首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The genomic constitutions of Roegneria alashanica, R. elytrigioides, R. magnicaespes and R. grandis were studied using GISH. DNA of Pseudoroegneria spicata (St), P. libanotica (St), P. stipifolia (St), R. ciliaris (StY), Lopophyllum elongatum (Ee), Agropyron cristatum (P) and Hordeum bogdanii (H) were used for probing, respectively. The results indicated that: 1) R. alashanica and R. magnicaespes contained one St genome, the other genome was unidentified, however, it was not an E, P, H or Y genome; 2) R. elytrigioides contained two St genomes and should on this basis be included in Pseudoroegneria; 3) R. grandis contained an St and an Stg genome. The Stg genome is suggested to be a modified form of the St genome of Pseudoroegneria and to be homoeologous with the Y genome. It might be an intermediate type between the St and Y genomes. Therefore, R. elytrigioides should be treated as Pseudoroegneriaelytrigioides.Roegneria alashanica, R. magnicaespes and R. grandis does apparently not belong in the genus Roegneria but further studies are needed to establish their correct taxonomic position.  相似文献   

2.
To evaluate the phylogenetic relationships of questionable tetraploid species Roegneria alashanica Keng, Roegneria magnicaespes (D.F. Cui) L.B. Cai, Roegneria elytrigioides C. Yen et J.L. Yang, Roegneria grandis Keng and Pseudoroegneria geniculata (Trin.) Á. Löve, the single copy sequences of the plastid acetyl-CoA carboxylase gene (Acc1) were analyzed among the five species and the related diploid and tetraploid species. The results indicated that: (a) R. alashanica contained one set of modified St genome which was closely related to the Ee genome, and the other set of genome was closely related to the P genome; (b) R. magnicaespes contained one set of St genome, the other set of genome might be closely related to the P genome. There are close affinities between R. magnicaespes and R. alashanica; (c) R. elytrigioides contained two sets of St genomes, and it is reasonable to be treated as Pseudoreogneria elytrigioides (C. Yen et J.L. Yang) B.R. Lu; (d) the genome of R. grandis should be designed as StgY. The Stg genome was a differentiated form of the St genome in Pseudoroegneria and was homoeologous with the Y genome in Roegneria; (e) the genomic constitution of P. geniculata was similar to that of R. magnicaespes and R. alashanica and distinctly related to P. geniculata ssp. scythica (EeSt). They should be treated as different species in different genera; and (f) the Y genome was possibly originated from the St genome, and was sister to the St, Ee, Eb and W genomes.  相似文献   

3.
To evaluate phylogeny of tetraploid with St genome, phylogenetic analyses of RNA polymerase II (RPB2), a member of the nuclear gene family encoding the second largest subunit, were performed. Our results showed that: (1) Roegneria magnicaespes and Roegneria alashanica are related to Pseudoroegneria. (2) Roegneria elytrigioides has StStStSt genomes and should therefore be classified as Pseudoroegneria elytrigioides. (3) Pseudoroegneria tauri and Pseudoroegneria deweyi which have StStPP genomes should be transferred to Douglasdeweya and be renamed as Douglasdeweya wangii and Douglasdeweya deweyi, respectively. (4) Pseudoroegneria geniculata ssp. scythica is related to Pseudoroegneria and Lophyrum, and hence should be identified as a species of Trichopyrum. (5) Pseudoroegneria libanotica might be a parental donor for Elytrigia caespitosa rather than Elytrigia caespitosa ssp. nodosa. It is unreasonable to recognize El. caespitosa ssp. nodosa as a subspecies of El. caespitosa. (6) Interspecific and intergeneric variations are detected in St genome of these tetraploid species.  相似文献   

4.
The genus Elymus L. sensu lato includes Roegneria, Elymus, Hystrix, Sitanion and Kengyilia, and they are very important group in the tribe Triticeae. However, the phylogenetic relationships and taxonomic status of them are still in dispute. The ITS sequences were obtained and analyzed for their phylogenetic relationships by using Maximum Parsimony (MP) and Bayesian Inference (BI) methods. The main results were as follows: (1) Most species in Roegneria, Elymus and Sitanion were clustered in the St clade with diploid St genome species, and it was difficult to distinguish the species in Roegneria and Elymus; (2) The polyploid species with St genomes in the St clade were divided into three groups, which suggests that there exists differentiation of St genome in polyploids; (3) Most species of Kengyilia have only P-type of clone and clustered with diploid Agropyron species, which may suggest that Kengyilia is a valid genus; (4) Hy. patula, the type species of Hystrix was clustered with species of Elymus, while Hy. duthiei ssp. duthiei, Hy. duthiei ssp. longearistata, Hy. coreana and Hy. komarovii were grouped with diploid Psathyrostachys species. It indicated that Hy. patula is distinct related to other Hystrix species, and it is reasonable to treat Hystrix patula as Elymus hystrix and other species in Hystrix should be transferred to Leymus; (5) The “clones bias” in ITS sequences are widespread in the allopolyploid species. The article is published in the original.  相似文献   

5.
为探讨大鹅观草(Roegneria grandis,2n=4x=28)的染色体组组成,为其正确的分类处理提供细胞学依据。该研究通过人工远缘杂交,成功获得3株大鹅观草与蛇河披碱草(Elymus wawawaiensis,2n=4x=28)属间杂种F1植株。杂种植株形态介于两亲本之间,不育。亲本及杂种经I2-IK溶液染色后进行花粉育性检测,结果显示Roegneria grandis和Elymus wawawaiensis的花粉可育,育性高达94.6%和90.5%;杂种F1不育。花粉母细胞减数分裂中期I染色体配对结果显示,亲本花粉母细胞配对正常,均形成14个二价体,以环状二价体为主,Roegneria grandis有频率很低(0.04/细胞)的单价体出现;杂种F1平均每个花粉母细胞形成6.46个二价体,变化范围为5~8;在观察的83个花粉母细胞中,有35.2%的花粉母细胞形成了7个二价体,形成6个二价体的细胞占42.59%,较少细胞形成8个二价体;平均每个细胞形成14.66个单价体,变化范围为10~18;平均每细胞观察到0.14个三价体;杂种花粉母细胞染色体构型为14.66 I+6.46 II+0.14 III;平均每细胞交叉数为9.83,C值为0.35。结果表明:(1)R.grandis与Elymus wawawaiensis有一组染色体组同源的St染色体组,另外一组染色体组不是St或者H染色体组,Roegneria grandis的染色体组组成不是St Stg;(2)较低频率的三价体(平均0.14个/细胞),可能是由于R.grandis的St和Y染色体组间具有一定的同源性,也可能是染色体易位等原因导致,对于Y染色体组的起源还需深入地研究;(3)在不同地理来源的披碱草属和鹅观草属物种中St染色体组同源性不同,R.grandis与来自于北美的Elymus lanceolatus与E.wawawaiensis的St染色体组较与分布于亚洲的E.sibiricus和E.caninus的St染色体组同源性反而更高,其原因还需要进一步地研究。  相似文献   

6.
Yan C  Sun G  Sun D 《PloS one》2011,6(10):e26853

Background

Previous cytological and single copy nuclear genes data suggested the St and Y genome in the StY-genomic Elymus species originated from different donors: the St from a diploid species in Pseudoroegneria and the Y from an unknown diploid species, which are now extinct or undiscovered. However, ITS data suggested that the Y and St genome shared the same progenitor although rather few St genome species were studied. In a recent analysis of many samples of St genome species Pseudoroegneria spicata (Pursh) À. Löve suggested that one accession of P. spicata species was the most likely donor of the Y genome. The present study tested whether intraspecific variation during sampling could affect the outcome of analyses to determining the origin of Y genome in allotetraploid StY species. We also explored the evolutionary dynamics of these species.

Methodology/Principal Findings

Two single copy nuclear genes, the second largest subunit of RNA polymerase II (RPB2) and the translation elongation factor G (EF-G) sequences from 58 accessions of Pseudoroegneria and Elymus species, together with those from Hordeum (H), Agropyron (P), Australopyrum (W), Lophopyrum (Ee), Thinopyrum (Ea), Thinopyrum (Eb), and Dasypyrum (V) were analyzed using maximum parsimony, maximum likelihood and Bayesian methods. Sequence comparisons among all these genomes revealed that the St and Y genomes are relatively dissimilar. Extensive sequence variations have been detected not only between the sequences from St and Y genome, but also among the sequences from diploid St genome species. Phylogenetic analyses separated the Y sequences from the St sequences.

Conclusions/Significance

Our results confirmed that St and Y genome in Elymus species have originated from different donors, and demonstrated that intraspecific variation does not affect the identification of genome origin in polyploids. Moreover, sequence data showed evidence to support the suggestion of the genome convergent evolution in allopolyploid StY genome species.  相似文献   

7.
This phylogenetic study focuses on a subset of the species in Elymus—specifically, the endemic Asian tetraploids presumed to combine the St genome from Pseudoroegneria with the Y genome from an unknown donor. The primary goals were to (1) determine whether the St and Y genomes are derived from phylogenetically distinct donors; (2) identify the closest relative, and potentially the likely donor, of the Y genome; and (3) interpret variation among StStYY species in terms of multiple origins and/or introgression. The goals were addressed using phylogenetic analyses of sequences from three low-copy nuclear genes: phosphoenolpyruvate carboxylase, β-amylase, and granule-bound starch synthase I. Data sets include 16 StStYY individuals representing nine species, along with a broad sample of representatives from most of the monogenomic (i.e., non-allopolyploid) genera in the tribe. To briefly summarize the results: (1) the data clearly support an allopolyploid origin for the Asian tetraploids, involving two distinct donors; (2) the Y genome was contributed by a single donor, or multiple closely-related donors; (3) the phylogenetic position of the Elymus Y genome varies among the three trees and its position is not strongly supported, so the identity of the donor remains a mystery; and (4) conflicts among the gene trees with regard to the St-genome sequences suggest introgression involving both Elymus and Pseudoroegneria.  相似文献   

8.
A molecular cytogenetic investigation was conducted on plants of the allohexaploid species Elymus nutans with varying fertility on the Qinghai-Tibet Plateau. Molecular karyotyping revealed that chromosome variants were distributed unevenly among genomes and among different homologue chromosomes in each genome. The plants with varying fertility exhibited significantly higher numbers of chromosome variants than did the normal fertility samples, although both kinds of plants showed the same pattern of high-to-low polymorphism from the Y to St and H genomes. Heterozygosis and karyotype heterozygosity in the plants with varying fertility were 3- and 13-fold higher than those in normal samples, respectively. Significant negative correlations were found not only between seed setting rates and total genome heterozygosity but also between seed setting rates and heterozygosity of each genome in the plants of varying fertility. Chromosome pairing analysis was performed using genomic in situ hybridization in selected plants of different fertility levels. The pairing of chromosomes at meiotic metaphase I was mostly bivalent, although univalent, trivalent, quadrivalent, and other polyvalents also occurred; in addition, chromosome configuration forms and frequencies varied among the studied samples. ANOVA results showed that the average number of ring bivalents in the Y genome was significantly higher than those in the St and H genomes. Significant positive correlations between pollen grain fertility and ring bivalent number were found in the St and H genomes but not in the Y genome. Furthermore, chromosome configuration parameters (total bivalents, numbers of ring and rod bivalents) were found to be significantly correlated with heterozygosity and seed setting rates in the St and H genomes, respectively, but not in the Y genome. It was inferred that the seed setting rate and pollen grain fertility in E. nutans are strongly influenced by the heterozygosity of each genome, but the Y genome differs from the St and H genomes due to chromosome pair alterations. The St and H genomes may contain more chromosome structural variations than the Y genome in E. nutans.  相似文献   

9.
采用顺序FISH-GISH技术,12个重复序列探针,包括9个三核苷酸简单重复序列、2个卫星DNA重复序列pSc119.2和pAs1以及5S rDNA,通过重复序列的物理定位对达乌里披碱草和垂穗披碱草基因组中部分重复序列的分布特征进行了比较分析,为进一步研究垂穗披碱草和达乌里披碱草的物种形成及演化提供新的分子细胞遗传学证据。结果表明:(1)所有的序列在这2个物种的染色体上都能产生可检测的杂交信号,且在2个物种中(AAC)_(10)、(ACT)_(10)、(CAT)_(10)都表现为共分布,(AAG)_(10)与(AGG)_(10)表现为近似共分布;2个物种的H基因组除5S rDNA序列外,其他序列都产生强烈且丰富的杂交位点,St与Y基因组不同重复序列探针的荧光位点数目有所差别,表现为5S rDNA、pSc119.2、(AAC)_(10)、(CAT)_(10)、(ACT)_(10)、(CAC)_(10)探针的信号位点较少或无信号,其余的探针信号位点稍多。(2)达乌里披碱草的第2对染色体上具有(AAC)_(10)、(CAT)_(10)、(ACT)_(10)的杂交位点、第6对染色体上具有(CAC)_(10)的杂交位点,而在垂穗披碱草的St基因组中未观察到上述序列杂交位点;达乌里披碱草St基因组仅有第4对染色体的端部具有pSc119.2杂交位点,而在垂穗披碱草St基因组中的pSc119.2杂交位点位于第5对染色体长臂的间隔区;相对于达乌里披碱草,垂穗披碱草St和Y基因组染色体含有更多的重复序列杂交位点。(3)达乌里披碱草的H/Y基因组间易位在不同材料间是稳定存在的,达乌里披碱草基因组相对稳定,不同材料间H基因组重复序列杂交信号多态性高于St和Y基因组;垂穗披碱草基因组的变异较大,不同材料间St和Y基因组重复序列杂交信号多态性高于H基因组。研究认为,垂穗披碱草和达乌里披碱草的H基因组均起源于布顿大麦,St基因组可能起源于不同的拟鹅观草属物种;与达乌里披碱草相比垂穗披碱草St与Y基因组可能具有更高的染色体结构变异性,而垂穗披碱草St与Y基因组变异较大的原因可能是与同区域分布的含StY基因组的物种发生了种间渗透杂交。  相似文献   

10.
Roegneria grandis was hybridized withR. ciliaris var.japonensis (2n = 28, SSYY),Elymus caninus (2n = 28, SSHH), andPseudoroegneria spicata (2n = 28, SSSS). Chromosome pairing was studied in parents and hybrids. It is concluded from this study that: (i)R. grandis is an allotetraploid species and contains the basic genomes S and Y: (ii) a certain degree of homoeology exists between the S and Y genomes of the species studied.  相似文献   

11.
Kengyilia laxiflora (2n = 42) was cytogenetically studied with testersK. hirsuta (2n = 42, PPStStYY) andRoegneria kamoji (2n = 42, HHStStYY). Our data suggested thatK. laxiflora may possess a modified P genome, the P1. Its St and Y genomes may also contain some structural changes and are more closely related to the St and Y genomes ofK. hirsuta than to those ofR. kamoji. Kengyilia laxiflora is reproductively separated from bothK. hirsuta andR. kamoji. These results indicated thatK. laxiflora is a good species in the genusKengyilia.  相似文献   

12.
It has been hypothesized from isozymic and cytological studies of Elymus species that the Old and New World taxa may be of separate origin of the H genome in the StH genome species. To test this hypothesis, and estimate the phylogenetic relationships of polyploid Elymus species within the Triticeae, the second largest subunit of RNA polymerase II (RPB2) sequence of 36 Elymus accessions containing StH or StY genomes was analyzed with those of Pseudoroegneria (St), Hordeum (H), Agropyron (P), Australopyrum (W), Lophopyrum(Ee), Thinopyrum(Eb) and Dasypyrum (V). Our data indicated that the H genome in Elymus species is differentiated in accordance with geographical origin, and that the Eurasian and American StH genome species have independent alloploid origins with different H-genome donors. Phylogenetic analysis of Y genome sequences with other genome donors (St, H, P, W) of Elymus revealed that W and P genomes are sister to Y genome with a 87% bootstrap support, and that StY and StH species group might have acquired their RPB2 St sequences from distinct Pseudoroegneria gene pools. Our data did not support the suggestion that the St and Y genomes have the same origin as put forward in a previous study using ITS data. Our result provides some insight on the origin of Y genome and its relationship to other genomes in Elymus.  相似文献   

13.
Morphological and cytological studies of three tetraploidRoegneria species,R. tenuispica, R. pendulina andR. ciliaris, and their artificial hybrids were carried out.Roegneria tenuispica was morphologically similar toR. pendulina. The general appearance of the interspecific hybrids was intermediate between the parents. The hybrids showed comparatively high chromosome pairing at meiosis, but were completely or almost completely sterile. The results indicate that the three independent species share two basic genomes (StY) and thatR. tenuispica is more closely related toR. pendulina than toR. ciliaris. The genomes ofR. tenuispica could be designated as S t t Yt.  相似文献   

14.
选用小麦族中8个基本基因组(E、H、I、P、St、W、Ns、R)的特异RAPD引物进行PCR扩增检测,分析Pseudoroegneriagracillima、P.kosaninii、Roegneriaalashanica和R.magnicaespes这4个四倍体物种的基因组组成。结果表明:P.gracillima、P.kosaninii、R.alashanica和R.magnicaespes中除了含有St或经修饰的St基因组外,都不含E、H、I、P、W、Ns和R基因组,由此推断P.gracillima和P.kosaninii至少含有一个St或经修饰的St基因组,另一个基因组是否为Y基因组,需要进一步研究证实。结合前人细胞遗传学研究的结果,推断R.alashanica和R.magnicaespes为同源四倍体或部分同源四倍体,其基因组组成为StStStSt或St1St1St2St2。因此,结合外部形态特征以及前人细胞遗传学、分子标记研究和核型分析的结果,推断R.alashanica和R.magnicaespes与P.elytrigioides一样,也可能是在中国分布的四倍体拟鹅观草属物种,为系统整理和研究国产拟鹅观草属物种及其地理分布提供了DNA分子水平上的资料。  相似文献   

15.
Some plants with low fertility are morphologically intermediate between Roegneria stricta and Roegneria turczaninovii, and were suspected to be natural hybrids between these species. In this study, karyotype analysis showed that natural hybrids and their putative parents were tetraploids (2n = 4x = 28). Meiotic pairing in natural hybrids is more irregular than its putative parents. Results of genomic in situ hybridization and fluorescence in situ hybridization indicate that natural hybrids contain the same genome as their putative parents. The nuclear gene DNA meiotic recombinase 1 (DMC1) and the chloroplast gene rps16 of natural hybrids and their putative parents were analyzed for evidence of hybridization. The results from molecular data supported by morphology and cytology demonstrated that the plants represent natural hybrids between R. stricta and Rturczaninovii. The study is important for understanding species evolution in the genus since it demonstrates for the first time the existence of populations of natural homoploid hybrids in Roegneria. The study also reports for the first time that the composition of the genomic formula of Rturczaninovii is StY, confirming that the current taxonomic status is correct.  相似文献   

16.
Analysis of the patterns and levels of diversity in duplicate gene not only traces evolutionary history of polyploids, but also provides insight into how the evolutionary process differs between lineages and between homoeologous loci within lineages. Elymus sensu lato is a group of allopolyploid species, which share a common St genome and with the different combinations of H, Y, P, and W genomes. To estimate the evolutionary process of the rbcL gene in species of Elymus s. l. and its putative dioploid relatives, 74 sequences were obtained from 21 species of Elymus s. l. together with 24 diploid taxa representing 19 basic genomes in Triticeae. Phylogeny and sequence diversity pattern analysis suggested that (1) species of Pseudoroegneria (Nevski) Á. Löve might serve as the maternal donor of the species of Elymus s. l; (2) differentiation of St genome were shown in the species of Elymus s. l. following polyploidy event; (3) divergences within the species might associate with geographic diversity and morphological variability; (4) differences in the levels and patterns of nucleotide diversity of the rbcL gene implied that the St genome lineages in the species of Elymus s. l. have differently evolutionary potentials.  相似文献   

17.
Kengyilia Yen et J. L. Yang is a group of allohexaploid species with StYP genomic constitutions in the wheat tribe. To investigate the evolution and diversity of dimeric alpha-amylase inhibitor genes in the Kengyilia, forty-five homoeologous DAAI gene sequences were isolated from sampled Kengyilia species and analyzed together with those of its close relatives. These results suggested that (1) Kengyilia species from Central Asia and the Qinghai–Tibetan Plateau had different origins from those of the geographically differentiated P genome; (2) the St and P genomes of Kengyilia were donated by Pseudoroegneria and Agropyron, respectively, and the Y genome had an independent origin and showed an affinity with the St genome; (3) purifying selection dominated the DAAI gene members and the St-DAAI gene was evolving at faster rate than the P- and Y-DAAI genes in Kengyilia; and (4) natural selection was the main factor on the codon usage pattern of the DAAI gene in Kengyilia.  相似文献   

18.
To estimate the phylogeny and molecular evolution of a single-copy nuclear disrupted meiotic cDNA (DMC1) gene within the StH genome species, two DMC1 homoeologous sequences were isolated from nearly all the sampled StH genome species and were analyzed with those from seven diploid taxa representing the St and H genomes in Triticeae. Sequence diversity patterns and genealogical analysis suggested that (1) there is a close relationship among North American StH genome species; (2) the DMC1 gene sequences of the StH genome species from North America and Eurasia are evolutionarily distinct; (3) the StH genome polyploids have higher levels of sequence diversity in the St genome homoeolog than the H genome homoeolog; (4) the DMC1 sequence may evolve faster in the polyploid species than in the diploids; (5) high dN and dN/dS values in the St genome within polyploid species could be caused by low selective constraints or AT-biased mutation pressure. Our result provides some insight on evolutionary dynamics of duplicate DMC1 gene, the polyploidization events and phylogeny of the StH genome species.  相似文献   

19.
Interspecies hybridization has been frequently observed in the tribe Triticeae. Natural hybridization between Kengyilia and Roegneria or Elymus species has not been reported as yet. Several sterile wheatgrass individuals exhibiting intermediately morphological traits between Kengyilia and Roegneria or Elymus species were identified in the meadow of Sichuan and Gansu provinces in China, suggesting their natural hybrid origin. The putative hybrids were analyzed by using the sequences of ITS and trnH-psbA together with cytological observation in order to assess the origin of hybrids. Both ITS and cytological data revealed the evidence of allopolyploid origin and confirmed the presence of StStYYP and StStYYHP genomes in the putative natural hybrids. The data suggest that the StStYYP hybrid originated from hybridization between Kengyilia and Roegneria and the hybrid with StStYYHP originated from hybridization between Kengyilia and Elymus. Chloroplast sequence data demonstrated that K. rigidula and K. melanthera were the likely maternal donors in the hybridization events.  相似文献   

20.

Background and Aims

It is known that the miniature inverted-repeat terminal element (MITE) preferentially inserts into low-copy-number sequences or genic regions. Characterization of the second largest subunit of low-copy nuclear RNA polymerase II (RPB2) has indicated that MITE and indels have shaped the homoeologous RPB2 loci in the St and H genome of Eymus species in Triticeae. The aims of this study was to determine if there is MITE in the RPB2 gene in Hordeum genomes, and to compare the gene evolution of RPB2 with other diploid Triticeae species. The sequences were used to reconstruct the phylogeny of the genus Hordeum.

Methods

RPB2 regions from all diploid species of Hordeum, one tetraploid species (H. brevisubulatum) and ten accessions of diploid Triticeae species were amplified and sequenced. Parsimony analysis of the DNA dataset was performed in order to reveal the phylogeny of Hordeum species.

Key Results

MITE was detected in the Xu genome. A 27–36 bp indel sequence was found in the I and Xu genome, but deleted in the Xa and some H genome species. Interestingly, the indel length in H genomes corresponds well to their geographical distribution. Phylogenetic analysis of the RPB2 sequences positioned the H and Xa genome in one monophyletic group. The I and Xu genomes are distinctly separated from the H and Xa ones. The RPB2 data also separated all New World H genome species except H. patagonicum ssp. patagonicum from the Old World H genome species.

Conclusions

MITE and large indels have shaped the RPB2 loci between the Xu and H, I and Xa genomes. The phylogenetic analysis of the RPB2 sequences confirmed the monophyly of Hordeum. The maximum-parsimony analysis demonstrated the four genomes to be subdivided into two groups.Key words: Molecular evolution, RPB2, Hordeum, transposable element, phylogeny  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号