首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interspecific hybridization among Hawaiian species ofCyrtandra (Gesneriaceae) was investigated using randomly amplified polymorphic DNA (RAPD) markers. Thirty-three different primers were used to investigate interspecific hybridization for 17 different putative hybrids based on morphological intermediacy and sympatry with putative parental species. RAPD data provided evidence for the hybrid origin of all putative hybrid taxa examined in this analysis. However, the patterns in the hybrid taxa were not found to be completely additive of the patterns found in the parental species. Markers missing in the hybrid taxa can be attributed to polymorphism in the populations of the parental species and the dominant nature of inheritance for RAPD markers. Unique markers found within hybrid taxa require further explanation but do not necessarily indicate that the taxa are not of hybrid origin. The implications suggest that these interspecific hybridization events had, and continue to have, an effect on the adaptive radiation and conservation biology ofCyrtandra.  相似文献   

2.
I examined three aspects of the cladistic treatment of a set of 17 F1 hybrids of known parental origin: (1) impact of hybrids on consistency index (CI) and number of most parsimonious trees (Trees), (2) placement of hybrids in cladograms, and (3) impact of hybrids on hypotheses of relationship among species. The hybrids were added singly and in randomly selected sets of two to five to a data set composed of Central American species of Aphelandra (including the parents of all hybrids). Compared to analyses with the same number of OTUs all of which were species, the analyses with hybrids yielded results with significantly higher CI. There was no difference in Trees between analyses with hybrids versus species. There was thus no evidence that hybrids would appear to be more problematic for cladistic methods than species. Accordingly, hybrids will not be readily identifiable as taxa that cause marked change in these indices. About % of the hybrids were placed as the cladistically basal members of the lineage that included the most apomorphic parent. Relatively apomorphic hybrids were placed proximate to the most derived parent (ca. 13% of hybrids). Other placements occurred more rarely. The most frequent placements of hybrids thus did not distinguish them from normal intermediate or apomorphic taxa. When analyses with hybrids yielded multiple most parsimonious trees, these were no more different from each other than were the equally parsimonious trees that resulted from analyses with species. Most analyses with one or two hybrids resulted in minor or no change in topology. When hybrids caused topological change, they frequently caused rearrangements of weakly supported portions of the cladogram that did not include their parents. When they disrupted the cladistic placement of their parents, they often caused their parents to change positions, with at least one topology bringing the parental lineages into closer proximity with the hybrid placed between them. Hybrids between parents from the two main lineages of the group caused total cladistic restructuring. In fact, the degree of relationship between a hybrid's parents (measured by both cladistic and patristic distance) was strongly correlated with CI (negatively) and with the degree of disturbance to cladistic relationships (positively). Thus, hybrids between distantly related parents resulted in cladograms with low CI and major topological changes. This study suggests that hybrids are unlikely to cause breakdown of cladistic structure unless they are between distantly related parents. However, these results also indicate that cladistics may not be specially useful in distinguishing hybrids from normal taxa. The applicability of these results to other kinds of hybrids is examined and the likely cladistic treatment of hybrids using other sources of data is discussed.  相似文献   

3.
Natural hybridization is a frequent phenomenon in plants. It can lead to the formation of new species, facilitate introgression of plant traits, and affect the interactions between plants and their biotic and abiotic environments. An important consequence of hybridization is the generation of qualitative and quantitative variation in secondary chemistry. Using the literature and my own results, I review the effects of hybridization on plant secondary chemistry, the mechanisms that generate patterns of chemical variation, and the possible consequences of this variation for plants and herbivores. Hybrids are immensely variable. Qualitatively, hybrids may express all of the secondary chemicals of the parental taxa, may fail to express certain parental chemicals, or may express novel chemicals that are absent in each parent. Quantitatively, concentrations of parental chemicals may vary markedly among hybrids. There are five primary factors that contribute to variation: parental taxa, hybrid class (F(1), F(2), etc.), ploidy level, chemical class, and the genetics of expression (dominance, recessive vs. additive inheritance). This variation is likely to affect the process of chemical diversification, the potential for introgression, the likelihood that hybrids will facilitate host shifts by herbivores, and the conditions that might lead to enhanced hybrid susceptibility and lower fitness.  相似文献   

4.
Jung YH  Kim SC  Kim M  Kim KH  Kwon HM  Oh MY 《Molecules and cells》2003,15(2):277-282
The inheritance patterns of the chloroplast genomes of the Actinidia hybrids A. eriantha (male parent) x A. chinensis (female parent) and A. chinensis (male parent) x A. melanandra (female parent) were analyzed using single-strand conformation polymorphism (SSCP) analysis of the trnL-trnF and psbA-trnH intergenic spacers. This showed that the artificial hybrids between A. eriantha and A. chinensis all had the haplotype of their male parent. Alignment of the sequences of A. eriantha and A. chinensis revealed four substitutions and one insertion (GATTC) in trnL-trnF and two substitutions in psbA-trnH. In contrast, the haplotypes of the artificial hybrids between A. chinensis and A. melanandra had the same patterns as their female parent. Alignment of the entire region of A. chinensis and A. melanandra revealed 12 substitutions: 1 in trnL-trnF and 11 in psbA-trnH. However, no sequence variation in the trnL-trnF and psbA-trnH intergenic spacers was found. We have developed a simple screening method for detecting the inheritance patterns of Actinidia chloroplast DNA haplotypes using SSCP analysis of the trnL-trnF and psbA-trnH intergenic spacers. Our findings indicate that the inheritance of the chloroplast genome in Actinidia hybrids differs according to the species selected.  相似文献   

5.
Interspecific hybridization is a well-established cause of unisexual origins in vertebrates. This mechanism is also suspected in other apomictic taxa, but compelling evidence is rare. Here, we evaluate this mechanism and other hypotheses for the evolutionary origins of unisexuality through an investigation of Calligrapha leaf beetles. This group provides an intriguing subject for studies of unisexual evolution because it presents a rare insect example of multiple apomictic thelytokous species within a primarily bisexual genus. To investigate unisexual evolution, this study conducts the first molecular systematic analysis of Calligrapha. This involved the collection and analysis of about 3000 bp of DNA sequences--representing RNA and protein-coding loci from mitochondrial and nuclear genomes--from 54 specimens of 25 Calligrapha species, including four unisexual tetraploid taxa. Phylogenetic and molecular clock analyses indicated independent and single evolutionary origins of each of these unisexual species during the Pleistocene. Significant phylogenetic incongruence was detected between mitochondrial and nuclear datasets and found to be especially associated with the asexual taxa. This pattern is expected when unisexual lineages arise via interspecific hybridization and thus represent genetic mosaics that possess certain nuclear alleles from the paternal species lineage and mitochondrial DNA (mtDNA) alleles from the maternal parent. Analyzing the mtDNA and nuclear relatedness of unisexuals with corresponding haplotypes of bisexual Calligrapha species allowed the putative identification of these maternal and paternal species lineages for each unisexual species. Strong phenotypic similarities between unisexual taxa and their paternal parent species supported a model that involves both backcrosses of interspecific hybrids with a paternal parent and unreduced gametes. This model accounts for the origins of apomixis, polyploidy, and an overrepresentation of paternal nuclear alleles (and associated phenotypes) in unisexuals. This model is also consistent with the tetraploid karyotypes of unisexual Calligrapha, in which three sets of chromosomes (of presumed paternal ancestry) are quite morphologically homogeneous compared to the fourth. Especially intriguing was a consistent association of unisexual species with the host plant of the paternal parent but never with the maternal host. The statistical implausibility of these patterns occurring by chance further supports our inference of parental species. Moreover, it points to a potentially critical role for host-association in the formation and preservation of unisexual lineages. These findings suggest that ecological factors are critical for the diversification of unisexual as well as bisexual taxa and thus point out new research directions in the area of ecological speciation.  相似文献   

6.
We investigated the hybrid origin of × Crepidiastrixeris denticulato-platyphylla using RAPDs and ITS sequence data. The putative parents Paraixeris denticulata and Crepidiastrum platyphyllum represent separate species, irrespective of geographical origin. The occurrence of species specific RAPD markers from P. denticulata and C. platyphyllum in × C. denticulato-platyphylla established unambiguously a hybrid origin between the two taxa. This was in line with the occurrence of a combination of morphological characters such as plant habit and floret numbers. The parent taxa differed from each other by 7 nucleotide substitutions and 2 indel events in the ITS region. The hybrids showed sequence additivity and most likely represent F1 plants, with the exception of two plants which were of possible F2 origin, possessing either the ITS sequences of one parent only, or one predominant ITS type. The hybrids occurred in two out of three localities where the parents occurred sympatrically. This fact, together with the short life-span of the plants, suggests that × C. denticulato-platyphylla exists as a result of repeated, frequent hybridization between the parent species.  © 2006 The Linnean Society of London, Botanical Journal of the Linnean Society , 2006, 151 , 333–343.  相似文献   

7.
Triploidy in Equisetum subgenus Hippochaete (Equisetaceae, Pteridophyta)   总被引:1,自引:0,他引:1  
BACKGROUND AND AIMS: The genus Equisetum is cytologically uniform, having a base chromosome number of x = 108. All previously known species and hybrids that have been counted represent diploids with a sporophytic chromosome number of 2n = 216. Biosystematic studies on Equisetum subgenus Hippochaete revealed evidence that triploids occur in nature. The objective of this study was to confirm that triploid plants exist in the natural environment. METHODS: Flow cytometry was used to establish nuclear DNA values and cytological investigations of meiosis were carried out to obtain information on chromosome number and pairing behaviour. KEY RESULTS: Triploidy exists in three morphologically different hybrid taxa. Two of these are morphologically intermediate between a primary diploid hybrid and a parent, while the third apparently combines genomes from all three Central European Hippochaete species. Nuclear 1C DNA values for the four European Hippochaete species range from 21.4-31.6 pg. For the hybrids, the 1C DNA values not only occupy the same range as the species, but their total DNA amounts agree closely with values predicted by adding the 1C DNA values of each parental genome. Chromosome counts confirm diploidy in the species E. hyemale and E. variegatum and in the hybrid E. xtrachyodon (= E. hyemale x E. variegatum). For the triploids (2n approximately 324), cytological information is presented for the first time. CONCLUSIONS: Triploid taxa may have originated by backcrossing or by crossing of a diploid hybrid with an unrelated diploid species. As tetraploid plants are unknown, these crossings probably involve diploid gametophytes that developed from unreduced diplospores. By repeated crossing events or backcrossing, reticulate evolution patterns arise that are similar to those known for a number of ferns and fern allies.  相似文献   

8.
Using surveys of natural populations, experimental crosses, and common garden trials, we tested the hypothesis that hybrid cottonwoods (Populus fremontii × P. angustifolia) from the Weber River in northern Utah would produce as many viable offspring as their parental species. We found that both F(1) generations and backcross generations can be just as fit as the parent taxa. First, F(1) hybrids produced as many viable seed as P. angustifolia (but less than P. fremontii), and backcross genotypes produced as many viable seeds as both parent taxa. Second, hybrids produced nearly two times as many ramets from root sprouts as P. angustifolia and four times as many ramets as P. fremontii. Third, the high mortality of germinated seedlings of all tree types (i.e., >90%) and very low mortality of asexually derived ramets provide hybrids with equal sexual reproduction and enhanced asexual reproduction, especially since backcross hybrids exhibit transgressive segregation in ramet production. Our findings suggest that the introgression of P. fremontii seed traits into the hybrid genome is responsible for their equivalent performance (at least to one parent) in sexual reproduction, while the contributions of asexual traits from P. angustifola results in hybrids having equal or greater fitness.  相似文献   

9.
Interspecific hybridization is considered common among plants, but the methods of cladistic systematics produce only divergently branching phylogenetic hypotheses and thus cannot give the correct phylogeny if an analysis includes hybrids. Empirical studies of the impact of known hybrids on phylogenetic analysis are lacking, and are necessary to begin to understand the problems that we face if hybrids are often included in cladistic analysis. Examination of the implications of hybrids for cladistics must begin with patterns of character expression in hybrids. This study includes 17 hybrids and their nine parental taxa that are Central American species of Aphelandra (Acanthaceae), analyzed using a set of 50 morphological characters. The hybrids are overwhelmingly intermediate as quantitatively scored for phylogenetic analysis. They express maternal and paternal, and primitive and derived characters in equal frequencies, showing no evidence of predominant inheritance of derived character states as has been assumed by most cladists who have considered hybrids theoretically. Because of their known genetic constitution, hybrids were useful in homology assessment and ordering character states. The parental character set was generally robust, but some changes were made to reflect the special evidence offered by the hybrids. These hybrids suggest that the inclusion of hybrids in phylogenetic analysis will not lead to unresolved cladograms with rampant homoplasy, as has been predicted by other authors. Instead, the patterns of character inheritance in these hybrids lead to the prediction that a hybrid will be placed by phylogenetic analysis as a basal lineage to the clade that includes its most derived parent, with relatively little effect on homoplasy. These predictions will be evaluated by incorporation of the hybrids in phylogenetic analyses, to be reported in a subsequent paper.  相似文献   

10.
Karyologícal analysis ofOenothera species and stabilized hybrids from Czechoslovakía confirms chromosome number 2n=14 for all 21 taxa investigated. The cytological data of 3 specific and 5 intraspecífic taxa are publíshed for the first time. Chromosome configurations during microsporogenesís are determined in 5 taxa.  相似文献   

11.
1. Hybridization between species is a common phenomenon in plants and animals. If parasite prevalence differs for hybrids and parental species (i.e. taxa) there may be considerable consequences for relative hybrid fitness. Some studies have investigated hybrid complexes for infection, and complex-specific differences in parasite prevalence have been detected. 2. Based on the results of a field study on a hybridizing Daphnia population from a single lake, it has been hypothesized that permanently over- or under-infected hybrids do not exist. The observed field-patterns can only be temporal because taxa, in addition to single genotypes, might be the subject of parasite driven host frequency-dependent selection. Thus, parasites will track any common taxon within a hybrid complex. 3. In the present study, hybridizing Daphnia populations from 43 lakes were screened for parasite infections to obtain indirect evidence for coevolutionary cycles. It was hypothesized that, due to time lags between the evolution of resistance in host populations and the evolution of the parasite towards tracking of a common host taxon, the same Daphnia taxon will be over-infected in some lakes, while being under-infected in others. 4. Two of the four parasite species were specialists: their prevalence differed among coexisting Daphnia taxa. The varying infection patterns detected across spatially segregated hybridizing Daphnia populations are consistent with theoretical predictions for coevolutionary cycles. Thus the infection patterns, as observed under natural conditions, are temporal and unstable. 5. Additionally, the spatial distribution of the four parasite species was analysed with respect to habitat differences. The results show that the presence of a particular parasite on a host taxon was determined not only by the host-specificity of the parasite, but also by host-habitat relations.  相似文献   

12.
王翔  边银丙  肖扬  戴耀红 《菌物研究》2012,10(3):190-194
以香菇(Lentinula edodes)4个菌株为亲本组成3个杂交组合,采用单孢菌株配对获得杂交子,观察锁状联合鉴别出真正的杂交子,测定杂交子及其亲本的农艺性状。在每个杂交组合中分别各选取3个杂交子,研究杂交子和亲本在子实体发育阶段差异基因表达情况。结果表明:杂交子共有4种基因表达类型:双亲沉默型(W1型),单亲沉默型(W2型),杂交子特异表达型(W3型),单亲表达型(W4型)。香菇杂交子农艺性状与基因差异表达类型的相关性分析表明:菌盖厚与双亲沉默型(W1型)呈极显著负相关,而菌柄长与单亲沉默型(W2型)呈显著负相关。  相似文献   

13.
Phylogenetic relationships in the genus Nicotiana were investigated using parsimony analyses of the internal transcribed spacer (ITS) regions of nuclear ribosomal DNA (nrDNA). In addition, origins of some amphidiploid taxa in Nicotiana were investigated using the techniques of genomic in situ hybridization (GISH), and the results of both sets of analyses were used to evaluate previous hypotheses about the origins of these taxa. Phylogenetic analyses of the ITS nrDNA data were performed on the entire genus (66 of 77 naturally occurring species, plus three artificial hybrids), comprising both diploid and polyploid taxa, and on the diploid taxa only (35 species) to examine the effects of amphidiploids on estimates of relationships. All taxa, regardless of ploidy, produced clean, single copies of the ITS region, even though some taxa are hybrids. Results are compared with a published plastid (matK) phylogeny using fewer, but many of the same, taxa. The patterns of relationships in Nicotiana, as seen in both analyses, are largely congruent with each other and previous evolutionary ideas based on morphology and cytology, but some important differences are apparent. None of the currently recognized subgenera of Nicotiana is monophyletic and, although most of the currently recognized sections are coherent, others are clearly polyphyletic. Relying solely upon ITS nrDNA analysis to reveal phylogenetic patterns in a complex genus such as Nicotiana is insufficient, and it is clear that conventional analysis of single data sets, such as ITS, is likely to be misleading in at least some respects about evolutionary history. ITS sequences of natural and well-documented amphidiploids are similar or identical to one of their two parents-usually, but not always, the maternal parent-and are not in any sense themselves 'hybrid'. Knowing how ITS evolves in artificial amphidiploids gives insight into what ITS analysis might reveal about naturally occurring amphidiploids of unknown origin, and it is in this perspective that analysis of ITS sequences is highly informative.  相似文献   

14.
Understanding hybridization and introgression between natural plant populations can give important insights into the origins of cultivated species. Recent studies suggest differences in ploidy might not create such strong reproductive barriers as once thought, and thus studies into cultivated origins should examine all co-occurring taxa, including those with contrasting ploidy levels. Here, we characterized hybridization between Chrysanthemum indicum L., Chrysanthemum vestitum (Hemsley) Ling and Chrysanthemum vestitum var. latifolium (Zhou & Chen), the most important wild species involved in the origins of cultivated chrysanthemums. We analyzed the population structure of 317 Chrysanthemum accessions based on 13 microsatellite markers and sequenced chloroplast trnL-trnF for a subset of 103 Chrysanthemum accessions. We identified three distinct genetic clusters, corresponding to the three taxa. We detected 20 hybrids between species of different ploidy levels, of which 19 were between C. indicum (4x) and C. vestitum (6x) and one was between C. indicum and C. vestitum var. latifolium (6x). Fourteen hybrids between C. indicum and C. vestitum were from one of the five study sites. Chrysanthemum vestitum and C. vestitum var. latifolium share only one chloroplast haplotype. The substantially different number of hybrids between hybridizing species was likely due to different levels of reproductive isolation coupled with environmental selection against hybrids. In addition, human activities could play a role in the different patterns of hybridization among populations.  相似文献   

15.
The inheritance patterns of the chloroplast genomes of shortleaf pine (Pinus echinata Mill.), loblolly pine (Pinus taeda L.) and slash pine (Pinus elliottii Engelm.) were investigated through the trnL-trnF intergenic spacer polymorphism analysis. The DNA sequences of this spacer differ among these three closely related Pinus species. A modified 'cold' PCR-SSCP (single-strand conformation polymorphism) analysis of this spacer shows that the artificial hybrids (F1) from the shortleaf pine (seed parent) 2 loblolly pine (pollen parent) cross, exhibit the loblolly pine profile. Additionally, nine putative hybrids between shortleaf pine and loblolly pine, previously identified by the IDH (Isocitrate dehydrogenase) allozyme marker, presented the shortleaf pine profile indicating that shortleaf pine, not loblolly pine, sired all of the putative hybrids. Nondenatured polyacrylamide-gel electrophoresis of the trnL-trnF intergenic spacer demonstrated that the artificial hybrids (F1) from the cross, slash pine (seed parent) 2 shortleaf pine (pollen parent), present the shortleaf pine profile. Those results confirmed that the chloroplast genome is paternally inherited in these three species of the genus Pinus. The significance of the trnL-trnF intergenic region polymorphism and our modified 'cold' SSCP protocol for population genetic studies is discussed.  相似文献   

16.
Interspecific somatic hybrids between a dihaploid potato clone H-8105 susceptible to Phytophthora infestans (Mont.) de Bary and a resistant diploid tuberizing species Solanum bulbocastanum were generated and analysed. Only ten regenerants displaying the intermediate morphology with dominating characteristics of the wild parent (simple leaves, anthocyanin pigmentation) were produced in 15 weeks after a single PEG-mediated fusion event. The RAPD patterns confirmed the hybridity of all of them. The hybrids rooted poorly and grew slowly in vitro. The cytological analysis revealed a high degree of aneuploidy in the hybrids with morphological and growth anomalies in vitro, while the morphologically normal hybrids were tetraploids. All the S. bulbocastanum (+) H-8105 hybrids were unstable in culture and three of them were consequently lost during three years of propagation in vitro. The possible reasons for instability of somatic hybrids between the distantly related species are discussed.  相似文献   

17.
? Premise: Studies of hybridizing species are facilitated by the availability of species-specific molecular markers for identifying early- and later-generation hybrids. Cattails are a dominant feature of wetland communities, and a better understanding of the prevalence of hybrids is needed to assess the ecological and evolutionary effects of hybridization. Hybridization between Typha angustifolia and T. latifolia produce long-lived clones, known as Typha ×glauca, which are considered to be invasive. Although morphological variation in cattails makes it difficult to recognize early- and later-generation hybrids, several dominant, species-specific RAPD markers are available. Our goal was to find codominant, species-specific markers with greater polymorphism than RAPDs, to identify later-generation hybrids more efficiently. ? Methods: We screened nine SSR (simple sequence repeat) loci that were described from populations in Ukraine, and we surveyed 31 cattail populations from the upper Midwest and eastern USA. ? Key results: Seven SSR loci distinguished the parent taxa and were consistent with known species-specific RAPD markers, allowing easier detection of backcrossing. We used linear discriminant analysis to show that F(1) hybrid phenotypes were intermediate between the parent taxa, while those of backcrossed plants overlapped with the hybrids and their parents. Log(leaf length/leaf width), spike gap length, spike length, and stem diameter explained much of the variation among groups. ? Conclusions: We provide the first documentation of backcrossed plants in hybridizing cattail populations in Michigan. The diagnostic SSR loci we identified should be extremely useful for examining the evolutionary and ecology interactions of hybridizing cattails in North America.  相似文献   

18.
Rates of hybridization vary among angiosperm taxa. Among-taxon variation in hybridization rate has been used to compare the importance of pre- and post-zygotic reproductive isolating mechanisms. Variation in rates of hybridization within a single-species pair would suggest that local conditions also affect reproductive isolation within a single taxonomic context. In this study, contact sites of Ipomopsis aggregata-Ipomopsis tenuituba were surveyed for variation in frequency of hybrids, and spatial structure. Floral morphology was used to identify parent species and hybrids in seven contact sites in the western Rocky Mountains, USA. Contact sites varied widely in elevational range, the degree to which morphological variation was clinal rather than mosaic and the frequency of hybrids. Two sites provided a strong contrast between a clinal, unimodal site and a mosaic, bimodal site. This natural variation among contact sites of the same species pair provides an opportunity to assess the effect of local ecological conditions and spatial structure of parent populations on reproductive isolation, while controlling for between-taxon variation.  相似文献   

19.
B R Lu  R Bothmer 《Génome》1993,36(5):863-876
The objectives of this study were to determine the genomic constitution and to explore the genomic variation within four Chinese endemic Elymus species, i.e., E. brevipes (Keng) L?ve (2n = 4x = 28) and E. yangii B.R. Lu (2n = 4x = 28), E. anthosachnoides (Keng) L?ve (2n = 4x = 28), and E. altissimus (Keng) L?ve (2n = 4x = 28). Intraspecific crosses between different populations of the four Elymus species, as well as interspecific hybridizations among the four target species, and with six analyzer species containing well-known genomes, i.e., E. caninus (L.) L. (2n = 4x = 28, SH), E. sibiricus L. (2n = 4x = 28, SH), E. semicostatus (Lees ex Steud.) Melderis (2n = 4x = 28, SY), E. parviglumis (Keng) L?ve (2n = 4x = 28, SY), E. tsukushiensis Honda (2n = 6x = 42, SHY), and E. himalayanus (Nevski) Tzvelev (2n = 6x = 42, SHY), were achieved through the aid of embryo rescue. Chromosome pairing behaviors were studied in the parental species and their hybrids. Numerical analysis on chromosome pairing was made on the interspecific hybrids. With one exception, each meiotic configuration at metaphase I in the hybrids involving the target taxa and the analyzer species containing the "SH" genomes fit a 2:1:1 model with x-values ranging between 0.91 and 1.00; chromosome pairing in the hybrids involving analyzer parents with the "SY" genomes match a 2:2 model, with x-values between 0.97 and 0.99. All pentaploid hybrids with a genomic formula "SSYYH," except for two crosses having unexpected low c-values, had pairing patterns fitting the 2:2:1 model with x-values varying between 0.96 and 1.00. It is concluded based on hybridization, fertility, and chromosome pairing data that (i) the four target Elymus species are strictly allotetraploid taxa, (ii) they are closely related species, all comprised of the "SY" genomes, (iii) minor genomic structural rearrangements have occurred within the four Elymus species, and (iv) meiotic pairing regulator(s) exists in some of the Elymus taxa studied.  相似文献   

20.
Spontaneous hybridizations between oilseed rape and wild radish   总被引:3,自引:0,他引:3  
The occurence of spontaneous hybridization between Brassica napus (oilseed rape) and Raphanus raphanistrum (wild radish) was investigated under different density conditions in cages and open-field experiments. Hybrids with wild radish as the seed parent were identified by screening for herbicide resistance belonging to rape. Small seed size and intermediate morphology were used to screen for hybrids with rape as the seed parent. Leaf isozyme patterns and flow cytometry provided confirmation of hybrids. Wild radish in an oilseed rape field produced as many as three interspecific hybrids per 100 plants. This is the first report of such a spontaneous event. The frequency of hybrids is expected to range from 0.006 to 0.2% of the total seed produced, at P = 0.05. Male-sterile oilseed rape plants surrounded by wild radish can produce up to 37 hybrids per plant. Seed production of the F1 hybrids and their F2 descendants was up to 0.4% and 2%, respectively, of that of wild radish. Gene escape from transgenic oilseed rape to wild related species is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号