首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Wing dimorphisms exist in a wide range of insects. In wing-dimorphic species one morph is winged has functional flight muscles (LW), and is flight-capable, whereas the other has reduced wings (SW) and cannot fly The evolution and maintenance of wing dimorphisms is believed to be due to trade-offs between flight capability and fitness-related traits. Although there are well-established phenotypic trade-offs associated with wing dimorphism in female insects, there only exist two studies that have established a genetic basis to these trade-offs. The present study provides the first evidence for a genetically based trade-off in male insects, specifically in the sand cricket Gryllus firmus. Because they have to expend energy to maintain the flight apparatus (especially flight muscles), LW males are predicted to call less and therefore to attract fewer females. To be of evolutionary significance, call duration wing morph, and wing muscle condition (size and functionality) should all have measurable heritabilities and all be genetically correlated. Differences between morphs in male G. firmus in the likelihood of attracting a female were tested in the laboratory using a T-maze where females chose between a LW male and a SW male. Call duration for each male was recorded on the sixth day of adult life. A significant difference in call duration was found between SW and LW males (SW = 0.86 ± 0.01, LW = 0.64 ± 0.01 h). SW males attracted significantly more females than did LW males (63% vs. to 37%). All the traits involved in the trade-off had significant heritabilities (call = 0 75 ± 0 33; wing morph = 0.22 ± 007; muscle weight = 0.38 ± 0.09) and genetic correlations (call and wing morph = -0.46 ± 0.20 for SW, -0.68 ± 0.16 for LW; LW call and muscle weight = -0.80 ± 0.14). These results provide the first documented evidence that trade-offs between a dimorphic trait and a fitness-related character in males has a genetic basis and hence can be of evolutionary significance.  相似文献   

5.
As ligands of the sugar gustatory receptors, sugars have been known to activate the insulin/insulin-like growth factor signaling pathway; however, the precise pathways that are activated by the sugar-bound gustatory receptors in insects remain unclear. In this study, we aimed to investigate the signaling cascades activated by NlGr11, a sugar gustatory receptor in the brown planthopper Nilaparvata lugens (Stål), and its ligand. Galactose-bound NlGr11 (galactose-NlGr11) activated the -phosphatidylinositol 3-kinase (PI3K)-AKT signaling cascade via insulin receptor (InR) and Gβγ in vitro. In addition, galactose-NlGr11 inhibited the adenosine monophosphate-activated protein kinase (AMPK) phosphorylation by activating the AKT-phosphofructokinase (PFK)-ATP signaling cascade in vitro. Importantly, the InR-PI3K-AKT-PFK-AKT signaling cascade was activated and the AMPK phosphorylation was inhibited after feeding the brown planthoppers with galactose solution. Collectively, these findings confirm that NlGr11 can inhibit AMPK phosphorylation by activating the PI3K-AKT-PFK-ATP signaling cascades via both InR and Gβγ when bound to galactose. Thus, our study provides novel insights into the signaling pathways regulated by the sugar gustatory receptors in insects.  相似文献   

6.
The role of juvenile hormone (JH) and juvenile hormone esterase (JHE) in regulating wing morph determination was studied in the cricket Modicogryllus confirmatus. JHE activities were significantly higher in nascent long-winged (LW) vs short-winged (SW) crickets during the latter half but not during the first half of the last stadium. The magnitude and direction of the activity differences were similar to those previously documented between wing morphs of the cricket, Gryllus rubens. In contrast, activities of general esterase, an enzyme or group of enzymes with no demonstrated role in regulating the JH titer in insects, showed no or only minor differences between morphs. The magnitude and direction of the JHE activity variation is consistent with a regulatory role for this enzyme in some aspect of wing dimorphism. However, the timing of the differences (exclusively during the last half of the last stadium) argue against a role in regulating wing length development per se. Single or multiple applications of juvenile hormone-III to nascent LW individuals during the first few days of the last stadium significantly redirected development from long to short wings. Multiple applications of acetone, by itself, also increased the production of short-winged adults. For most treatments, all individuals with shortened wings also had undeveloped flight muscles. These data suggest that JH may play a role in wing morph determination in M. confirmatus but that it affects a different aspect of the polymorphism from JHE.  相似文献   

7.
8.
Morphology, flight muscles, and reproductive development were compared between long‐winged (LW) and short‐winged (SW) morphs of the cricket Velarifictorus ornatus (Shiraki) (Orthoptera: Gryllidae). There was no difference in body weight and pre‐oviposition between the two morphs, but LW individuals had better‐developed flight muscles than SW individuals during and after emergence of the adult. The flight muscles at adult emergence represented 11.9% of the total body weight in the LW female and 4.9% in the SW female. In addition, the weight of the flight muscle of LW females increased by 50% during the first 5 days, whereas the flight muscle of the SW variant increased only slightly after adult emergence. The process of oviposition in LW, SW, and de‐alated females varied: SW females produced more eggs at the early stage than LW females, but de‐alation could shorten the time until the peak of egg laying and caused histolysis of flight muscles of LW females. There was no significant difference in total egg production between the above three groups. In the male, unlike the female, the accessory glands of the two wing morphs enlarged continuously at the same rate. There was no difference between the two wing morphs in the mass of the testes during the first 7 days after adult emergence.  相似文献   

9.
The neotropical butterflies Heliconius melpomene and H. erato are Müllerian mimics that display the same warningly colored wing patterns in local populations, yet pattern diversity between geographic regions. Linkage mapping has previously shown convergent red wing phenotypes in these species are controlled by loci on homologous chromosomes. Here, AFLP bulk segregant analysis using H. melpomene crosses identified genetic markers tightly linked to two red wing-patterning loci. These markers were used to screen a H. melpomene BAC library and a tile path was assembled spanning one locus completely and part of the second. Concurrently, a similar strategy was used to identify a BAC clone tightly linked to the locus controlling the mimetic red wing phenotypes in H. erato. A methionine rich storage protein (MRSP) gene was identified within this BAC clone, and comparative genetic mapping shows red wing color loci are in homologous regions of the genome of H. erato and H. melpomene. Subtle differences in these convergent phenotypes imply they evolved independently using somewhat different developmental routes, but are nonetheless regulated by the same switch locus. Genetic mapping of MRSP in a third related species, the “tiger” patterned H. numata, has no association with wing patterning and shows no evidence for genomic translocation of wing-patterning loci.  相似文献   

10.
1. Functional wing polymorphism in insects is an intriguing topic, especially with respect to the adaptive advantage of each wing morph. The common pygmy grasshopper in Germany, Tetrix subulata, displays wing polymorphism skewed towards macropterous (LW) individuals capable of flight. Furthermore, T. subulata is known to undergo adult diapause in winter and reproduce in spring. 2. Morphometric and biochemical parameters were examined in field‐collected grasshoppers during autumn and spring to obtain a ‘snapshot’ from the same/one cohort of grasshoppers in the wild. 3. Flight muscles are largely reduced in brachypterous (SW) specimens, whereas they are well developed in LW individuals. Body mass measurements indicated gain in female T. subulata in spring, especially in LW morphs, which could be attributed to increased reproductive activity (egg production). 4. Metabolic fuel in haemolymph is differentially distributed in autumn: the concentration of lipids is highest in males, while carbohydrates are most abundant in LW specimens. The metabolic data imply that dispersal in T. subulata is predominantly in autumn, by flight in the case of LW specimens and by hopping/walking in males. 5. The season seems to be an important factor for the reproductive versus dispersal trade‐off in this species. Moreover, this study shows that morphological differences in T. subulata individuals are reflected in physiological differences that may ultimately affect behaviour and ecology.  相似文献   

11.
Insulin/insulin-like growth factor signaling (IIS) plays a pivotal role in the regulation of growth at the cellular and the organismal level during animal development. Flies with impaired IIS are developmentally delayed and small due to fewer and smaller cells. In the search for new growth-promoting genes, we identified mutations in the gene encoding Lnk, the single fly member of the SH2B family of adaptor molecules. Flies lacking lnk function are viable but severely reduced in size. Furthermore, lnk mutants display phenotypes reminiscent of reduced IIS, such as developmental delay, female sterility, and accumulation of lipids. Genetic epistasis analysis places lnk downstream of the insulin receptor (InR) and upstream of phosphoinositide 3-kinase (PI3K) in the IIS cascade, at the same level as chico (encoding the single fly insulin receptor substrate [IRS] homolog). Both chico and lnk mutant larvae display a similar reduction in IIS activity as judged by the localization of a PIP3 reporter and the phosphorylation of protein kinase B (PKB). Furthermore, chico; lnk double mutants are synthetically lethal, suggesting that Chico and Lnk fulfill independent but partially redundant functions in the activation of PI3K upon InR stimulation.  相似文献   

12.
13.
《Journal of Asia》2020,23(4):1151-1159
Two InR (insulin receptor) genes have been identified in the Nilaparvata lugens. In this study, we used RNA interference (RNAi) to investigate the role of InR genes in the fecundity of N. lugens. The expression of NLInR1 and NLInR2 genes was simultaneously silenced with mixture of dsInR1 and dsInR2 (dsInRs) injection. Our results showed that larvae RNAi against both NLInR1 and NLInR2 reduced the number of eggs laid by N. lugens and some eggs as well as ovaries were abnormal. In addition, the relative expression of Vg (vitellogenin) and VgR (vitellogenin receptor) was significantly reduced on the 4th and 6th days after insects treated with larvae RNAi reached the adult stage. We also determined the relative expression levels of insulin/insulin-like signaling (IIS) related genes in RNAi-treated larvae and found that the expression levels of Chico (homologous receptor substrate), Akt (protein kinase B), PI3K (phosphoinositide 3-kinase), and PTEN (phosphatase and tensin homolog) genes decreased whereas FOXO (forkhead box O) and GSK3 (glycogen synthase kinase-3) levels increased on the 4th and 6th days after insects reached the adult stage. These results indicate that silencing of NLInR1 and NLInR2 reduces the fecundity of N. lugens through the IIS pathway.  相似文献   

14.
15.
Activation of the PI3K–Akt–FoxO pathway induces cell growth, whereas its inhibition reduces cell survival and, in muscle, causes atrophy. Here, we report a novel mechanism that suppresses PI3K–Akt–FoxO signaling. Although skeletal muscle lacks desmosomes, it contains multiple desmosomal components, including plakoglobin. In normal muscle plakoglobin binds the insulin receptor and PI3K subunit p85 and promotes PI3K–Akt–FoxO signaling. During atrophy, however, its interaction with PI3K–p85 is reduced by the ubiquitin ligase Trim32 (tripartite motif containing protein 32). Inhibition of Trim32 enhanced plakoglobin binding to PI3K–p85 and promoted PI3K–Akt–FoxO signaling. Surprisingly, plakoglobin overexpression alone enhanced PI3K–Akt–FoxO signaling. Furthermore, Trim32 inhibition in normal muscle increased PI3K–Akt–FoxO signaling, enhanced glucose uptake, and induced fiber growth, whereas plakoglobin down-regulation reduced PI3K–Akt–FoxO signaling, decreased glucose uptake, and caused atrophy. Thus, by promoting plakoglobin–PI3K dissociation, Trim32 reduces PI3K–Akt–FoxO signaling in normal and atrophying muscle. This mechanism probably contributes to insulin resistance during fasting and catabolic diseases and perhaps to the myopathies and cardiomyopathies seen with Trim32 and plakoglobin mutations.  相似文献   

16.
17.
Numerous liver diseases are associated with extensive oxidative tissue damage. It is well established that Wnt/β-catenin signaling directs multiple hepatocellular processes, including development, proliferation, regeneration, nutrient homeostasis, and carcinogenesis. It remains unexplored whether Wnt/β-catenin signaling provides hepatocyte protection against hepatotoxin-induced apoptosis. Conditional, liver-specific β-catenin knockdown (KD) mice and their wild-type littermates were challenged by feeding with a hepatotoxin 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) diet to induce chronic oxidative liver injury. Following the DDC diet, mice with β-catenin-deficient hepatocytes demonstrate increased liver injury, indicating an important role of β-catenin signaling for liver protection against oxidative stress. This finding was further confirmed in AML12 hepatocytes with β-catenin signaling manipulation in vitro using paraquat, a known oxidative stress inducer. Immunofluorescence staining revealed an intense nuclear FoxO3 staining in β-catenin-deficient livers, suggesting active FoxO3 signaling in response to DDC-induced liver injury when compared with wild-type controls. Consistently, FoxO3 target genes p27 and Bim were significantly induced in β-catenin KD livers. Conversely, SGK1, a β-catenin target gene, was significantly impaired in β-catenin KD hepatocytes that failed to inactivate FoxO3. Furthermore, shRNA-mediated deletion of FoxO3 increased hepatocyte resistance to oxidative stress-induced apoptosis, confirming a proapoptotic role of FoxO3 in the stressed liver. Our findings suggest that Wnt/β-catenin signaling is required for hepatocyte protection against oxidative stress-induced apoptosis. The inhibition of FoxO through its phosphorylation by β-catenin-induced SGK1 expression reduces the apoptotic function of FoxO3, resulting in increased hepatocyte survival. These findings have relevance for future therapies directed at hepatocyte protection, regeneration, and anti-cancer treatment.  相似文献   

18.
19.
The hypothesis that the morphological, physiological, and behavioral traits comprising the migratory syndrome in insects are genetically correlated through pleiotropic effects of genes controlling the titre of a common hormonal determinant is explored. Evidence that juvenile hormone (JH) influences the component traits of the migratory syndrome is presented, and thus JH is assumed to be the underlying, common determinant. However, readers are cautioned that this does not imply that JH is solely responsible for these traits, nor is this necessary for the arguments presented. For wing dimorphic taxa, the “correlated traits hypothesis” predicts covariance within wing morphs between JH titre and the proportion winged. Four simple genetic models for wing-morph determination are considered: single-locus with short-winged (SW) dominant; single-locus with long-winged (LW) dominant; polygenic, fixed threshold, shifting distribution; and polygenic, shifting threshold, fixed distribution. In each case, wing morphology is assumed to be a threshold trait with the liability being JH titre at some critical stage of development. All models predict covariation between %LW and the mean JH titre of at least one of the wing morphs, but the form and direction of the relationship depends critically on the genetic model used. The results suggest that we should expect the traits associated with the migratory syndrome, and hence the trade-offs associated with the evolution of wing dimorphism, to be correlated with proportion winged and, in this sense, to be frequency-dependent.  相似文献   

20.
Wing dimorphism is a fascinating feature of the ability of insects to adapt to environments. The brown planthopper (BPH) Nilaparvata lugens, a serious pest of rice, can switch between the long- and short-winged morphs. It has been known that environmental factors can affect the wing morph of BPH. However, it is still unclear whether the effect of environment is dependent on BPH genetic backgrounds or not. In the present study, we established the pure-bred lineages of short- and long-winged BPHs via multigenerational selection, and we found that survival and fecundity were similar between these 2 lineages. Wing morphs of the pure-bred lineages were almost fully dependent on genetics, but independent of the environmental factors, nymphal density and rice plant stage, 2 key factors affecting BPH wing morphs. In the unselected BPH population, short- and long-winged morphs were produced depending on those 2 environmental factors, indicating the contribution of environment to wing morph. In the wing-selected lineages, 4 developmental regulated genes of wing, NlInR1, NlInR2, NlAkt, and NlFoxo were expressed stably in the short-winged adults, but almost silenced in the long-winged adults. However, all these genes were expressed normally with a similar level in both the short- and long-winged adults in an unselected population except NlFoxo. The pure-bred lineages of long- and short-winged morphs exhibited different expression patterns of wing development-regulated genes, suggesting the genetic determination of wing morphs. Effects of environmental factors on wing morphs occurred only in the genetic mix population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号