusions

The complete psbD-trnT alignment was 1243 bp and 50 polymorphisms defined 40 haplotypes. All haplotypes found in the sections of the genus distributed in the northern European lowlands fell into one of two main groups, group H and group V, mutually separated by seven or eight polymorphisms. All accessions belonging to H. sects. Foliosa, Hieracioides (viz. H. umbellatum) and Tridentata and all but one accession of triploid species of H. sects. Oradea and Vulgata showed haplotypes of group V. Haplotypes of group H were found in all accessions of H. sects. Bifida and Hieracium and in all tetraploid representatives of H. sects. Oreadea and Vulgata. Additional haplotypes were found in accessions of the genus Pilosella and in southern European and Alpine sections of Hieracium. In contrast, the distribution of individual haplotypes in the two major groups appeared uncorrelated with morphology and current taxonomy, but polymorphisms within species were only rarely encountered. In total, 160 microsatellite alleles were identified. Levels of variation were generally high with only nine pairs of accessions being identical at all loci (in all cases representing accessions of the same species). In the neighbor-joining analysis based on the microsatellite data, accessions of the same species generally clustered together and some smaller groups of species congruent with morphology and/or current taxonomy were recovered but, except for H. sect. Oreadea, most larger groups were not correlated with morphology. Although the plastid DNA sequences show too little variation and the nuclear microsatellites are too variable to resolve relationships successfully among species or to fully understand processes of evolution, it is concluded that both species and sections as defined by morphology are largely congruent with the molecular data, that gene flow between the sections is rare or non-existent and that the tetraploid species may constitute the key to understanding evolution and speciation in this genus.  相似文献   

7.
Bacterial leaf symbiosis is an intimate association between bacteria and plants in which endosymbionts are housed within leaf nodules. This phenomenon has been reported in three genera of Rubiaceae (Pavetta, Psychotria, and Sericanthe), but the bacterial partner has only been identified in Psychotria and Pavetta. Here we report the identification of symbiotic bacteria in two leaf nodulating Sericanthe species. Using 16S rRNA data and common housekeeping genetic markers (recA and gyrB) we studied the phylogenetic relationships of bacterial endosymbionts in Rubiaceae. Endosymbionts of leaf nodulating Rubiaceae were found to be closely related and were placed as a monophyletic group within the genus Burkholderia (β-Proteobacteria). The phylogenetic analyses revealed a pattern of strict host specificity and placed the two investigated endosymbionts at two distinct positions in the topology of the tree, suggesting at least two different evolutionary origins. The degree of sequence divergence between the Sericanthe endosymbionts and their relatives was large enough to propose the Sericanthe endosymbionts as new species (‘Candidatus Burkholderia andongensis’ and ‘Candidatus Burkholderia petitii’). In a second part of this study, the pylogenetic relationships among nodulating and non-nodulating Sericanthe species were investigated using sequence data from six chloroplast regions (rps16, trnG, trnL-trnF, petD, petA-psbJ, and atpI-atpH). Overall, genetic variation among the plastid markers was insufficient to enable phylogenetic estimation. However, our results could not rule out the possibility that bacterial leaf symbiosis originated once in a common ancestor of the Sericanthe species.  相似文献   

8.
Efforts to detect loci under selection in plants have mostly focussed on single species. However, assuming that intraspecific divergence may lead to speciation, comparisons of genetic variation within and among recently diverged taxa can help to locate such genes. In this study, coalescent and outlier detection methods were used to assess nucleotide polymorphism and divergence at 79 nuclear gene fragments (1212 SNPs) in 16 populations (153 individuals) of the closely related, but phenotypically and ecologically distinct, pine taxa Pinus mugo, P. uliginosa and P. uncinata across their European distributions. Simultaneously, mitochondrial DNA markers, which are maternally inherited in pines and distributed by seeds at short geographic distance, were used to assess genetic relationships of the focal populations and taxa. The majority of nuclear loci showed homogenous patterns of variation between the taxa due to a high number of shared SNPs and haplotypes, similar levels of polymorphism, and low net divergence. However, against this common genetic background and an overall low population structure within taxa at mitochondrial markers, we identified several genes showing signatures of selection, accompanied by significant intra- and interspecific divergence. Our results indicate that loci involved in species divergence may be involved in intraspecific local adaptation.  相似文献   

9.
We aimed to clarify phylogenetic relationships within the pantropical genus Diospyros (Ebenaceae sensu lato), and ascertain biogeographical patterns in the New Caledonian endemic species. We used DNA sequences from eight plastid regions (rbcL, atpB, matK, ndhF, trnK intron, trnL intron, trnL-trnF spacer, and trnS-trnG spacer) and included 149 accessions representing 119 Diospyros species in our analysis. Results from this study confirmed the monophyly of Diospyros with good support and provided a clearer picture of the relationships within the genus than in previous studies. Evidence from phylogenetic analyses suggests that Diospyros colonized New Caledonia multiple times. The four lineages of Diospyros in New Caledonia also differ in their degree of diversification. The molecular data indicate that one lineage is paleoendemic and derived from an ancient Australian species. The other three lineages are more closely related to several Southeast Asian species; two of them are neoendemics, and one has radiated rapidly and recently.  相似文献   

10.
Distinguishing individual Russula species can be very difficult due to extensive phenotypic plasticity and obscure morphological and anatomical discontinuities. In this study, we use the internal transcribed spacer (ITS) and 28S nuclear ribosomal large subunit (LSU) markers to identify and study the genetic diversity of species in the Russula subgenus Compacta in Korea. We focus on two morphologically similar species that are often misidentified for each other: R. nigricans and R. subnigricans. Based on molecular phylogenetic analyses, we identify three subgroups of R. nigricans, with two from Asia and one from Europe/North America. Surprisingly, we find Korean R. subnigricans are more closely related to R. eccentrica from North America than the type specimen of R. subnigricans from Japan. These molecular data, along with habitat data, reveal that Korean R. subnigricans had previously been misclassified and should now be recognized as R. eccentrica. Both ITS and LSU exhibit high interspecific and low intraspecific variation for R. eccentrica, R. nigricans, and R. subnigricans. These markers provide enough resolutional power to differentiate these species and uncover phylogeographic structure, and will be powerful tools for future ecological studies of Russula.  相似文献   

11.
Partial ribosomal RNA nucleotide sequences were determined for 11 strains ofFusarium sambucinum Fuckelsensu lato to assess by molecular genetic means, Nirenberg's recent morphotaxonomic interpretation which split the species into three distinct taxa:F. sambucinum sensu stricto, F. torulosum, and one other species, as yet unnamed (Fusarium species nova). Four sequence patterns were identified among the 11 strains. Two sequences that varied at one site were found among strains ofF. sambucinum, strains ofF. torulosum andFusarium sp. nov. showed no intraspecific variation. Interspecific comparisons revealed nucleotide sequence differences of 3–9 substitutions in the ca. 240 nucleotide rRNA segment examined. Although interspecific differences are not large in terms of percent nucleotide substitution, they are much larger than the observed intraspecific variation and support the morphological interpretation distinguishing three taxa. When the data were analysed using parsimony and bootstrapping, the three taxon tree was well supported. The phylogenetic arrangement of these strains is congruent with secondary metabolite profile similarities.  相似文献   

12.
Background and AimsThe number of plastome sequences has increased exponentially during the last decade. However, there is still little knowledge of the levels and distribution of intraspecific variation. The aims of this study were to estimate plastome diversity within Zea mays and analyse the distribution of haplotypes in connection with the landrace groups previously delimited for South American maize based on nuclear markers.MethodsWe obtained the complete plastomes of 30 South American maize landraces and three teosintes by means of next-generation sequencing (NGS) and used them in combination with data from public repositories. After quality filtering, the curated data were employed to search for single-nucleotide polymorphisms, indels and chloroplast simple sequence repeats. Exact permutational contingency tests were performed to assess associations between plastome and nuclear variation. Network and Bayesian phylogenetic analyses were used to infer evolutionary relationships among haplotypes.Key ResultsOur analyses identified a total of 124 polymorphic plastome loci, with the intergenic regions psbE-rps18, petN-rpoB, trnL_UAG-ndhF and rpoC2-atpI exhibiting the highest marker densities. Although restricted in number, these markers allowed the discrimination of 27 haplotypes in a total of 51 Zea mays individuals. Andean and lowland South American landraces differed significantly in haplotype distribution. However, overall differentiation patterns were not informative with respect to subspecies diversification, as evidenced by the scattered distribution of maize and teosinte plastomes in both the network and Bayesian phylogenetic reconstructions.ConclusionsKnowledge of intraspecific plastome variation provides the framework for a more comprehensive understanding of evolutionary processes at low taxonomic levels and may become increasingly important for future plant barcoding efforts. Whole-plastome sequencing provided useful variability to contribute to maize phylogeographic studies. The structuring of haplotype diversity in the maize landraces examined here clearly reflects the distinction between the Andean and South American lowland gene pools previously inferred based on nuclear markers.  相似文献   

13.
Abstract

The main features to distinguish the seven native Utricularia species occurring in central Europe are found in flower shape, but being rarely flowering identification is often doubtful and uncertain. A recent morphometric work highlighted that there are no univocal reliable extra-floral morphological features allowing a safe identification at species level. Therefore, DNA barcoding approach is attempted here. Molecular analyses were performed to search for DNA barcodes using nuclear ITS (rDNA), plastid (cpDNA) trnL-trnF IGS and rps16 intron sequences. Generally, the barcoding approach failed to discriminate Utricularia species, although it could be of some help in the U. minor aggregate. With few exceptions, U. bremii shows peculiar DNA regions different from U. minor for both plastid markers investigated. However, interesting hypotheses could be derived from the obtained networks, including hybridization events to explain the rise of mostly sterile species, such as U. stygia. This species clusters with the other species of the U. intermedia aggregate in plastid phylogenetic graphs, while it is closely related to species of the U. minor aggregate in ITS phylogenetic graphs. Additionally to U. stygia, U. ochroleuca also shows some incongruences in the different markers, at least for some accessions, pointing to the possible occurrence of hybrids.  相似文献   

14.
15.
Subgenus Nothofagus, although geographically restricted at present to temperate areas of South America, has captured much attention in discussions of plant biogeography due to its widespread distribution through Gondwanan continents during the Tertiary. However, phylogenetic relationships within the subgenus Nothofagus have not yet been resolved. We examined geographic patterns of intraspecific and interspecific genetic variation to detect whether incongruences in nuclear or plastid DNA phylogenies occur, in order to better understand the evolutionary history of the subgenus Nothofagus. We conducted spatially-explicit sampling at 10 distinct locations throughout the range of austral South American forests and sampled all present Nothofagus species. We used ITS and chloroplast DNA sequences to estimate phylogenetic relationships. A phylogeny constructed from nuclear genes resolved the subgenus Nothofagus as monophyletic. We found that N. antarctica was a sister to a clade of evergreen species (N. betuloides, N. dombeyi, and N. nitida), while N. pumilio likely diverged earlier. Nine cpDNA haplotypes were distinguished in the subgenus Nothofagus which were associated to geographic locations rather than to taxonomic relationships. This species-independent cpDNA phylogeographic structures within the subgenus Nothofagus may be related to repeated chloroplast capture events over geological time in Patagonia.  相似文献   

16.
Tilia is an ecologically and economically important genus in the family Malvaceae. However, there is no complete plastid genome of Tilia sequenced to date, and the taxonomy of Tilia is difficult owing to frequent hybridization and polyploidization. A well-supported interspecific relationships of this genus is not available due to limited informative sites from the commonly used molecular markers. We report here the complete plastid genome sequences of four Tilia species determined by the Illumina technology. The Tilia plastid genome is 162,653 bp to 162,796 bp in length, encoding 113 unique genes and a total number of 130 genes. The gene order and organization of the Tilia plastid genome exhibits the general structure of angiosperms and is very similar to other published plastid genomes of Malvaceae. As other long-lived tree genera, the sequence divergence among the four Tilia plastid genomes is very low. And we analyzed the nucleotide substitution patterns and the evolution of insertions and deletions in the Tilia plastid genomes. Finally, we build a phylogeny of the four sampled Tilia species with high supports using plastid phylogenomics, suggesting that it is an efficient way to resolve the phylogenetic relationships of this genus.  相似文献   

17.
We investigated genetic variation and evolutionary history of closely related taxa of Picris subsect. Hieracioides with major focus on the widely distributed P. hieracioides and its closely related congeners, P. hispidissima, P. japonica, P. olympica, and P. nuristanica. Accessions from 140 sample sites of the investigated Picris taxa were analyzed on the infra- and the inter-specific level using nuclear (ITS1-5.8S-ITS2 region) and chloroplast (rpl32-trnL (UAG) region) DNA sequences. Genetic patterns of P. hieracioides, P. hispidissima, and P. olympica were shown to be incongruent and, in several cases, both plastid and nuclear alleles transcended borders of the taxa and genetic lineages. The widespread P. hieracioides was genetically highly variable and non-monophyletic across both markers, with allele groups having particular geographic distributions. Generally, all gene trees and networks displayed only a limited and statistically rather unsupported resolution among ingroup taxa causing their phylogenetic relationships to remain rather unresolved. More light on these intricate evolutionary relationships was cast by the Bayesian coalescent-based analysis, although some relationships were still left unresolved. A combination of suite of phylogenetic analyses revealed the ingroup taxa to represent a complex of genetically closely related and morphologically similar entities that have undergone a highly dynamic and recent evolution. This has been especially affected by the extensive and recurrent gene flow among and within the studied taxa and/or by the maintenance of ancestral variation. Paucity of phylogenetically informative signal further hampers the reconstruction of relationships on the infra- as well as on the inter-specific level. In the present study, we have demonstrated that a combination of various phylogenetic analyses of datasets with extremely complex and incongruent phylogenetic signal may shed more light on the interrelationships and evolutionary history of analysed species groups.  相似文献   

18.
Here, we introduce a new method for efficiently sampling Chlamydomonas reinhardtii and closely related species using a colony PCR-based screen with novel primer sets designed to specifically detect these important model microalgae. To demonstrate the utility of our new method, we collected 130 soil samples from a wide range of habitats in Ontario, Canada and identified 33 candidate algae, which were barcoded by sequencing a region of the rbcL plastid gene. For select isolates, 18S rRNA gene and YPT4 nuclear markers were also sequenced. Based on phylogenetic and haplotype network analyses of these three loci, seven novel isolates were identified as C. reinhardtii, and one additional isolate appeared to be more closely related to C. reinhardtii than any other known species. All seven new C. reinhardtii strains were interfertile with previously collected C. reinhardtii field isolates, validating the effectiveness of our molecular screen.  相似文献   

19.
20.
Subtribe Galipeinae (tribe Galipeeae, subfamily Rutoideae) is the most diverse group of Neotropical Rutaceae, with 28 genera and approximately 130 species. One of its genera is Almeidea, whose species are morphologically similar to those of the genus Conchocarpus. Species of Almeidea occur in the Atlantic Rain Forest of Eastern Brazil, with one species (Almeidea rubra) also present in Bolivia. The objective of this study was to perform a phylogenetic analysis of Almeidea, using a broader sampling of Galipeinae and other Neotropical Rutaceae, the first such study focused on this subtribe. To achieve this objective, morphological data and molecular data from the nuclear markers ITS-1 and ITS-2 and the plastid markers trnL-trnF and rps16 were obtained. Representatives of eight genera of Galipeinae and three genera of Pilocarpinae (included also in Galipeeae) and Hortia (closely related to Galipeeae) were used. Five species of Almeidea and seven of Conchocarpus were included, given the morphological proximity between these two genera. Individual (for each molecular marker) and combined phylogenetic analyses were made, using parsimony and Bayesian inference as optimization criteria. Results showed Galipeinae as monophyletic, with the species of Almeidea also monophyletic (supported by the presence of pantocolporate pollen) and nested in a clade with a group of species of Conchocarpus, a non-monophyletic group. Additionally, C. concinnus appeared in a group with Andreadoxa, Erythrochiton, and Neoraputia, other members of Galipeinae. As a result, Conchocarpus would be monophyletic only with the exclusion of a group of species related to C. concinnus and with the inclusion of all species of Almeidea with the group of species of Conchocarpus that includes its type species, C. macrophyllus. Thus, species of Almeidea are transferred to Conchocarpus, and the new combinations are made here.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号