首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Enzyme electrophoresis was employed to examine genetic variation at 20 loci in 16 populations of Lasthenia minor and 18 populations of its presumed derivative species L. maritima. The purposes of the study were to ascertain levels of genetic variation in each species, to assess how the variation at enzyme-coding genes is apportioned within and among populations of each species, and to determine the level of divergence between the two species. The two species are both diploid annuals, similar morphologically, and produce fertile F1 hybrids when crossed. Lasthenia minor is self-incompatible and restricted to mainland California, whereas L. maritima is self-compatible and probably largely autogamous; it occurs on seabird rocks from central California to British Columbia. Mean genetic identities for pair-wise comparisons of populations of the two species are similar to values for populations of the same species, indicating they have not diverged at the 20 genes coding for soluble enzymes. Despite its more extensive geographical range, L. maritima exhibits only 50% of the genetic diversity of L. minor. The latter species apportions a greater amount of its diversity within populations, whereas the former harbors more diversity among populations than within them. This is probably a reflection of the different breeding systems of the two species. Six unique alleles were detected in L. minor, whereas only one novel allele was found in a single individual of L. maritima. The electrophoretic data are concordant with the suggestion that L. maritima is relatively recently derived from L. minor. The switch from outcrossing to selfing and selection of genotypes adapted to the chemically and physically unusual substrate on the seabird rocks are considered the critical steps in the evolution of L. maritima.  相似文献   

2.
The amphi-Adriatic region, and especially the Western Balkan Peninsula, belongs to the most important biodiversity hotspots in the temperate region. Nevertheless, detailed phylogeographic and molecular systematic studies in the Western Balkan are rare due to sporadic sampling in regions, where access has been, until recently, restricted by war. The Cardamine maritima group, which is the focus of this study, comprises not only the currently recognised species C. maritima and C. monteluccii, but also other taxa, which have been rendered to synonymy by most of the national floras and checklists. Molecular data acquired by the amplified fragment length polymorphism method showed a clear pattern within the group. Italian populations of C. monteluccii are well separated from Balkan taxa. In a step forward from previous taxonomic confusion surrounding Balkan populations, the present study confirms that five allopatric units—each with a clearly delimited and a rather restricted distribution range—can be easily recognised here. They correspond to C. fialae, C. serbica, C. rupestris, and two genetically distant and allopatric units within C. maritima. While individual taxa gained high bootstrap support in the neighbour-joining tree, there is low support for the internal nodes and it is hard to infer any relationships among taxa based on this information. The majority of Balkan populations of the C. maritima group exhibit features of genetic variability that enable us to hypothesise that these populations are relic ones.  相似文献   

3.
Small, isolated populations are prone to genetic drift and high levels of inbreeding that can threaten their long-term survival. Alnus maritima persists exclusively in three groups of small, highly disjunct, regional populations in the Delmarva Peninsula, Georgia, and Oklahoma. Trees in the three regions are recognized as separate subspecies. Microsatellite markers were used to measure fine-scale population genetic diversity and structure (1) within and among regions and (2) within and among populations in each region. Compared to a previous study utilizing allozymes, microsatellite data show higher levels of variation, lower levels of inbreeding, but similar levels of genetic differentiation among regions. Significant genetic differentiation was detected among regions and among distinct populations within regions. Genetic differentiation was significantly correlated with geographic distance among regional populations, but not among populations within regions. Populations, therefore, likely represent fragments of formerly extensive networks of populations that have decayed and retracted due to competition with other species better adapted to the shadier habitats of late-succession environments. The unique genetic features of populations within different regions should be considered as part of future conservation efforts.  相似文献   

4.
In present study seven RAPD primers were used to access the diversity within and among twelve populations of three mushroom species Ganoderma lucidum, leucoagaricus sp. and Lentinus sp. Total of 111 bands were scored by 7 RAPD primers in 30 accessions of three mushroom species collected from different sampling sites of central India. Total 111 bands were generated using seven primers which were F-1, OPG-06, OPC-07, OPD-08, OPA-02, OPD-02, OPB-10. All 111 bands were polymorphic in nature (100%). Therefore, it revealed that the used primers had sufficient potency for population studies and 30 accessions had higher genetic differences among each other. In best of the knowledge, this is the first report, which accesses the genetic diversity between three mushroom species (Gd Ganoderma lucidum, Lg Leucoagaricus sp., Ls Lentinus). The polymorphic percentage ranged from 3.60 to 23% within twelve populations, while polymorphic percentage among group was 40.56, among population within groups was 41.12 and within population was 18.32. This indicated that the genetic diversity within the population was very low, but slightly higher in the populations of three species. Among three groups representing Gd., Lg and Ls, Among populations within groups shown highest percentage of variation (Pv?=?41.12) while within populations, the lowest percentage of variation (18.32) was observed. This result also support that the highest genetic variation was present among groups in comparison to among the population within a species and lowest genetic variation was observed within the population.  相似文献   

5.
Patterns of morphological, genetic and epigenetic variation (DNA methylation pattern) were investigated in metallicolous (M) and non‐metallicolous (NM) populations of Armeria maritima. A morphological study was carried out using plants from six natural populations grown in a greenhouse. Morphological variation was assessed using seven traits. On the basis of this study, three representative populations were selected for molecular analyses using metAFLP to study sequence‐ and methylation‐based DNA variation. Only one morphological trait (length of outer involucral bracts) was common to both metallicolous populations studied; however, the level of variation was sufficient to differentiate between M and NM populations. Molecular analyses showed the existence of naturally occurring epigenetic variation in A. maritima populations, as well as structuring into distinct between and within population components. We show that patterns of population genetic structure differed depending on the information used in the study. Analysis of sequence‐based information data demonstrates the presence of three well‐defined and genetically differentiated populations. Methylation‐based data show that two major groups of individuals are present, corresponding to the division into M and NM populations. These results were confirmed using different analytical approaches, which suggest that the DNA methylation pattern is similar in both M populations. We hypothesise that epigenetic processes may be involved in microevolution leading to development of M populations in A. maritima.  相似文献   

6.
Allozyme, chloroplast (cpDNA) and random amplified polymorphic DNA (RAPD) markers have been used to estimate genetic and taxonomic relationships among different populations of Abies alba and the relic population of A. nebrodensis. Twelve isozyme gene loci, as well as restriction fragment length polymorphism (RFLP) at cpDNA spacer regions between t-RNA genes were analysed. Moreover, a set of 60 random sequence 10-mer primers were tested. Over all isozyme loci, evident differences in allele frequencies among A. nebrodensis and A. alba populations were found, particularly at 2 loci, phosphoglucose isomerase (Pgi-a) and shikimate dehydrogenase (Skd-a). More than 10% of the total genetic diversity was due to differences among populations. High values of genetic distances among populations were also found. Out of the 60 primers tested, 12 resulted in a polymorphic banding pattern both within and among populations. A total of 84 RAPD fragments were produced by the 12 selected primers. A phenogram of relationships among populations was constructed based on RAPD band sharing: the differentiation of the A. nebrodensis population was evident. The analysis of molecular variance (AMOVA) was used to apportion the variation among individuals within populations and among populations. There was considerable variation within each population: even so, genetic divergence was found among populations. This pattern of genetic variation was very different from that reported for inbred species. Identical cpDNA amplification and restriction patterns were observed among all the individuals sampled from the populations. Taken together, the results of allozyme and RAPDs show a clear differentiation among A. nebrodensis and A. alba populations and provide support for their classification into two different taxonomic groups.  相似文献   

7.
Background and Aims The effects of habitat fragmentation on quantitative genetic variation in plant populations are still poorly known. Saxifraga sponhemica is a rare endemic of Central Europe with a disjunct distribution, and a stable and specialized habitat of treeless screes and cliffs. This study therefore used S. sponhemica as a model species to compare quantitative and molecular variation in order to explore (1) the relative importance of drift and selection in shaping the distribution of quantitative genetic variation along climatic gradients; (2) the relationship between plant fitness, quantitative genetic variation, molecular genetic variation and population size; and (3) the relationship between the differentiation of a trait among populations and its evolvability.Methods Genetic variation within and among 22 populations from the whole distribution area of S. sponhemica was studied using RAPD (random amplified polymorphic DNA) markers, and climatic variables were obtained for each site. Seeds were collected from each population and germinated, and seedlings were transplanted into a common garden for determination of variation in plant traits.Key Results In contrast to previous results from rare plant species, strong evidence was found for divergent selection. Most population trait means of S. sponhemica were significantly related to climate gradients, indicating adaptation. Quantitative genetic differentiation increased with geographical distance, even when neutral molecular divergence was controlled for, and QST exceeded FST for some traits. The evolvability of traits was negatively correlated with the degree of differentiation among populations (QST), i.e. traits under strong selection showed little genetic variation within populations. The evolutionary potential of a population was not related to its size, the performance of the population or its neutral genetic diversity. However, performance in the common garden was lower for plants from populations with reduced molecular genetic variation, suggesting inbreeding depression due to genetic erosion.Conclusions The findings suggest that studies of molecular and quantitative genetic variation may provide complementary insights important for the conservation of rare species. The strong differentiation of quantitative traits among populations shows that selection can be an important force for structuring variation in evolutionarily important traits even for rare endemic species restricted to very specific habitats.  相似文献   

8.
Miscanthus sinensis is a typical perennial C4 grass in Asia. In the present study, ISSR markers were used to evaluate the genetic variation within and among grass populations that were sampled from the Zhejiang and Guangdong Provinces of China. Based on nine ISSR primers, 206 clear and reproducible DNA fragments were generated. Relatively low levels of genetic diversity were determined among the populations. The coefficient of genetic differentiation among the populations was 0.52, which indicates that 52.3% of the total molecular variance exists among the populations. Such a high level of divergence present among the populations might be caused by the complex topography and variable climatic conditions present in the two provinces. AMOVA revealed that the majority of the genetic variation was within the populations (50.6%). The application of a novel method, which combines geographical coordinates and genetic differentiation to detect barriers for gene flow, allowed us to identify two zones of lowered gene flow.  相似文献   

9.
Bats are the main pollinators and seed dispersers of Stenocereus thurberi, a xenogamous columnar cactus of northwestern Mexico and a good model to illustrate spatial dynamics of gene flow in long-lived species. Previous studies in this cactus showed differences among populations in the type and abundance of pollinators, and in the timing of flowering and fruiting. In this study we analyzed genetic variability and population differentiation among populations. We used three primers of ISSR to analyze within and among populations genetic variation from eight widely separated populations of S. thurberi in Sonora, Mexico. Sixty-six out of 99 of the ISSR bands (P = 66.7%) were polymorphic. Total heterozygosity for all populations sampled revealed high genetic diversity (Hsp = 0.207, HBT = 0.224). The AMOVA showed that most of the genetic variation was within populations (80.5%). At the species level, estimates of population differentiation, θ = 0.175 and θB = 0.194, indicated moderate gene flow among populations. The absence of a significant correlation between genetic and geographic distances indicated little isolation by geographic distance. The large genetic variation and diversity found in S. thurberi is consistent with its open reproductive system and the high mobility of bats, a major pollinator. However, small changes in number or kind of pollinators and seed dispersal agents, in the directionality of migratory routes, and/or in the timing of flowering and fruiting among populations, can critically affect gene flow dynamics.  相似文献   

10.
《Aquatic Botany》2005,82(2):89-98
The genetic diversity of 56 individuals of Isoëtes hypsophila Hand.-Mazz. from China was investigated by ISSR. Twelve primers were screened from 65 primers, and a total of 119 DNA fragments were scored, of these, 82% were polymorphic bands, which indicated that high levels of genetic variation existed in the natural populations. Genetic diversity varied greatly among populations with the percentage of polymorphic band (PPB) values ranging from 8 to 35%. An analysis of molecular variance (AMOVA) was used to apportion the variation between regions, among populations within regions, and within populations. Results indicated that most of the variance (85%) occurred between Yunnan and Sichuan. The variances among populations within regions and within populations, however, were only 5 and 10%, respectively. In the among-population analysis, the larger part of genetic variation (77%) resided among populations, and less (23%) presented differences within populations. UPGMA cluster analysis showed that there was no distinct genetic differentiation between populations from Sichuan province. A number of causes including limited gene flow, genetic drift and inbreeding might have led to these observed genetic profiles of I. hypsophila.  相似文献   

11.

Background and Aims

The sedge genus Carex, the most diversified angiosperm genus of the northern temperate zone, is renowned for its holocentric chromosomes and karyotype variability. The genus exhibits high variation in chromosome numbers both among and within species. Despite the possibility that this chromosome evolution may play a role in the high species diversity of Carex, population-level patterns of molecular and cytogenetic differentiation in the genus have not been extensively studied.

Methods

Microsatellite variation (11 loci, 461 individuals) and chromosomal diversity (82 individuals) were investigated in 22 Midwestern populations of the North American sedge Carex scoparia and two Northeastern populations.

Key Results

Among Midwestern populations, geographic distance is the most important predictor of genetic differentiation. Within populations, inbreeding is high and chromosome variation explains a significant component of genetic differentiation. Infrequent dispersal among populations separated by >100 km explains an important component of molecular genetic and cytogenetic diversity within populations. However, karyotype variation and correlation between genetic and chromosomal variation persist within populations even when putative migrants based on genetic data are excluded.

Conclusions

These findings demonstrate dispersal and genetic connectivity among widespread populations that differ in chromosome numbers, explaining the phenomenon of genetic coherence in this karyotypically diverse sedge species. More generally, the study suggests that traditional sedge taxonomic boundaries demarcate good species even when those species encompass a high range of chromosomal diversity. This finding is important evidence as we work to document the limits and drivers of biodiversity in one of the world''s largest angiosperm genera.  相似文献   

12.
We investigated the geographical distribution of genetic variation in 67 individuals of Triglochin maritima from 38 localities across Europe using AFLP markers. Analysis of genetic variation resulted in the recognition of two major genetic groups. Apart from few geographical outliers, these are distributed (1) along the Atlantic coasts of Portugal, Spain and France and (2) in the North Sea area, the Baltic Sea area, at central European inland localities, the northern Adriatic Sea coast and the Mediterranean coast of southwest France. Considering possible range shifts of T. maritima in reaction to Quaternary climatic changes as deduced from the present-day northern temperature limit of the species, Quaternary changes of coastline in the North Sea area and the very recent origin of the Baltic Sea, we conclude that the coastal populations of T. maritima in the North Sea and Baltic Sea areas originated from inland populations.  相似文献   

13.
Tapiscia sinensis is a Tertiary relict and endangered tree species with unique scientific research value and great economic value. In this study, we assessed the genetic diversity of five wild T. sinensis populations from different geographical regions using 10 polymorphic simple sequence repeat (SSR) markers. Our results reveal that the natural populations of T. sinensis have rich genetic diversity (PPL = 100%, He = 0.6904, I = 1.4368), with Shannon's index indicating that the T. sinensis populations are at a relatively stable stage. Of the genetic relationships among populations, the distance between the Hunan Yanling (YL) and Guizhou Xifeng (XF) populations is the smallest (0.4829); the genetic distance between the Shaanxi Ningshan (NS) and the Guizhou Xifeng (XF) populations is the largest (0.9821). A Mantel test shows that there is no correlation among the populations between geographic distance and genetic distance. AMOVA suggest that 33.3% of the genetic variation arose among the populations, while 66.7% of the variation arose within them. The moderate gene flow among populations (Nm = 0.7274) is not sufficient to counteract genetic drift within the populations and result in significant differentiation (Fst = 0.2987). Our results will benefit the conservation and exploitation of T. sinensis and provide a theoretical basis for further study of the evolution and phylogeography of the species.  相似文献   

14.
Gentiana pannonicascop. (Gentianaceae) is a long-lived perennial mountain species. It is a typical east−Alpine element. The centre of its distribution is situated in the eastern Alps, where the species occurs in alpine and subalpine areas. Besides the Alps, G. pannonica occurs also in the Bohemian Forest, Czech Republic. The reproduction strategy and genetic variation of this species endangered in the Czech Republic were studied. Genetic variation within and among six populations of G. pannonica in the Bohemian Forest and two populations in the Alps was studied using random amplified polymorphic DNAs (RAPD) markers. The variation found between populations from primary habitats and populations situated in the secondary mountain meadows accounted for 5% of the total genetic variation, whereas no significant genetic diversity was found between two different regions (Bohemian Forest, the Alps). Most of the variation is distributed among individuals within populations in the primary habitats, specifically 77% in the Bohemian Forest and 79% in the Alps. The pattern of among-population variation was substantially different between primary and secondary habitats. While among-population variation in primary habitats was low in both of the regions (21–23%), the proportion of RAPD variation among populations in secondary habitats was distinctly higher (65%). Within-population genetic variation was higher in primary habitats than in the secondary ones. This may be a consequence of processes such as genetic drift or bottleneck, and founder effects caused by changes in their distribution during the Holocene period. The differences of vegetation composition, seedlings recruitment and seed set were investigated in the field. Vegetation composition differed between primary and secondary habitats of G. pannonica and seedlings recruitment was recorded only in primary habitats. The reproduction output of the species under study is probably influenced by the availability of pollinators.  相似文献   

15.
《Aquatic Botany》2005,81(2):175-188
Comprehensive information of mangrove genetic resources is requisite for developing strategies for their effective conservation and sustainable use. Genetic diversity within and among populations of a widespread viviparous mangrove Ceriops decandra was determined using inter-simple sequence repeat (ISSR). Ten natural populations were collected from Malay Peninsula and North Australia. At the species level, high genetic variation was detected (P = 72%, HE = 0.253, and I = 0.379). The estimate of GST was 0.882, indicating a high level of genetic differentiation among populations. When populations were grouped according to geographic regions, i.e., East Malaya, West Malaya, Southmost Malaya, and North Australia, AMOVA suggested that most of the total variation (87%) was accounted for by differentiation between regions, with only 4% accounting for variation among populations within regions, and a further 9% partitioned among individuals within a population. A UPGMA dendrogram based on genetic distance revealed a deep split between populations from the eastern Indian Ocean and all others from the western Pacific Ocean, which may result from the historical lowering of sea level at these regions during the recent Pleistocene glaciations. An understanding of the genetic structure of C. decandra provides insight for the conservation and management of this species.  相似文献   

16.
Random amplified polymorphic DNA markers were used to assess the genetic diversity within and among seven Tunisian diploid and polyploid populations of Teucrium polium L. from five bioclimatic areas. Out of the 141 bands generated from eight selected primers, 124 were polymorphic. The genetic diversity within a population (Shannon’s index) was high and varied according both the ploidal levels and bioclimatic zones. The genetic differentiation among populations assessed by G ST and ΦST statistics was high, suggesting a low level of gene flow among them. The major proportion of the variation was attributable to individual differences within populations. The UPGMA analysis based on Nei and Li’s coefficient showed that individuals from each population clustered together. In a dendrogram using the ΦST distance matrix, population grouping is concordant with bioclimates and cytotypes. Conservation strategies should take into account the level of the genetic diversity of the populations according to their bioclimate and ploidal levels.  相似文献   

17.
Thirteen natural populations from throughout the range of the Chinese pine (Pinus tabulaeformis Carr.) were examined using inter-simple sequence repeat markers to characterize the genetic structure at the species level and to compare the extent and distribution of genetic variation among central, intermediate, and marginal populations. Although the total genetic variation in the Chinese pine was mainly maintained within populations, the genetic differentiation among populations was significant (P < 0.001). The genetic divergence was significantly correlated with geographic distance (P < 0.05). Genetic diversity tended to decrease from the central to intermediate and marginal populations. The marginal populations had significantly lower intrapopulation genetic diversity than central populations (P < 0.05). Cluster analysis based on Nei’s unbiased genetic distances confirmed the difference among four central populations and the rest. Both historical and contemporary factors may have played key roles in shaping the spatial genetic structure of this species.  相似文献   

18.
Gardenia jasminoides Ellis is used in traditional Chinese medicine (TCM) in China. Levels of genetic variation and patterns of population structure within and among eight wild or cultivated populations of G. jasminoides Ellis in China were investigated using amplified fragment length polymorphism (AFLP) markers. Of the 11 primers screened, four produced highly reproducible AFLP bands. Using these primers, 244 discernible DNA fragments were generated with 165 bands (67.6%), were polymorphic, indicating considerable genetic variation at the species level. In contrast, there were relatively low levels of polymorphism at the population level with the percentage of polymorphic bands (PPB) ranging from 36.89% to 59.43%. Genetic diversity within populations ranged from 0.2086 to 0.3108, averaging 0.2392 at the species level. A high level of genetic differentiation among populations was detected based on Nei's genetic diversity analysis (76.59%), Shannon's index analysis (64.8%) and AMOVA analysis (72.75%). No significant statistical differences (analysis of molecular variance [AMOVA], p = 0.0639) in AFLP variation were found between regions. However, the variance among populations and within populations differed significantly (p < 0.001). An indirect estimate of historical levels of gene flow (Nm = 1.7448) was consistent with the high mean genetic identity (mean I = 0.9263) found among populations. There is an association between geographic and genetic distances between populations. Presently gene change exists between populations.  相似文献   

19.
Random amplified polymorphic DNA (RAPD) markers were used to characterize genetic heterogeneity within and among five populations of Stipa grandis in the Xilingol Plateau. Estimates of the percentage of polymorphic bands, Shannon's diversity information index and Nei's gene diversity index were comparatively high in the five populations, and the Population GSM was found to have the highest genetic diversity among all populations. An analysis of molecular variance indicated that the majority of variation existed within populations (74.12%), and that there was significant differentiation among populations (ΦST = 25.88%, P < 0.001). Genetic distance (ΦST) ranged from 0.198 to 0.310 and the differentiation between pair-wise populations was significant when individual pairs of populations were compared. Based on the ΦST values, gene flow (Nm) was estimated and was found to vary from 0.556 to 1.013 between pair-wise populations and 0.7412 among populations. The results of UPGMA cluster analysis and nonmetric multi-dimensional scaling analysis indicated that most variation occurred within populations and that genetic differentiation had happened between populations. These findings are important for a better understanding of the adaptive strategy of S. grandis in northern China and will be useful for conservation managers to work out an effective strategy to protect this important species.  相似文献   

20.
Populus simonii Carr. is an important ecological and commercial breeding species in northern China; however, human interference during the last few centuries has led to the reduction and fragmentation of natural populations. To evaluate genetic diversity and differentiation within and among existing populations, we used 20 microsatellite markers to examine the genetic variation and structure of 16 natural populations. Our results indicated that the level of genetic diversity differed among populations, with average number of alleles per locus (AR) and expected heterozygosity (H e) ranging from 3.7 to 6.11 and 0.589 to 0.731, respectively. A marginal population from Qilian in the Qinghai–Tibetan Plateau showed the highest values (AR?=?6.11, H e?=?0.731), and the Zhangjiakou and Yishui populations showed the lowest values (AR?=?4.08, H e?=?0.589 and AR?=?3.7, H e?=?0.604). The inbreeding coefficient (F IS) values for all populations were positive, which indicated an excess of homozygotes. The microsatellites allowed the identification of a significant subpopulation structure (K?=?3), consistent with an isolation by distance model for P. simonii populations. Additionally, molecular variance analysis revealed that 14.2 % of the variation resided among populations, and 85.8 % could be attributed to variation within populations. These data provide valuable information for natural resource conservation and for optimization of breeding programs in the immediate future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号