首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Computational modeling has the potential to add an entirely new approach to hypothesis testing in yeast cell biology. Here, we present a method for seamless integration of computational modeling with quantitative digital fluorescence microscopy. This integration is accomplished by developing computational models based on hypotheses for underlying cellular processes that may give rise to experimentally observed fluorescent protein localization patterns. Simulated fluorescence images are generated from the computational models of underlying cellular processes via a "model-convolution" process. These simulated images can then be directly compared to experimental fluorescence images in order to test the model. This method provides a framework for rigorous hypothesis testing in yeast cell biology via integrated mathematical modeling and digital fluorescence microscopy.  相似文献   

2.
Despite numerous technology advances, bioreactors are still mostly utilized as functional black-boxes where trial and error eventually leads to the desirable cellular outcome. Investigators have applied various computational approaches to understand the impact the internal dynamics of such devices has on overall cell growth, but such models cannot provide a comprehensive perspective regarding the system dynamics, due to limitations inherent to the underlying approaches. In this study, a novel multi-paradigm modeling platform capable of simulating the dynamic bidirectional relationship between cells and their microenvironment is presented. Designing the modeling platform entailed combining and coupling fully an agent-based modeling platform with a transport phenomena computational modeling framework. To demonstrate capability, the platform was used to study the impact of bioreactor parameters on the overall cell population behavior and vice versa. In order to achieve this, virtual bioreactors were constructed and seeded. The virtual cells, guided by a set of rules involving the simulated mass transport inside the bioreactor, as well as cell-related probabilistic parameters, were capable of displaying an array of behaviors such as proliferation, migration, chemotaxis and apoptosis. In this way the platform was shown to capture not only the impact of bioreactor transport processes on cellular behavior but also the influence that cellular activity wields on that very same local mass transport, thereby influencing overall cell growth. The platform was validated by simulating cellular chemotaxis in a virtual direct visualization chamber and comparing the simulation with its experimental analogue. The results presented in this paper are in agreement with published models of similar flavor. The modeling platform can be used as a concept selection tool to optimize bioreactor design specifications.  相似文献   

3.
4.
The finding that only a sub-fraction of tumor cells, so called Cancer Stem Cells (CSC), is endowed with the capacity to initiate new tumors has important consequences for fundamental as well as clinical cancer research. Previously we established by computational modeling techniques that CSC driven tumor growth instigates infiltrative behavior, and perhaps most interesting, stimulates tumor cell heterogeneity. An important question that remains is to what extend CSC functions are intrinsically regulated or whether this capacity is orchestrated by the microenvironment, i.e. a putative CSC niche. Here we investigate how extrinsic regulation of CSC properties affects the characteristics of malignancies. We find that highly invasive growth in tumors dependent on a small subset of cells is not restricted to CSC-driven tumors, but is also observed in tumors where the CSC capacity of tumor cells is completely defined by the microenvironment. Importantly, also the high level of heterogeneity that was observed for CSC-driven tumors is preserved and partially even increased in malignancies with a microenvironmentally orchestrated CSC population. This indicates that invasive growth and high heterogeneity are fundamental properties of tumors fueled by a small population of tumor cells.  相似文献   

5.
6.
Cells sense their surrounding by employing intracellular signaling pathways that transmit hormonal signals from the cell membrane to the nucleus. TGF-β/SMAD signaling encodes various cell fates, controls tissue homeostasis and is deregulated in diseases such as cancer. The pathway shows strong heterogeneity at the single-cell level, but quantitative insights into mechanisms underlying fluctuations at various time scales are still missing, partly due to inefficiency in the calibration of stochastic models that mechanistically describe signaling processes. In this work we analyze single-cell TGF-β/SMAD signaling and show that it exhibits temporal stochastic bursts which are dose-dependent and whose number and magnitude correlate with cell migration. We propose a stochastic modeling approach to mechanistically describe these pathway fluctuations with high computational efficiency. Employing high-order numerical integration and fitting to burst statistics we enable efficient quantitative parameter estimation and discriminate models that assume noise in different reactions at the receptor level. This modeling approach suggests that stochasticity in the internalization of TGF-β receptors into endosomes plays a key role in the observed temporal bursting. Further, the model predicts the single-cell dynamics of TGF-β/SMAD signaling in untested conditions, e.g., successfully reflects memory effects of signaling noise and cellular sensitivity towards repeated stimulation. Taken together, our computational framework based on burst analysis, noise modeling and path computation scheme is a suitable tool for the data-based modeling of complex signaling pathways, capable of identifying the source of temporal noise.  相似文献   

7.
The holy grail of computational tumor modeling is to develop a simulation tool that can be utilized in the clinic to predict neoplastic progression and propose individualized optimal treatment strategies. In order to develop such a predictive model, one must account for many of the complex processes involved in tumor growth. One interaction that has not been incorporated into computational models of neoplastic progression is the impact that organ-imposed physical confinement and heterogeneity have on tumor growth. For this reason, we have taken a cellular automaton algorithm that was originally designed to simulate spherically symmetric tumor growth and generalized the algorithm to incorporate the effects of tissue shape and structure. We show that models that do not account for organ/tissue geometry and topology lead to false conclusions about tumor spread, shape and size. The impact that confinement has on tumor growth is more pronounced when a neoplasm is growing close to, versus far from, the confining boundary. Thus, any clinical simulation tool of cancer progression must not only consider the shape and structure of the organ in which a tumor is growing, but must also consider the location of the tumor within the organ if it is to accurately predict neoplastic growth dynamics.  相似文献   

8.
Roman  Theodore  Xie  Lu  Schwartz  Russell 《BMC genomics》2016,17(1):97-107

Despite the enormous medical impact of cancers and intensive study of their biology, detailed characterization of tumor growth and development remains elusive. This difficulty occurs in large part because of enormous heterogeneity in the molecular mechanisms of cancer progression, both tumor-to-tumor and cell-to-cell in single tumors. Advances in genomic technologies, especially at the single-cell level, are improving the situation, but these approaches are held back by limitations of the biotechnologies for gathering genomic data from heterogeneous cell populations and the computational methods for making sense of those data. One popular way to gain the advantages of whole-genome methods without the cost of single-cell genomics has been the use of computational deconvolution (unmixing) methods to reconstruct clonal heterogeneity from bulk genomic data. These methods, too, are limited by the difficulty of inferring genomic profiles of rare or subtly varying clonal subpopulations from bulk data, a problem that can be computationally reduced to that of reconstructing the geometry of point clouds of tumor samples in a genome space. Here, we present a new method to improve that reconstruction by better identifying subspaces corresponding to tumors produced from mixtures of distinct combinations of clonal subpopulations. We develop a nonparametric clustering method based on medoidshift clustering for identifying subgroups of tumors expected to correspond to distinct trajectories of evolutionary progression. We show on synthetic and real tumor copy-number data that this new method substantially improves our ability to resolve discrete tumor subgroups, a key step in the process of accurately deconvolving tumor genomic data and inferring clonal heterogeneity from bulk data.

  相似文献   

9.
While aerobic glycolysis, or the Warburg effect, has for a long time been considered a hallmark of tumor metabolism, recent studies have revealed a far more complex picture. Tumor cells exhibit widespread metabolic heterogeneity, not only in their presentation of the Warburg effect but also in the nutrients and the metabolic pathways they are dependent on. Moreover, tumor cells can switch between different metabolic phenotypes in response to environmental cues and therapeutic interventions. A framework to analyze the observed metabolic heterogeneity and plasticity is, however, lacking. Using a mechanistic model that includes the key metabolic pathways active in tumor cells, we show that the inhibition of phosphofructokinase by excess ATP in the cytoplasm can drive a preference for aerobic glycolysis in fast-proliferating tumor cells. The differing rates of ATP utilization by tumor cells can therefore drive heterogeneity with respect to the presentation of the Warburg effect. Building upon this idea, we couple the metabolic phenotype of tumor cells to their migratory phenotype, and show that our model predictions are in agreement with previous experiments. Next, we report that the reliance of proliferating cells on different anaplerotic pathways depends on the relative availability of glucose and glutamine, and can further drive metabolic heterogeneity. Finally, using treatment of melanoma cells with a BRAF inhibitor as an example, we show that our model can be used to predict the metabolic and gene expression changes in cancer cells in response to drug treatment. By making predictions that are far more generalizable and interpretable as compared to previous tumor metabolism modeling approaches, our framework identifies key principles that govern tumor cell metabolism, and the reported heterogeneity and plasticity. These principles could be key to targeting the metabolic vulnerabilities of cancer.  相似文献   

10.
11.
Controlling parasites that infect multiple host species often requires targeting single species that dominate transmission. Yet, it is rarely recognised that such ‘key hosts’ can arise through disparate mechanisms, potentially requiring different approaches for control. We identify three distinct, but not mutually exclusive, processes that underlie host species heterogeneity: infection prevalence, population abundance and infectiousness. We construct a theoretical framework to isolate the role of each process from ecological data and to explore the outcome of different control approaches. Applying this framework to data on 11 gastrointestinal parasites in small mammal communities across the eastern United States reveals variation not only in the magnitude of transmission asymmetries among host species but also in the processes driving heterogeneity. These differences influence the efficiency by which different control strategies reduce transmission. Identifying and tailoring interventions to a specific type of key host may therefore enable more effective management of multihost parasites.  相似文献   

12.
Neuroblastoma is a solid, neuroendocrine tumor with divergent clinical behavior ranging from asymptomatic to fatal. The diverse clinical presentations of neuroblastoma are directly linked to the high intra- and inter-tumoral heterogeneity it presents. This heterogeneity is strongly associated with therapeutic resistance and continuous relapses, often leading to fatal outcomes. The development of successful risk assessment and tailored treatment strategies lies in evaluating the extent of heterogeneity via the accurate genetic and epigenetic profiling of distinct cell subpopulations present in the tumor. Recent studies have focused on understanding the molecular mechanisms that drive tumoral heterogeneity in pursuing better therapeutic and diagnostic approaches. This review describes the cellular, genetic, and epigenetic aspects of neuroblastoma heterogeneity. In addition, we summarize the recent findings on three crucial factors that can lead to heterogeneity in solid tumors: the inherent diversity of the progenitor cells, the presence of cancer stem cells, and the influence of the tumor microenvironment.  相似文献   

13.
A conceptual framework for the spatial analysis of landscape genetic data   总被引:1,自引:0,他引:1  
Understanding how landscape heterogeneity constrains gene flow and the spread of adaptive genetic variation is important for biological conservation given current global change. However, the integration of population genetics, landscape ecology and spatial statistics remains an interdisciplinary challenge at the levels of concepts and methods. We present a conceptual framework to relate the spatial distribution of genetic variation to the processes of gene flow and adaptation as regulated by spatial heterogeneity of the environment, while explicitly considering the spatial and temporal dynamics of landscapes, organisms and their genes. When selecting the appropriate analytical methods, it is necessary to consider the effects of multiple processes and the nature of population genetic data. Our framework relates key landscape genetics questions to four levels of analysis: (i) node-based methods, which model the spatial distribution of alleles at sampling locations (nodes) from local site characteristics; these methods are suitable for modeling adaptive genetic variation while accounting for the presence of spatial autocorrelation. (ii) Link-based methods, which model the probability of gene flow between two patches (link) and relate neutral molecular marker data to landscape heterogeneity; these methods are suitable for modeling neutral genetic variation but are subject to inferential problems, which may be alleviated by reducing links based on a network model of the population. (iii) Neighborhood-based methods, which model the connectivity of a focal patch with all other patches in its local neighborhood; these methods provide a link to metapopulation theory and landscape connectivity modeling and may allow the integration of node- and link-based information, but applications in landscape genetics are still limited. (iv) Boundary-based methods, which delineate genetically homogeneous populations and infer the location of genetic boundaries; these methods are suitable for testing for barrier effects of landscape features in a hypothesis-testing framework. We conclude that the power to detect the effect of landscape heterogeneity on the spatial distribution of genetic variation can be increased by explicit consideration of underlying assumptions and choice of an appropriate analytical approach depending on the research question.  相似文献   

14.
Modeling of tumor growth has been performed according to various approaches addressing different biocomplexity levels and spatiotemporal scales. Mathematical treatments range from partial differential equation based diffusion models to rule-based cellular level simulators, aiming at both improving our quantitative understanding of the underlying biological processes and, in the mid- and long term, constructing reliable multi-scale predictive platforms to support patient-individualized treatment planning and optimization. The aim of this paper is to establish a multi-scale and multi-physics approach to tumor modeling taking into account both the cellular and the macroscopic mechanical level. Therefore, an already developed biomodel of clinical tumor growth and response to treatment is self-consistently coupled with a biomechanical model. Results are presented for the free growth case of the imageable component of an initially point-like glioblastoma multiforme tumor. The composite model leads to significant tumor shape corrections that are achieved through the utilization of environmental pressure information and the application of biomechanical principles. Using the ratio of smallest to largest moment of inertia of the tumor material to quantify the effect of our coupled approach, we have found a tumor shape correction of 20% by coupling biomechanics to the cellular simulator as compared to a cellular simulation without preferred growth directions. We conclude that the integration of the two models provides additional morphological insight into realistic tumor growth behavior. Therefore, it might be used for the development of an advanced oncosimulator focusing on tumor types for which morphology plays an important role in surgical and/or radio-therapeutic treatment planning.  相似文献   

15.
Tumor heterogeneity: morphological, molecular and clinical implications   总被引:3,自引:0,他引:3  
Malignant tumors are characterized by their great heterogeneity and variability. There are hundreds of different types of malignant tumors that harbour many oncogenic alterations. The tumor heterogeneity has important morphological, molecular and clinical implications. Except for some hematopoietic and lymphoproliferative processes and small cell infant tumors, there are not specific molecular alterations for most human tumors. In this review we summarize the most important aspects of carcinogenesis and chemoradiosensitivity of malignant cells. In this regard, some oncogenes such as neu, ras and bcl-2 have been associated with cellular resistance to treatment with anticancer agents. The knowledge of oncogenic alterations involved in each tumor can be important to correlate the morphological features, the genetic background, the prognosis and the clinical response to treatment with anticancer agents. Based on the molecular background of the tumor there are new cancer gene therapy protocols. For example using adenovirus Ela in tumors with overexpression of neu oncogene, inhibitors of tyrosine kinase specific for the PDGF receptor in glioma, inhibitors of farnesil transferase to prevent ras activity in tumors with mutations in the ras gene.  相似文献   

16.
Persistent destruction of pancreatic β-cells in type 1 diabetes (T1D) results from multifaceted pancreatic cellular interactions in various phase progressions. Owing to the inherent heterogeneity of coupled nonlinear systems, computational modeling based on T1D etiology help achieve a systematic understanding of biological processes and T1D health outcomes. The main challenge is to design such a reliable framework to analyze the highly orchestrated biology of T1D based on the knowledge of cellular networks and biological parameters. We constructed a novel hybrid in-silico computational model to unravel T1D onset, progression, and prevention in a non-obese-diabetic mouse model. The computational approach that integrates mathematical modeling, agent-based modeling, and advanced statistical methods allows for modeling key biological parameters and time-dependent spatial networks of cell behaviors. By integrating interactions between multiple cell types, model results captured the individual-specific dynamics of T1D progression and were validated against experimental data for the number of infiltrating CD8+T-cells. Our simulation results uncovered the correlation between five auto-destructive mechanisms identifying a combination of potential therapeutic strategies: the average lifespan of cytotoxic CD8+T-cells in islets; the initial number of apoptotic β-cells; recruitment rate of dendritic-cells (DCs); binding sites on DCs for naïve CD8+T-cells; and time required for DCs movement. Results from therapy-directed simulations further suggest the efficacy of proposed therapeutic strategies depends upon the type and time of administering therapy interventions and the administered amount of therapeutic dose. Our findings show modeling immunogenicity that underlies autoimmune T1D and identifying autoantigens that serve as potential biomarkers are two pressing parameters to predict disease onset and progression.  相似文献   

17.
Cell population heterogeneity can affect cellular response and is a major factor in drug resistance. However, there are few techniques available to represent and explore how heterogeneity is linked to population response. Recent high-throughput genomic, proteomic, and cellomic approaches offer opportunities for profiling heterogeneity on several scales. We have recently examined heterogeneity in vascular endothelial growth factor receptor (VEGFR) membrane localization in endothelial cells. We and others processed the heterogeneous data through ensemble averaging and integrated the data into computational models of anti-angiogenic drug effects in breast cancer. Here we show that additional modeling insight can be gained when cellular heterogeneity is considered. We present comprehensive statistical and computational methods for analyzing cellomic data sets and integrating them into deterministic models. We present a novel method for optimizing the fit of statistical distributions to heterogeneous data sets to preserve important data and exclude outliers. We compare methods of representing heterogeneous data and show methodology can affect model predictions up to 3.9-fold. We find that VEGF levels, a target for tuning angiogenesis, are more sensitive to VEGFR1 cell surface levels than VEGFR2; updating VEGFR1 levels in the tumor model gave a 64% change in free VEGF levels in the blood compartment, whereas updating VEGFR2 levels gave a 17% change. Furthermore, we find that subpopulations of tumor cells and tumor endothelial cells (tEC) expressing high levels of VEGFR (>35,000 VEGFR/cell) negate anti-VEGF treatments. We show that lowering the VEGFR membrane insertion rate for these subpopulations recovers the anti-angiogenic effect of anti-VEGF treatment, revealing new treatment targets for specific tumor cell subpopulations. This novel method of characterizing heterogeneous distributions shows for the first time how different representations of the same data set lead to different predictions of drug efficacy.  相似文献   

18.
Histopathological examination of solid tumors frequently reveals pronounced tumor cell heterogeneity with regards to cell organization, cell morphology, cell size, nuclei morphology, etc. Analyses of gene expression patterns by immunohistochemistry or in situ hybridization techniques further strengthen the actual presence of phenotypic heterogeneity, often demonstrating substantial diversity within a given tumor. The molecular mechanisms underlying the phenotypic heterogeneity are very complex with genetic, epigenetic and environmental components. Hypoxia, shortage in oxygen, greatly influences cellular phenotypes by altering the expression of specific genes, and is an important contributor to intra- and inter-tumor cell diversity as revealed by the pronounced but non-uniform expression of hypoxia-driven genes in solid tumors (reviewed in [Semenza GL. Targeting HIF-1 for cancer therapy. Nat Rev Cancer 2003;3:721-32; Harris AL. Hypoxia--a key regulatory factor in tumour growth. Nat Rev Cancer 2002;2:38-47.]). The oxygen pressure in solid tumors is generally lower than in the surrounding non-malignant tissues, and tumors exhibiting extensive hypoxia have been shown to be more aggressive than corresponding tumors that are better oxygenized [Vaupel P. Oxygen transport in tumors: characteristics and clinical implications. Adv Exp Med Biol 1996;388:341-51; Vaupel P, Thews O, Hoeckel M. Treatment resistance of solid tumors: role of hypoxia and anemia. Med Oncol 2001;18:243-59.]. We recently observed that hypoxic neuroblastoma cells and breast cancer cells lose their differentiated gene expression patterns and develop stem cell-like phenotypes [J?gi A, ?ra I, Nilsson H, Lindeheim A, Makino Y, Poellinger L, et al. Hypoxia alters gene expression in human neuroblastoma cells toward an immature and neural crest-like phenotype. Proc Natl Acad Sci USA 2002;99:7021-6; Helczynska K, Kronblad A, J?gi A, Nilsson E, Beckman S, Landberg G, et al. Hypoxia promotes a dedifferentiated phenotype in ductal breast carcinoma in situ. Cancer Res 2003;63:1441-4.]. As low stage of differentiation in neuroblastoma and in breast cancer is linked to poor prognosis, hypoxia-induced dedifferentiation will not only contribute to tumor heterogeneity but could also be one mechanism behind increased aggressiveness of hypoxic tumors. The effect(s) of hypoxia on tumor cell differentiation status is the focus of this review.  相似文献   

19.
The use of computational modeling and simulation has increased in many biological fields, but despite their potential these techniques are only marginally applied in nutritional sciences. Nevertheless, recent applications of modeling have been instrumental in answering important nutritional questions from the cellular up to the physiological levels. Capturing the complexity of today''s important nutritional research questions poses a challenge for modeling to become truly integrative in the consideration and interpretation of experimental data at widely differing scales of space and time. In this review, we discuss a selection of available modeling approaches and applications relevant for nutrition. We then put these models into perspective by categorizing them according to their space and time domain. Through this categorization process, we identified a dearth of models that consider processes occurring between the microscopic and macroscopic scale. We propose a “middle-out” strategy to develop the required full-scale, multilevel computational models. Exhaustive and accurate phenotyping, the use of the virtual patient concept, and the development of biomarkers from “-omics” signatures are identified as key elements of a successful systems biology modeling approach in nutrition research—one that integrates physiological mechanisms and data at multiple space and time scales.  相似文献   

20.
Cellular processes are "noisy". In each cell, concentrations of molecules are subject to random fluctuations due to the small numbers of these molecules and to environmental perturbations. While noise varies with time, it is often measured at steady state, for example by flow cytometry. When interrogating aspects of a cellular network by such steady-state measurements of network components, a key need is to develop efficient methods to simulate and compute these distributions. We describe innovations in stochastic modeling coupled with approaches to this computational challenge: first, an approach to modeling intrinsic noise via solution of the chemical master equation, and second, a convolution technique to account for contributions of extrinsic noise. We show how these techniques can be combined in a streamlined procedure for evaluation of different sources of variability in a biochemical network. Evaluation and illustrations are given in analysis of two well-characterized synthetic gene circuits, as well as a signaling network underlying the mammalian cell cycle entry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号