首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
E. coli is one of the most common species of bacteria colonizing humans and animals. The singularity of E. coli’s genus and species underestimates its multifaceted nature, which is represented by different strains, each with different combinations of distinct virulence factors. In fact, several E. coli pathotypes, or hybrid strains, may be associated with both subclinical infection and a range of clinical conditions, including enteric, urinary, and systemic infections. E. coli may also express DNA-damaging toxins that could impact cancer development. This review summarizes the different E. coli pathotypes in the context of their history, hosts, clinical signs, epidemiology, and control. The pathotypic characterization of E. coli in the context of disease in different animals, including humans, provides comparative and One Health perspectives that will guide future clinical and research investigations of E. coli infections.

Escherichia coli (E. coli) is the most common bacterial model used in research and biotechnology. It is an important cause of morbidity and mortality in humans and animals worldwide, and animal hosts can be involved in the epidemiology of infections.240,367,373,452,727 The adaptive and versatile nature of E. coli argues that ongoing studies should receive a high priority in the context of One Health involving humans, animals, and the environment.240,315,343,727 Two of the 3 E. coli pathogens associated with death in children with moderate-to-severe diarrhea in Asia and Africa are classified into 2 E. coli pathogenic groups (also known as pathotypes or pathovars): enterotoxigenic E. coli (ETEC) and enteropathogenic E. coli (EPEC).367 In global epidemiologic studies, ETEC and EPEC rank among the deadliest causes of foodborne diarrheal illness and are important pathogens for increasing disability adjusted life years.355,382,570 Furthermore, in humans, E. coli is one of the top-ten organisms involved in coinfections, which generally have deleterious effects on health.270ETEC is also an important etiologic agent of diarrhea in the agricultural setting.183 E. coli-associated extraintestinal infections, some of which may be antibiotic-resistant, have a tremendous impact on human and animal health. These infections have a major economic impact on the poultry, swine, and dairy industries.70,151,168,681,694,781,797 The pervasive nature of E. coli, and its capacity to induce disease have driven global research efforts to understand, prevent, and treat these devastating diseases. Animal models for the study of E. coli infections have been useful for pathogenesis elucidation and development of intervention strategies; these include zebrafish, rats, mice, Syrian hamsters, guinea pigs, rabbits, pigs, and nonhuman primates.27,72,101,232,238,347,476,489,493,566,693,713,744,754 Experiments involving human volunteers have also been important for the study of infectious doses associated with E. coli-induced disease and of the role of virulence determinants in disease causation.129,176,365,400,497,702,703 E. coli strains (or their lipopolysaccharide) have also been used for experimental induction of sepsis in animals; the strains used for these studies, considered EPEC, are not typically involved in systemic disease.140,205,216,274,575,782This article provides an overview of selected topics related to E. coli, a common aerobic/facultative anaerobic gastrointestinal organism of humans and animals.14,277,432,477,716 In addition, we briefly review: history, definition, pathogenesis, prototype (archetype or reference) strains, and features of the epidemiology and control of specific pathotypes. Furthermore, we describe cases attributed to different E. coli pathotypes in a range of animal hosts. The review of scientific and historical events regarding the discovery and characterization of the different E. coli pathotypes will increase clinical awareness of E. coli, which is too often regarded merely as a commensal organism, as a possible primary or co- etiologic agent during clinical investigations. As Will and Ariel Durant write in The Lessons of History: “The present is the past rolled up for action, and the past is the present unrolled for understanding”.  相似文献   

2.
3.
Over the last decade, interest in the role of the microbiome in health and disease has increased. The use of germ-free animals and depletion of the microbial flora using antimicrobials are 2 methods commonly used to study the microbiome in laboratory mice. Germ-free mice are born, raised, and studied in isolators in the absence of any known microbes; however, the equipment, supplies, and training required for the use of these mice can be costly and time-consuming. The use of antibiotics to decrease the microbial flora does not require special equipment, can be used for any mouse strain, and is relatively inexpensive; however, mice treated in this manner still retain microbes and they do not live in a germ-free environment. One commonly used antibiotic cocktail regimen uses ampicillin, neomycin, metronidazole, and vancomycin in the drinking water for 2 to 4 wk. We found that the palatability of this mixture is low, resulting in weight loss and leading to removal of mice from the study. The addition of sucralose to the medicated water and making wet food (mash) with the medicated water improved intake; however, the low palatability still resulted in a high number of mice requiring removal. The current study evaluated a new combination of antibiotics designed to reduce the gut microbiota while maintaining body weights. C57BL/6NCrl mice were placed on one of the following drinking water regimens: ampicillin/neomycin/metronidazole/vancomycin water (n = 16), enrofloxacin/ampicillin water (n = 12), or standard reverse osmosis deionized water (RODI) (n = 11). During an 8 day regimen, mice were weighed and water consumption was measured. Feces were collected before and after 8 d of treatment. Quantitative real-time PCR (real-time qPCR) for 16S bacterial ribosome was performed on each sample, and values were compared among groups. The combination of enrofloxacin and ampicillin improved water intake, together with a greater reduction in gut flora.

Interest in the intestinal microbiome and its role in human health has increased dramatically over the last decade. The microbiota has been implicated in metabolic, infectious, and inflammatory disease, and its role has been investigated not only in the gut,2,8,18,38 but also in vasculature,5,6,19,39 kidney,13 liver,28 lung,9,34,37 and brain.12,15 Animal models have been important in furthering our understanding of the microbiota. Two approaches to studying microbiota in mice are the use of germ-free mice22,35,42 and depletion of the flora with oral administration of antibiotics.12,17,18 Both approaches have advantages and disadvantages. Germ-free mice are bred in isolators and are free of microorganisms from birth, allowing studies in mice with no microbes present; mice can then be used to generate gnotobiotic mice in which only known microbes are present. However, to remain germ-free, mice must be maintained in isolators under aseptic housing conditions, which is both costly and labor intensive. In addition, alterations of microbiota in early life may cause sustained effects on body composition10 and lasting negative consequences on the host immune system.31 A more economic approach has been to deplete mouse gut microflora using a combination of broad-spectrum antibiotics given either by oral gavage or in the drinking water. The primary limitation with antibiotic treatment of mice is that not all microbes are eliminated; which can potentially make reproducibility in certain types of studies such as those involving microbial transplantation29 very difficult. However, antibiotic-induced gut dysbiosis can be used on conventionally raised mice without the limitations imposed by maintaining a sterile living environment. Direct handling of the mice is possible, allowing behavioral and imaging assessments, which are not be feasible for mice housed in isolators. Several broad-spectrum antibiotic treatment regimens in the drinking water have been used for gut microbe depletion.7,16,20,25-27,41 One of the more commonly used combinations is comprised of 4 antibiotics (ampicillin, neomycin, metronidazole, and vancomycin) added to the drinking water for periods ranging from 1 to 4 wk.5,9,13,19,23,30,32,34 This cocktail is effective at depleting gut microbes; however, a previous study in our laboratory found it to be highly unpalatable. Dehydration and weight loss can occur in mice receiving antibiotics in the drinking water, and the magnitude of the effect can be significant, depending on the mouse strain.21,30,33 The weight loss can result in a substantial number of mice being removed from studies due to animal welfare concerns as reported in a previous study in which 5 of 5 mice given ampicillin, neomycin, metronidazole, and vancomycin reached eighty percent of baseline body weight and were subsequently removed.33 A reduction in water consumption is also likely to interfere with effective antibiotic treatment and may prolong the time necessary to achieve adequate microbial depletion. Palatability enhancers such as glucose,5,13 sucrose,41 and flavored water23 are sometimes combined with the antibiotics in drinking water. The aim of the current study was to determine whether 8 days of treatment with an alternative mixture comprised of 2 antibiotics (enrofloxacin and ampicillin) was sufficient to deplete the gut flora as compared with the widely used combination of ampicillin, neomycin, metronidazole, and vancomycin. We hypothesized that the combination of 2 antibiotics would be at least equivalent to the combination of 4 antibiotics in reducing the gut flora while causing less weight loss.  相似文献   

4.
Recent studies have shown that loss of pollen-S function in S4′ pollen from sweet cherry (Prunus avium) is associated with a mutation in an S haplotype-specific F-box4 (SFB4) gene. However, how this mutation leads to self-compatibility is unclear. Here, we examined this mechanism by analyzing several self-compatible sweet cherry varieties. We determined that mutated SFB4 (SFB4ʹ) in S4′ pollen (pollen harboring the SFB4ʹ gene) is approximately 6 kD shorter than wild-type SFB4 due to a premature termination caused by a four-nucleotide deletion. SFB4′ did not interact with S-RNase. However, a protein in S4′ pollen ubiquitinated S-RNase, resulting in its degradation via the 26S proteasome pathway, indicating that factors in S4′ pollen other than SFB4 participate in S-RNase recognition and degradation. To identify these factors, we used S4-RNase as a bait to screen S4′ pollen proteins. Our screen identified the protein encoded by S4-SLFL2, a low-polymorphic gene that is closely linked to the S-locus. Further investigations indicate that SLFL2 ubiquitinates S-RNase, leading to its degradation. Subcellular localization analysis showed that SFB4 is primarily localized to the pollen tube tip, whereas SLFL2 is not. When S4-SLFL2 expression was suppressed by antisense oligonucleotide treatment in wild-type pollen tubes, pollen still had the capacity to ubiquitinate S-RNase; however, this ubiquitin-labeled S-RNase was not degraded via the 26S proteasome pathway, suggesting that SFB4 does not participate in the degradation of S-RNase. When SFB4 loses its function, S4-SLFL2 might mediate the ubiquitination and degradation of S-RNase, which is consistent with the self-compatibility of S4′ pollen.

In sweet cherry (Prunus avium), self-incompatibility is mainly controlled by the S-locus, which is located at the end of chromosome 6 (Akagi et al., 2016; Shirasawa et al., 2017). Although the vast majority of sweet cherry varieties show self-incompatibility, some self-compatible varieties have been identified, most of which resulted from the use of x-ray mutagenesis and continuous cross-breeding (Ushijima et al., 2004; Sonneveld et al., 2005). At present, naturally occurring self-compatible varieties are rare (Marchese et al., 2007; Wünsch et al., 2010; Ono et al., 2018). X-ray-induced mutations that have given rise to self-compatibility include a 4-bp deletion (TTAT) in the gene encoding an SFB4′ (S-locus F-box 4′) protein, located in the S-locus and regarded as the dominant pollen factor in self-incompatibility. This mutation is present in the first identified self-compatible sweet cherry variety, ‘Stellar’, as well as in a series of its self-compatible descendants, including ‘Lapins’, ‘Yanyang’, and ‘Sweet heart’ (Lapins, 1971; Ushijima et al., 2004). Deletion of SFB3 and a large fragment insertion in SFB5 have also been identified in other self-compatible sweet cherry varieties (Sonneveld et al., 2005; Marchese et al., 2007). Additionally, a mutation not linked to the S-locus (linked instead to the M-locus) could also cause self-compatibility in sweet cherry and closely related species such as apricot (Prunus armeniaca; Wünsch et al., 2010; Zuriaga et al., 2013; Muñoz-Sanz et al., 2017; Ono et al., 2018). Much of the self-compatibility in Prunus species seems to be closely linked to mutation of SFB in the S-locus (Zhu et al., 2004; Muñoz-Espinoza et al., 2017); however, the mechanism of how this mutation of SFB causes self-compatibility is unknown.The gene composition of the S-locus in sweet cherry differs from that of other gametophytic self-incompatible species, such as apple (Malus domestica), pear (Pyrus spp.), and petunia (Petunia spp.). In sweet cherry, in addition to a single S-RNase gene, the S-locus contains one SFB gene, which has a high level of allelic polymorphism, and three SLFL (S-locus F-box-like) genes with low levels of, or no, allelic polymorphism (Ushijima et al., 2004; Matsumoto et al., 2008). By contrast, the apple, pear, and petunia S-locus usually contains one S-RNase and 16 to 20 F-box genes (Kakui et al., 2011; Okada et al., 2011, 2013; Minamikawa et al., 2014; Williams et al., 2014a; Yuan et al., 2014; Kubo et al., 2015; Pratas et al., 2018). The F-box gene, named SFBB (S-locus F-box brother) in apple and pear and SLF (S-locus F-box) in petunia, exhibits higher sequence similarity with SLFL than with SFB from sweet cherry (Matsumoto et al., 2008; Tao and Iezzoni, 2010). The protein encoded by SLF in the petunia S-locus is thought to be part of an SCF (Skp, Cullin, F-box)-containing complex that recognizes nonself S-RNase and degrades it through the ubiquitin pathway (Kubo et al., 2010; Zhao et al., 2010; Chen et al., 2012; Entani et al., 2014; Li et al., 2014, 2016, 2017; Sun et al., 2018). In sweet cherry, a number of reports have described the expression and protein interactions of SFB, SLFL, Skp1, and Cullin (Ushijima et al., 2004; Matsumoto et al., 2012); however, only a few reports have examined the relationship between SFB/SLFL and S-RNase (Matsumoto and Tao, 2016, 2019), and none has investigated whether the SFB/SLFL proteins participate in the ubiquitin labeling of S-RNase.Although the function of SFB4 and SLFL in self-compatibility is unknown, the observation that S4′ pollen tubes grow in sweet cherry pistils that harbor the same S alleles led us to speculate that S4′ pollen might inhibit the toxicity of self S-RNase. In petunia, the results of several studies have suggested that pollen tubes inhibit self S-RNase when an SLF gene from another S-locus haplotype is expressed (Sijacic et al., 2004; Kubo et al., 2010; Williams et al., 2014b; Sun et al., 2018). For example, when SLF2 from the S7 haplotype is heterologously expressed in pollen harboring the S9 or S11 haplotype, the S9 or S11 pollen acquire the capacity to inhibit self S-RNase and break down self-incompatibility (Kubo et al., 2010). The SLF2 protein in petunia has been proposed to ubiquitinate S9-RNase and S11-RNase and lead to its degradation through the 26S proteasome pathway (Entani et al., 2014). If SFB/SLFL in sweet cherry have a similar function, the S4′ pollen would not be expected to inhibit self S4-RNase, prompting the suggestion that the functions of SFB/SLFL in sweet cherry and SLF in petunia vary (Tao and Iezzoni, 2010; Matsumoto et al., 2012).In this study, we used sweet cherry to investigate how S4′ pollen inhibits S-RNase and causes self-compatibility, focusing on the question of whether the SFB/SLFL protein can ubiquitinate S-RNase, resulting in its degradation.  相似文献   

5.
Treating and monitoring type 2 diabetes mellitus (T2DM) in NHP can be challenging. Multiple insulin and hypoglycemic therapies and management tools exist, but few studies demonstrate their benefits in a NHP clinical setting. The insulins glargine and degludec are long-acting insulins; their duration of action in humans exceeds 24 and 42 h, respectively. In the first of this study''s 2 components, we evaluated whether insulin degludec could be dosed daily at equivalent units to glargine to achieve comparable blood glucose (BG) reduction in diabetic rhesus macaques (Macaca mulatta) with continuous glucose monitoring (CGM) devices. The second component assessed the accuracy of CGM devices in rhesus macaques by comparing time-stamped CGM interstitial glucose values, glucometer BG readings, and BG levels measured by using an automated clinical chemistry analyzer from samples that were collected at the beginning and end of each CGM device placement. The CGM devices collected a total of 21,637 glucose data points from 6 diabetic rhesus macaques that received glargine followed by degludec every 24 h for 1 wk each. Ultimately, glucose values averaged 29 mg/dL higher with degludec than with glargine. Glucose values were comparable between the CGM device, glucometer, and chemistry analyzer, thus validating that CGM devices as reliable for measuring BG levels in rhesus macaques. Although glargine was superior to degludec when given at the same dose (units/day), both are safe and effective treatment options. Glucose values from CGM, glucometers, and chemistry analyzers provided results that were analogous to BG values in rhesus macaques. Our report further highlights critical clinical aspects of using glargine as compared with degludec in NHP and the benefits of using CGM devices in macaques.

Diabetes is a group of metabolic diseases that cause hyperglycemia secondary to deficient insulin response, secretion, or both.4 Diabetes is categorized by the American Diabetes Association into 4 types: 1) type 1 diabetes mellitus, in which the pancreas is unable to produce insulin for glucose absorption; 2) type 2 diabetes mellitus (T2DM), when the body does not use insulin correctly; 3) gestational diabetes, in which the body is insulin-intolerant during pregnancy (or is first discovered then); and 4) other specific forms of diabetes in which the patient is particularly predisposed to becoming diabetic due to various comorbidities or to inadvertent induction caused by some medications.4 In 2018, 34.2 million (10.5%) Americans of all ages were diagnosed with diabetes.22,23,30 Approximately 90% to 95% of Americans with diabetes have T2DM,24 making T2DM the most common form of diabetes diagnosed in humans.T2DM is a multifactorial disease primarily determined by genetics, behavioral and environmental factors (for example, age, diet, sedentary lifestyle, obesity).4,46,50,74 As a consequence of these factors, the pancreas increases insulin secretion to maintain normal glucose tolerance.74 Over time, the high insulin demand causes pancreatic β-cell destruction, resulting in reduced production of insulin.39,50,74 As β-cell destruction increases, hyperglycemia and T2DM develop. Insulin resistance and hyperglycemia are tolerated for a period of time19,82,83 before clinical signs associated with T2DM develop (e.g., polydipsia, polyuria, polyphagia with concurrent weight loss).4 Once clinical signs develop, T2DM is most commonly diagnosed as a fasting blood glucose level (FBG) of 126 mg/dL or greater,2,4 2-h plasma glucose value of 200 mg/d or greater during a 75-g oral glucose tolerance test,2,4 and/or glycosylated hemoglobin (HbA1c) of 6.5% or greater.2,4 Depending on the FBG, oral glucose tolerance test, and HbA1c results, various treatment options are recommended by the American Diabetes Association. Most importantly, lifestyle changes, including diet and exercise, are recommended as the first line of treatment, along with oral antihyperglycemic drugs such as metformin.5,25,46 Treatment efficacy is evaluated with self-monitoring blood glucose or continuous glucose monitoring (CGM) devices.3 Human patients using CGM devices have achieved considerable reductions in HbA1c compared with patients not using them.3 As CGM devices have become more readily available, user friendly, and affordable, they have become an essential tool in managing T2DM.Similar to humans, most NHP affected by diabetes are diagnosed with T2DM.80,83 NHP are predisposed to similar genetic, behavioral and environmental factors (e.g., age, diet, sedentary lifestyle, obesity);6,18,19,37,44,52,82,83 have similar pathophysiology;38,81-83 are diagnosed via FBG,39,83 HbA1c,21,31,49,56 fructosamine,20,83,87 and weight loss;49,80,83,86 and are treated with exercise and diet modifications as a first line of treatment.11,19,39,53,79 Although the human and NHP conditions are similar, the treatment and management of T2DM is somewhat different, especially when NHP have restricted physical activity due to housing constraints.Previous studies indicate that daily dosing with insulin glargine achieves appropriate glycemic control in NHP.48 Therefore, we implemented glargine, along with some diet modification, to improve glycemic control in our diabetic colony. Other noninsulin therapies, such as metformin, had been used, but compliance was low (for example, due to large pill size, unpleasant taste, etc.). However, achieving glycemic control using diet modification, insulin glargine treatment, monthly scheduled FBG, quarterly HbA1c, and regular weight monitoring was challenging in a large colony. Monthly FBG and fructosamine testing were performed due to affordability and practicality for NHP in a research setting. Given that fructosamine levels correlate with BG concentrations for the preceding 2 to 3 wk and HbA1c percentages relate to BG concentration over 1.5 to 3 mo,49,87 HbA1C was selected over fructosamine for T2DM management in our colony. Determining which T2DM treatment and diagnostics are most effective can be difficult in large colonies of NHP. Therefore, improved treatment and management strategies would help to manage T2DM in NHP more efficiently.Insulin glargine is a long-acting insulin, with a half-life of 12 h and duration of action of 12 to 24 h in humans40,55 and 12 h in dogs.34,43,60 Once injected subcutaneously, insulin glargine forms a microprecipitate in the neutral pH environment, which delays and prolongs absorption in subcutaneous tissues.12 Insulin degludec is a newer form of long-acting insulin, with a half-life of 25 h41,63,62,77 and duration of action that exceeds 42 h in humans.40,41,68,77 Insulin degludec forms a soluble and stable dihexamer in the pharmaceutical formulation, which includes phenol and zinc.63,78 The phenol diffuses away, leading to the formation of a soluble depot in the form of long multihexamer chains in which zinc slowly diffuses from the end of the multihexamers, causing a gradual, continuous, and extended-release of monomers from the depot of the injection site.63,78 Pharmacodynamic studies in humans, demonstrate that the “glucose-lowering effect” of insulin degluc40 is evenly distributed over 24 h, allowing a more stable steady-state and improved wellbeing.78 This approach could potentially reduce the number of hypoglycemic events and provide a less rigid daily injection schedule,58 thus potentially making insulin degludec—compared with insulin glargine—a safer, alternative diabetes therapy.In addition to medical intervention, glycemic control is achieved through regular management and monitoring of BG. Self-monitoring blood glucose checks in humans3,5 and glucose curves in animals10 are some of the management tools used to determine or evaluate therapy for T2DM patients. Telemetry systems like CGM devices are used to monitor interstitial glucose and have been used extensively in humans3,17,33 and animals16,27,36,42,47,84,85 to monitor BG in real-time. Using CGM devices 1) reduces or eliminates the number of blood draws needed to collect FBG,61 2) accurately assesses insulin therapy via a real-time glucose curve,72,84,85 3) allows patients and clinicians to titrate treatment61,73 as indicated, and 4) obtains continuous glucose data with reduced manipulation and subsequent decreased stress.72,84,85 Therefore, CGM devices can be a safe and informative tool in monitoring spontaneous T2DM in NHP.Between 2015 and 2030, the prevalence of diabetes is predicted to increase by 54% to more than 54 million Americans affected by diabetes (i.e., diabetes mellitus types 1 and 2).70 NHP are an essential model for human T2DM because of their similar pathophysiology, diagnostics, treatment, and management. As more people develop diabetes, novel therapies will continue to be developed. Studying new treatments and management tools in NHP can further human and NHP T2DM research to prevent the progression of T2DM and hopefully diminish projections for the number of future diabetes cases. Human medical literature, American Diabetes Association, and drug manufacturers all recommend giving equal doses (i.e., number of units/day) of long-acting insulins when changing from one long-acting insulin to degludec.26,63,67 Therefore, we hypothesized that insulin degludec would provide effective glycemic control for rhesus macaques with T2DM when dosed at equivalent doses (that is, the same number of units/day) as insulin glargine. In addition, we hypothesized that CGM devices would provide accurate BG readings as compared with chemistry analyzer and glucometer BG readings, making it a more efficient and effective tool for measurement of BG levels in rhesus macaques with T2DM.  相似文献   

6.
7.
K+ and NO3 are the major forms of potassium and nitrogen that are absorbed by the roots of most terrestrial plants. In this study, we observed that a close relationship between NO3 and K+ in Arabidopsis (Arabidopsis thaliana) is mediated by NITRATE TRANSPORTER1.1 (NRT1.1). The nrt1.1 knockout mutants showed disturbed K+ uptake and root-to-shoot allocation, and were characterized by growth arrest under K+-limiting conditions. The K+ uptake and root-to-shoot allocation of these mutants were partially recovered by expressing NRT1.1 in the root epidermis-cortex and central vasculature using SULFATE TRANSPORTER1;2 and PHOSPHATE1 promoters, respectively. Two-way analysis of variance based on the K+ contents in nrt1.1-1/K+ transporter1, nrt1.1-1/high-affinity K+ transporter5-3, nrt1.1-1/K+ uptake permease7, and nrt1.1-1/stelar K+ outward rectifier-2 double mutants and the corresponding single mutants and wild-type plants revealed physiological interactions between NRT1.1 and K+ channels/transporters located in the root epidermis–cortex and central vasculature. Further study revealed that these K+ uptake-related interactions are dependent on an H+-consuming mechanism associated with the H+/NO3 symport mediated by NRT1.1. Collectively, these data indicate that patterns of NRT1.1 expression in the root epidermis–cortex and central vasculature are coordinated with K+ channels/transporters to improve K+ uptake and root-to-shoot allocation, respectively, which in turn ensures better growth under K+-limiting conditions.

Potassium (K) is an essential element for plant growth and development and contributes to determining the yield and quality of crops in agriculture production (Wang and Wu, 2013). However, the concentrations of soluble K+ in most soils are relatively low, which often limits plant growth (Maathuis, 2009). Although crop production can be increased by applying large amounts of potassic fertilizers to agricultural fields, only approximately one-half of the applied fertilizers is available to plants; the remainder accumulates as residues in soils, consequently leading to environmental contamination (Meena et al., 2016). Therefore, there is a pressing need to gain a more complete understanding of the molecular mechanisms underlying K+ transport and regulation in order to enhance the K+ utilization efficiency of plants. Accordingly, in the past few decades, researchers have focused on identifying K+ channels and transporters in plants, as well as the mechanisms underlying their regulation.In Arabidopsis (Arabidopsis thaliana), 71 K+ channels and transporters have been identified and categorized into three channel (Shaker, Tandem-Pore K+, and Kir-like) and three transporter (K+ uptake permeases [KT/HAK/KUP], High-affinity K+ transporters [HKT], and cation/proton antiporter [CPA]) families (Wang and Wu, 2010). Among these, the shaker inward K+ channel K+ TRANSPORTER1 (AKT1) and the KT/HAK/KUP K+ transporter HIGH-AFFINITY K+ TRANSPORTER5 (HAK5) have been characterized as the two major components that contribute to K+ uptake in roots, although they have been found to operate at different K+ levels (Pyo et al., 2010; Wang and Wu, 2013). AKT1 functions in plant K+ uptake over a wide range of K+ concentrations, whereas HAK5 shows high-affinity K+ transport activity (Gierth et al., 2005). Following its uptake into root epidermal cells, K+ is distributed to different plant organs or tissues. The Arabidopsis shaker-like outward-rectifying K+ channel STELAR K+ OUTWARD RECTIFIER (SKOR), the expression of which was first identified in stelar tissues, has been shown to facilitate K+ secretion into xylem sap, which is a critical step in long-distance K+ transport from roots to shoots (Gaymard et al., 1998). Recently, K+ UPTAKE PERMEASE7 (KUP7), a member of the KT/HAK/KUP family, was functionally characterized as a K+ transporter participating in both root K+ uptake and root-to-shoot K+ allocation, particularly under K+-limiting conditions (Han et al., 2016). However, the uptake affinity for K+ has been found to be considerably lower in KUP7 than in HAK5 (Wang and Wu, 2017).In addition to the aforementioned K+ channels and transporters, other mineral elements, including Na+, Ca2+, and N, are known to have pronounced effects on K+ nutrition in plants. Given that N is the nutrient that is required in the greatest quantity by most plants and is the most widely used fertilizer nutrient in crop production, the relationships between N and K have long been investigated (Fageria and Baligar, 2005; Wang and Wu, 2013; Meng et al., 2016; Shin, 2017). Since the 1960s, physiological studies have revealed a close relationship between NO3 and K+ with regard to uptake and translocation (Zioni et al., 1971; Blevins et al., 1978; Barneix and Breteler, 1985; Drechsler et al., 2015). However, the coordination between these two nutrients in plant transport pathways remains to be extensively studied at the molecular level. We hypothesized that transporters involved in the transference of NO3 across cell membranes may play a role in controlling K+ nutrition in plants. Recently, NITRATE TRANSPORTER1.5 (NRT1.5), a member of the nitrate transporter1/peptide transporter family (NPF), initially identified as a pH-dependent bidirectional NO3 transporter (Lin et al., 2008), was shown to be involved in the control of K+ allocation in plants (Drechsler et al., 2015; Li et al., 2017; Du et al., 2019). Nevertheless, it was subsequently established that this function was merely associated with its role as a proton-coupled H+/K+ antiporter for K+ loading into the xylem (Li et al., 2017; Du et al., 2019), which is not associated with the transport of NO3. In this study, we showed that the loss of another nitrate transporter1 member, NRT1.1/NPF6.3, in nrt1.1 mutants led to the development of a more pronounced K+-deficiency phenotype under conditions of low-K+ stress. Further physiological and genetic evidence revealed that both the uptake and root-to-shoot allocation of K+ in plants require NRT1.1. However, NRT1.1 acts as a coordinator rather than a K+ channel/transporter in K+ uptake and root-to-shoot allocation, which could depend on its NO3-related transport activity. Our findings highlight the significance of nutrients and nutrient interactions in ensuring plant growth, and indicate that the modification of NRT1.1 homolog activity in crops using biological engineering techniques might be a promising approach that could simultaneously contribute to enhancing the utilization efficiencies of K and N fertilizers in agricultural production.  相似文献   

8.
9.
Alpha-1 acid glycoprotein (AGP) is a significant drug binding acute phase protein that is present in rats. AGP levels are known to increase during tissue injury, cancer and infection. Accordingly, when determining effective drug ranges and toxicity limits, consideration of drug binding to AGP is essential. However, AGP levels have not been well established during subclinical infections. The goal of this study was to establish a subclinical infection model in rats using AGP as a biomarker. This information could enhance health surveillance, aid in outlier identification, and provide more informed characterization of drug candidates. An initial study (n = 57) was conducted to evaluate AGP in response to various concentrations of Staphylococcus aureus (S. aureus) in Sprague–Dawley rats with or without implants of catheter material. A model validation study (n = 16) was then conducted using propranolol. Rats received vehicle control or S. aureus and when indicated, received oral propranolol (10 mg/kg). Health assessment and blood collection for measurement of plasma AGP or propranolol were performed over time (days). A dose response study showed that plasma AGP was elevated on day 2 in rats inoculated with S. aureus at 106, 107 or, 108 CFU regardless of implant status. Furthermore, AGP levels remained elevated on day 4 in rats inoculated with 107 or 108 CFUs of S. aureus. In contrast, significant increases in AGP were not detected in rats treated with vehicle or 103 CFU S. aureus. In the validation study, robust elevations in plasma AGP were detected on days 2 and 4 in S. aureus infected rats with or without propranolol. The AUC levels for propranolol on days 2 and 4 were 493 ± 44 h × ng/mL and 334 ± 54 h × ng/mL, respectively), whereas in noninfected rats that received only propranolol, levels were 38 ± 11 h × ng/mL and 76 ± 16.h × ng/mL, respectively. The high correlation between plasma propranolol and AGP demonstrated a direct impact of AGP on drug pharmacokinetics and pharmacodynamics. The results indicate that AGP is a reliable biomarker in this model of subclinical infection and should be considered for accurate data interpretation.

Protein binding is an important component of pharmacokinetic/pharmacodynamic (PK/PD) research. In vitro measurement of protein drug binding is an essential component of the research and development of novel drugs. However, in vitro studies often poorly mirror the in vivo condition.9,42 Pharmacokinetic studies early in drug development provide a means to assess the time course of drug effects in the body and drug distribution and availability.42 From a PK/PD modeling perspective, protein binding is an important factor in the kinetics and dynamics of drug availability in vivo.21,35,36,40 These complex relationships are used to project efficacious doses in humans and take into consideration differences in plasma protein binding between preclinical species and humans.8,44A variety of acute phase proteins (APP) exist across all species and increase in response to inflammatory, infectious and traumatic events.5,9,12,13,19,21,22,29,45,53 APPs are potential biomarkers for detection and monitoring of various disease states including cancer.2,18,24,34,39,40,47,50,52 Because of this, enhanced understanding of drug binding characteristics to APPs early in the development phase will promote the design of more efficacious therapeutics. Alpha-1 acid glycoprotein (AGP), a ubiquitous major APP that is present in rats,9,46 has significant drug binding properties and binds to many basic and neutral compounds. Normal AGP levels in plasma of naïve rats range from 0.1 to 0.32 mg/mL.44 The importance of AGP as related to drug discovery and development will be bolstered by greater understanding of the sources of AGP stimulation in established animal models. For example, AGP modulates the immune response in a rodent shock model in which it is thought to maintain normal capillary permeability to ensure perfusion of vital organs.30,33 In addition, elevated AGP levels are present in animal models of infection and inflammation.11,20,27,32,41,48In surgically modified animals, AGP levels may be elevated after surgical manipulation, which unavoidably induces local transient inflammatory responses.8,25,51 In addition, infections may develop postoperatively leading to increased AGP levels. Chronic catheterization has been linked to increased incidence of infection.3,8,37 Surgically modified animals should not be placed on study if aseptic technique was not adhered to during surgical preparation and instrumentation.6,37 Contamination may occur within or at the external portion of a catheter, usually resulting in more obvious signs of infection. Routine PK studies in rats involve implantation of vascular catheters through which drugs are administered and blood samples are taken over time. Catheterized animals are typically perceived as being healthy and thus are enrolled in and remain on study unless they develop obvious clinical signs of infection or illness. However, an occult infection may be present even with a patent catheter. As such, understanding the direct effect of subclinical infection in modulating AGP levels and drug binding is critical, as AGP levels may affect drug levels in study animals with persistent subclinical infection. In this event, the PK data generated may be altered due to selective binding to AGP, thus confounding data interpretation.A possible application of AGP is its potential utility as a biomarker for evaluating health status animals in drug development. The use of AGP as a select biomarker for monitoring and identifying sick animals and/or predicting the potential impact of subclinical infection on drug PK/PD is highly desirable. A screening tool such as this could help to optimize animal selection by reliably identifying healthy animals. Improved intra-study health monitoring would promote confidence in PK/PD data and its predictive value.The focus of this research was to develop a sensitive, reliable and reproducible model of subclinical infection in the rat using the ubiquitous skin contaminant, S. aureus. We selected AGP as a biomarker that would promote health status screening and enhance PK/PD characterization of AGP binding drugs (that is basic and neutral) in the presence or absence of subclinical infection. The model was validated by evaluating the impact of increased AGP levels on propranolol, a drug known to have high binding affinity to AGP.4,7,10,26,28,31,49 Ultimately, establishing this model will provide heightened visibility of the protein binding characteristics of drugs and yield more informed data interpretation.  相似文献   

10.
11.
12.
Mice are a common animal model for the study of influenza virus A (IAV). IAV infection causes weight loss due to anorexia and dehydration, which can result in early removal of mice from a study when they reach a humane endpoint. To reduce the number of mice prematurely removed from an experiment, we assessed nutritional gel (NG) supplementation as a support strategy for mice infected with mouse-adapted Influenza A/Puerto Rico/8/34 (A/PR/8/34; H1N1) virus. We hypothesized that, compared with the standard of care (SOC), supplementation with NG would reduce weight loss and increase survival in mice infected with IAV without impacting the initial immune response to infection. To assess the effects of NG, male and female C57BL/6J mice were infected with IAV at low, intermediate, or high doses. When compared with SOC, mice given NG showed a significant decrease in the maximal percent weight loss at all viral doses in males and at the intermediate dose for females. Mice supplemented with NG had no deaths for either sex at the intermediate dose and a significant increase in survival in males at the high viral dose. Supplementation with NG did not alter the viral titer or the pulmonary recruitment of immune cells as measured by cell counts and flow cytometry of cells recovered in bronchoalveolar lavage (BAL) fluid in either sex. However, mice given NG had a significant reduction in IL6 and TNFα in BAL fluid and no significant differences in CCL2, IL4, IL10, CXCL1, CXCL2, and VEGF. The results of this study show that as compared with infected SOC mice, infected mice supplemented with NG have reduced weight loss and increased survival, with males showing a greater benefit. These results suggest that NG should be considered as a support strategy and indicate that sex is an important biologic variable in mice infected with IAV.

Influenza A virus (IAV) infections place a major strain on public health services world-wide. The World Health Organization estimates that influenza viral infections cause severe illness in 3 to 5 million people and death estimated at 145,000 to 650,000 people each year.22,27,35,40,48 Due to the significant burden that influenza places on public health, the need to learn more about the interactions of this virus with the mammalian immune system continues. This need has led to studies that use a variety of species to examine the host response to IAV. Mice are the most common species used to study influenza.10,47 Clinical signs of influenza in mice include anorexia, dehydration, respiratory distress, hypothermia, hunched posture, unkempt hair coat and ocular discharge.10,43,49,51 Anorexia and dehydration are common signs of influenza infection that lead to excessive weight loss in mice.Weight loss in mice infected with influenza virus is associated with anorexia induced by systemic inflammation. Proinflammatory cytokines have been shown to inhibit normal feeding behavior in mice with IAV, specifically through increased expression of tumor necrosis factor-α (TNFα), interleukin-1β (IL1β) and interleukin-6 (IL6).8,12,16,19,24,38,51 For example, after infection with IAV, the levels of both TNFα and IL6 begin to rise around 2 to 3 d post infection (dpi) and peak at 7 dpi.12,24 Mice begin to lose weight at approximately 4 dpi, with peak weight loss around 9 dpi, which correlates with the levels of TNFα, IL6 and other proinflammatory mediators.12,24,31 Weight loss is routinely used as a euthanasia endpoint criterion for mice infected with IAV. The early removal of mice from a study can have a negative impact on sample size and may compromise the accuracy of a study by introducing survivor bias.43Under the guidance of Institutional Animal Care and Use Committees (IACUCs), a 20 to 30% loss in body weight is a common endpoint criterion in studies of IAV.43 However, an IACUC may be reluctant to justify a weight loss of over 30%. Based on the 3 Rs, replacement, reduction, and refinement, scientists should refine techniques used in animal models of disease to minimize discomfort.20 In addition, finding ways to provide physiologic support for mice in order to reduce the loss of animals in IAV studies will lead to a reduction in the number of animals required to adequately power a study. Therefore, whether supportive care reduces weight loss and consequently mortality in mice infected with IAV is an important question.The objective of the work performed here was to identify a support strategy that resulted in reduced weight loss and increased survival in mice infected with IAV, without altering the nature or degree of their immune response. The overall goal of this investigation is to improve the standard of care for influenza infected mice. If an appropriate strategy is identified, the number of mice needed for IAV studies may be reduced and providing additional support for infected mice will refine the model. To accomplish this goal, the effects of nutritional gel (NG) supplementation were evaluated in mice infected with IAV and compared with the SOC, defined as moist chow and hydrogel. Due to its physical (soft consistency) and nutritional properties, along with the minimal handling required to provide the supplement, we hypothesized that NG (DietGel Recovery) would minimize weight loss and increase the number of mice reaching the end of study as compared with the current SOC.In this paper we show that NG supplementation benefited influenza infected mice by reducing weight loss and the number of mice euthanized based on the endpoint criteria of 30% weight loss. These effects were seen at all doses in male mice, and at the low and intermediate doses in female mice. Evaluation of the immune response to influenza infection using the 0.5 EuD50 dose revealed no significant differences in the number of immune cells in mice given SOC or NG. Measurements of cytokines in BAL fluid showed lower recovery of IL6 in female mice and TNFα in male mice supplemented with NG. Thus, to summarize, both sexes should be included in study design, and mice infected with mouse-adapted IAV and supplemented with NG demonstrate less weight loss and increased survival than do SOC mice. Our data suggest that NG should be considered as a support strategy for mice infected with IAV.  相似文献   

13.
Systemic buprenorphine and topical antiseptics such as chlorhexidine are frequently used in research animals to aid in pain control and to reduce infection, respectively. These therapeutics are controversial, especially when used in wound healing studies, due to conflicting data suggesting that they delay wound healing. Low-level laser therapy (LLLT) has been used to aid in wound healing without exerting the systemic effects of therapies such as buprenorphine. We conducted 2 studies to investigate the effects of these common treatment modalities on the rate of wound healing in mice. The first study used models of punch biopsy and dermal abrasion to assess whether buprenorphine HCl or 0.12% chlorhexidine delayed wound healing. The second study investigated the effects of sustained-released buprenorphine, 0.05% chlorhexidine, and LLLT on excisional wound healing. The rate of wound healing was assessed by obtaining photographs on days 0, 2, 4, 7, and 9 for the punch biopsy model in study 1, days 0, 1, 2, 4, 6, 8, 11, and 13 for the dermal abrasion model in study 1, and days 0, 3, 6, and 10 for the mice in study 2. Image J software was used to analyze the photographed wounds to determine the wound area. When comparing the wound area on the above days to the original wound area, no significant differences in healing were observed for any of the treatment groups at any time period for either study. Given the results of these studies, we believe that systemic buprenorphine, topical chlorhexidine, and LLLT can be used without impairing or delaying wound healing in mice.

A recent retrospective analysis using a medical insurance dataset estimated that approximately 8.2 million people experienced wounds ranging from acute to chronic conditions within the particular year analyzed, and estimated that the cost of acute and chronic wound treatments ranged from $28.1 to $96.8 billion dollars.52 The projected rise in the number of people experiencing wounds and the cost of wound care products52 have made wound healing a growing area of interest in both clinical medicine and research. Wound healing is a complex process that involves many overlapping, intricate physiologic processes. Each step can have associated deviations that may lead to enhanced, altered, impaired, or delayed healing. Animal research has been used to develop a better understanding of the basic, physiologic mechanisms of wound healing. Mice are the most commonly used animal in biomedical research, and they are used to model a host of conditions, including wound healing. Despite known anatomic and physiologic differences between murine and human skin,17,53 this species is commonly used due to their small size, ease of handling, and relatively low cost. In addition, the overlapping phases of the wound healing process are similar in mice and humans, making mice a valuable model.65Pain is inherent to the development of wound models. Pain receptors in the skin are sensitized during the actual wounding process and during the inflammatory response that occurs immediately after wounding.19 Pain can also occur during the cleansing and treatment of wounds.19 Just as managing wound pain is critical in human patients, The Guide for the Care and Use of Laboratory Animals (the Guide)30 and other federal guidelines and regulations governing the care and use of laboratory animals strongly encourages the use of analgesics for animals that experience pain and/or distress.30 Pain, which can also cause stress, may evoke a persistent catabolic state and may ultimately delay wound healing.19,28,31,43 Therefore, adequate pain control is necessary to avoid negatively affecting or altering the wound healing process.As in human medicine, opioids are commonly used to provide analgesia to research rodents. Buprenorphine, a mixed agonist-antagonist opioid,26,54 is a common analgesic that acts as a very weak partial agonist of the mu opioid receptor and an antagonist of the κ opioid receptor.26 Buprenorphine is frequently used in animals as both a pre- and post-operative analgesic. It works by binding to the opioid receptors in the skin and other tissues. This ligand-receptor binding regulates the physiologic responses of nociception and inflammation,7 which are key factors in the process of healing and regeneration. Buprenorphine is often used instead of full mu-opioid receptor agonist drugs, such as morphine or hydromorphone, because it has fewer systemic side effects.28 Despite their common use as analgesics, reports are mixed in terms of whether opioids, as a class, delay or impair wound healing.11,28,35,40In addition to controlling pain, minimizing wound contamination and preventing infection is critical to wound healing. The use of antiseptics is often favored over the use of antibiotics as the former presents less chance for developing antibiotic resistance.6 As an antiseptic, chlorhexidine is commonly used to irrigate, cleanse, and treat cutaneous wounds. Chlorhexidine has high antimicrobial activity against gram-positive and gram-negative bacteria and some fungi and viruses.4 Although considered to be relatively safe, reports are conflicting with regard to whether chlorhexidine delays or impairs wound healing.4,9,50,57Laser techniques have been used medically for many years, and their powerful, but precise capabilities have rendered them a unique surgical and therapeutic modality. In brief, when the electrons of atoms move to higher energy levels, these electrons absorb energy. This excited energy state is unstable and temporary. The natural return of electrons to their more stable ground state releases energy in the form of photons or light. Light Amplification by Stimulated Emission of Radiation (LASERS) are characterized by the photon stimulation of an already excited electron. This stimulation causes the emitted light to be amplified, as demonstrated by the intense, bright light that is emitted from lasers.63 The concept of low-level laser therapy (LLLT) has garnered interest as a therapeutic modality in both human and veterinary medicine. Specifically characterized as laser therapy using a low power output and a low power range, LLLT is distinguished from other forms of laser therapies by certain parameters such as wavelength, pulse rate and duration, total irradiation time, and dose.44 Although the mechanism of action for LLLT is not completely understood,46,64 the absorption of red and near infrared light energy may reduce detrimental, inflammatory substances13,15,24,56 while simultaneously stimulating restorative processes.15,24,46,64 The reduced photothermal impact of LLLT44 is reported to produce beneficial physiologic and biologic effects including analgesia, reduction in inflammation, and acceleration of healing.48 The initial report of LLLT as a therapeutic modality found accelerated wound healing and fur regrowth in mice exposed to LLLT.13,44,46,64 LLLT has since been used as a sole or adjunct therapy for a variety of conditions including tooth root resorption,55 traumatic brain injuries,58 and tendon, muscle, and bone injuries.2,3,25,38Studies conducted to assess the effects of LLLT on healing often use parameters of normal wound healing to analyze how LLLT influences those parameters in comparison to healthy, undamaged tissue and damaged tissue not receiving laser therapy. Despite the numerous studies designed to investigate the effects of LLLT on wound healing, conflicting reports exist regarding its efficacy.15,17,46,22,23,24,29,34,38,39,55,56,60,64 A recent study in dogs reported accelerated healing and improved cosmetic appearance of a hemilaminectomy surgical site after LLLT,60 while other canine studies reported no significant differences in the healing of surgically induced skin wounds between dogs that did and did not receive LLLT.22,34 Similarly, in an attempt to study the effects of LLLT in pigs, an animal with skin very similar to that of humans, no significant differences were reported in the healing of surgically created skin wounds between swine that did and did not receive LLLT.29 Studies using diabetic rats with excisional cutaneous wounds reported accelerated wound healing,17,46 and beneficial results were reported in a similar study using diabetic mice.56,64 While fewer studies have been conducted on the use of LLLT in rodents without concomitant comorbidities, LLLT has been reported to accelerate wound healing in healthy rodents.15,24 Conversely, some studies found that LLLT does not accelerate or significantly improve wound healing in rodents.24,39We performed 2 separate studies to investigate the effects of a commonly used opioid, a topical antiseptic solution, and LLLT on excisional wound healing in mice. At the time the initial study (study 1) was conducted, some of our investigators were reluctant to use the recommended analgesic, buprenorphine, due to concern about interference with their study outcomes. Therefore, we conducted study 1 to determine if a single dose of peri-operative buprenorphine would delay healing of a full-thickness excisional wound or a partial-thickness felt wheel dermal abrasion. We also examined the effects of topical chlorhexidine solution on wound healing. The chlorhexidine concentrations used in study 1 were prepared using our standard operating procedure at that time. Study 2 was conducted after study 1, with the design expanded to evaluate a sustained release buprenorphine formulation and LLLT. Study 2 used a full-thickness excisional biopsy to determine the effect of LLLT on excisional wound healing. Commonly used doses of systemic Buprenorphine Sustained Release (SR) and topical chlorhexidine were also included to evaluate their effect on excisional wound healing. The concentration of chlorhexidine in the revised, approved standard operating procedure had been decreased due to literature suggesting that higher concentrations may inhibit healing.4,49,61 For both studies, we hypothesized that the use of buprenorphine and chlorhexidine would have no effect on the rate of wound healing, and that LLLT would accelerate wound healing in a full-thickness excision as compared with a control.  相似文献   

14.
Ischemic myocardial disease is a major cause of death among humans worldwide; it results in scarring and pallor of the myocardium and triggers an inflammatory response that contributes to impaired left ventricular function. This response includes and is evidenced by the production of several inflammatory cytokines including TNFα, IL1β, IL4, IFNγ, IL10 and IL6. In the current study, myocardial infarcts were induced in 6 mo old male castrated sheep by ligation of the left circumflex obtuse marginal arteries (OM 1 and 2). MRI was used to measure parameters of left ventricular function that include EDV, ESV, EF, SVI, dp/dt max and dp/dt min at baseline and at 4 wk and 3 mo after infarct induction. We also measured serum concentrations of an array of cytokines. Postmortem histologic findings corroborate the existence of left ventricular myocardial injury and deterioration. Our data show a correlation between serum cytokine concentrations and the development of myocardial damage and left ventricular functional compromise.

Heart failure is a globally significant problem in both humans and lower animals.3,18 The medical literature is replete with predisposing causes of heart disease,13 yet the prevalence of heart failure remained high.4,5,16 Regardless of the cause of myocardial damage and subsequent left ventricular compromise, the literature indicated that the proinflammatory response that occurs after myocardial infarction is an important contributor to the deterioration of the myocardium1,9,12,14,17,18,20,21 Sheep and pigs are excellent translational models of human cardiology because their hearts bear many physiologic and anatomic similarities to the human heart.4,8,15 The primary use of these models in cardiology is primarily to study myocardial infarction5,13,16 and to a lesser extent, physiologic processes that develop after myocardial insult.Our study measured some of the major proinflammatory cytokines that contribute to myocardial damage. Most of these cytokines, including: TNFα, IL6, and IFNγ, are important correlates of myocardial ischemia that contribute to a decline in left ventricular myocardial function.1,9,14 In our study, we detected left ventricular compromise as early as 4 wk after the infarction, while the proinflammatory response was recorded at 48 h after the infarct and peaked at 4 wk. Cardiac functional parameters began to decline early in the study consistent with the proinflammatory response. The cardiac functional parameters continued to decline until 3 mo, which was the termination of the study. These findings may support antiinflammatory intervention as an important adjunct of any therapeutic regimen.  相似文献   

15.
16.
In angiosperms, the NADH dehydrogenase-like (NDH) complex mediates cyclic electron transport around PSI (CET). K+ Efflux Antiporter3 (KEA3) is a putative thylakoid H+/K+ antiporter and allows an increase in membrane potential at the expense of the ∆pH component of the proton motive force. In this study, we discovered that the chlororespiratory reduction2-1 (crr2-1) mutation, which abolished NDH-dependent CET, enhanced the kea3-1 mutant phenotypes in Arabidopsis (Arabidopsis thaliana). The NDH complex pumps protons during CET, further enhancing ∆pH, but its physiological function has not been fully clarified. The observed effect only took place upon exposure to light of 110 µmol photons m−2 s−1 after overnight dark adaptation. We propose two distinct modes of NDH action. In the initial phase, within 1 min after the onset of actinic light, the NDH-dependent CET engages with KEA3 to enhance electron transport efficiency. In the subsequent phase, in which the ∆pH-dependent down-regulation of the electron transport is relaxed, the NDH complex engages with KEA3 to relax the large ∆pH formed during the initial phase. We observed a similar impact of the crr2-1 mutation in the genetic background of the PROTON GRADIENT REGULATION5 overexpression line, in which the size of ∆pH was enhanced. When photosynthesis was induced at 300 µmol photons m−2 s−1, the contribution of KEA3 was negligible in the initial phase and the ∆pH-dependent down-regulation was not relaxed in the second phase. In the crr2-1 kea3-1 double mutant, the induction of CO2 fixation was delayed after overnight dark adaptation.

Photosynthesis consists of two sets of reactions, the light reactions and the Calvin-Benson cycle. It takes place in the chloroplast and fixes CO2 into organic compounds using solar energy. In the light reactions, the absorption of photons activates electron transport in two photosystems. In linear electron transport (LET), PSII catalyzes the light-dependent oxidation of water, resulting in the release of oxygen and protons (H+) in the thylakoid lumen. The water-derived excised electrons are transferred to PSI through the cytochrome (Cyt) b6f complex and ultimately to NADP+, producing NADPH. This electron transport is coupled with the translocation of H+ from the stroma to the thylakoid lumen via the quinone cycle at the Cyt b6f complex, resulting in the formation of a proton concentration gradient across the thylakoid membrane. This ∆pH contributes to the formation of proton motive force (pmf) in addition to the membrane potential formed across the thylakoid membrane (∆ψ) that results from the uneven distribution of ions across the membrane. The pmf energizes ATP synthesis via FoF1-ATP synthase in chloroplasts (Kramer et al., 2003; Soga et al., 2017) and thus influences the efficiency of the light reactions.The Calvin-Benson cycle depends on NADPH and ATP produced by the light reactions. To fix a molecule of CO2 into a carbohydrate, three molecules of ATP and two molecules of NADPH are needed. However, this ratio of ATP to NADPH (1.5) is not satisfied by LET (Shikanai, 2007). Photorespiration, which takes place due to the low specificity of Rubisco, the CO2-fixing enzyme for CO2, increases the energetic requirements in terms of ATP, raising the above ratio to 1.67. The additional ATP is thought to be supplied by cyclic electron transport around PSI (CET; Yamori and Shikanai, 2016). In contrast to LET, CET is driven solely by PSI and does not contribute to the net production of reducing power. CET recycles electrons from ferredoxin (Fd) to the plastoquinone (PQ) pool and contributes to the additional generation of ∆pH via the quinone cycle. As a result, CET balances the production ratio of ATP and NADPH. In angiosperms, CET has been proposed to consist of two pathways: the PROTON GRADIENT REGULATION5 (PGR5)/PGR5-like Photosynthetic Phenotype1 (PGRL1) protein-dependent, antimycin A-sensitive pathway and the NADH dehydrogenase-like (NDH) complex-dependent antimycin A-insensitive pathway (Munekage et al., 2004). The NDH complex pumps four protons, coupled with the movement of two electrons, from Fd to PQ, further increasing the efficiency of ∆pH formation (Strand et al., 2017).In addition to ATP synthesis, the ∆pH component of pmf also contributes to the down-regulation of electron transport (Shikanai, 2014). Acidification of the thylakoid lumen triggers the thermal dissipation of excessively absorbed light energy from the PSII antennae, a process that is monitored by nonphotochemical quenching (NPQ) of chlorophyll fluorescence (Müller et al., 2001). Low lumenal pH also down-regulates the activity of the Cyt b6f complex, slowing down the rate of electron transport toward PSI (Stiehl and Witt, 1969). CET-dependent ∆pH formation is also necessary to induce the down-regulation of electron transport, as indicated by the phenotype of the pgr5 mutant. The Arabidopsis (Arabidopsis thaliana) pgr5 mutant cannot induce thermal dissipation under excessive light conditions (Munekage et al., 2002), suggesting that CET-generated ∆pH plays an important role in providing a sufficiently acidic lumen pH that can trigger NPQ. The pgr5 mutant is also defective in the down-regulation of Cyt b6f activity, resulting in hypersensitivity of PSI to fluctuating light intensity (Tikkanen et al., 2010). Compared with the physiological function of the PGR5/PGRL1-dependent CET, the contribution of the NDH-dependent CET to photoprotection is somewhat minor, although clear phenotypes have been observed in these mutants at low light intensities and fluctuating light levels (Ueda et al., 2012; Yamori et al., 2015, 2016). Furthermore, the physiological function of the NDH complex has not been fully clarified.Both ∆pH and ∆ψ contribute to pmf, but only ∆pH down-regulates electron transport. To optimize the operation of the accelerator (ATP synthesis) and the brake on electron transport, it is necessary to precisely regulate the ratio of the two pmf components as well as the total size of pmf (Cruz et al., 2001; Kramer et al., 2003). Several channels and antiporters localized to the thylakoid membrane regulate the partitioning of the pmf components (Spetea et al., 2017). K+ Efflux Antiporter3 (KEA3) is thought to be an H+/K+ antiporter localized to the thylakoid membrane (Armbruster et al., 2014; Kunz et al., 2014), although its antiport activity has not been experimentally demonstrated (Tsujii et al., 2019). Based on its structure, topology, and the mutant phenotypes, KEA3 most likely moves H+ from the thylakoid lumen while taking up K+ as a counter ion. Consequently, KEA3 transforms ∆pH to ∆ψ and is necessary to rapidly relax the down-regulation of electron transport by raising the luminal pH (i.e. by alkalinizing the lumen). The C-terminal domain of KEA3, KTN (K+ transport/nucleotide binding), is exposed to the stroma (Wang et al., 2017) and is thought to regulate its activity by monitoring ATP or NADPH levels (Schlosser et al., 1993; Roosild et al., 2002). However, information on the regulation of KEA3 is limited. Armbruster et al. (2014) demonstrated that KEA3 contributes to efficient photosynthesis under fluctuating light conditions. The disturbed proton gradient regulation is a dominant mutant allele of KEA3, and its mutant phenotype is evident after a long period of dark adaptation (overnight; Wang et al., 2017). KEA3 is likely important during the induction of photosynthesis as well as under fluctuating light intensities. The similarity between the two conditions suggests that KEA3 is required for readjusting the ∆pH-dependent regulation immediately after any drastic change in light conditions.In this study, we characterized double mutants defective in the CET pathways and KEA3 to understand whether and how the synergy between CET and KEA3 in the regulatory network of photosynthesis affects this process. We focused on the contribution of NDH-dependent CET during the induction of photosynthesis after overnight dark adaptation in the kea3-1 mutant context. Based on our results, we propose a novel physiological function of the NDH complex: that of allowing flexibility of the regulatory network during the induction of photosynthesis.  相似文献   

17.
Corynebacterium bovis, the causative agent of hyperkeratotic dermatitis in immunodeficient mice, is a significant problem in preclinical oncology research. Infection results in lifelong skin colonization and a decrease in successful engraftment of patient-derived xenograft tumor models. The use of antimicrobial agents for C. bovis is controversial in light of reports of poor efficacy and the possibility of selection for resistant strains. The purpose of this study was to describe the antimicrobial susceptibilities of C. bovis isolates obtained exclusively from immunodeficient rodents in order to aid in antimicrobial dose determination. Between 1995 and 2018, 15 isolates were collected from 11 research institutions across the United States. Antimicrobial susceptibility testing was performed for 24 antimicrobials commonly used against gram-positive bacteria. Our results provide an updated understanding of the susceptibility profiles of rodent C. bovis isolates, indicating little variability between geographically and temporally distant isolates. These results will facilitate appropriate antimicrobial use to prevent and treat C. bovis infections in immunodeficient rodents.

Corynebacterium bovis is a gram-positive, facultatively anaerobic pleomorphic bacillus that infrequently causes infections in humans5 but is more clinically relevant in veterinary medicine. Veterinary interest in this bacterium originated in the dairy industry, where it causes subclinical mastitis in infected animals and is the most common Corynebacterium spp. isolated from infected udders. When present as a primary infection, C. bovis can cause decreases in milk quality with no significant decrease in milk yield.9,12 Despite being considered a minor pathogen, the impact of C. bovis on milk quality remains economically important to the dairy industry.C. bovis was first recognized in the mid1970s in athymic nude mice with hyperkeratotic dermatitis, a condition that would later be termed ‘scaly skin disease.’6 Once genetically characterized in the mid1990s and confirmed to have an association with clinical disease, C. bovis emerged as an important pathogen of immunodeficient mice in the laboratory animals.7 Historically, C. bovis infections of research mice primarily occurred in athymic nude mice. However, as the number of transgenic immunodeficient strains has expanded, C. bovis is no longer considered an infection exclusively of athymic nude mice, as infections have been reported in immunodeficient and ‘immune-vague’ research rodents around the world.3,10,11,15,21Antimicrobial susceptibility testing is used to identify the minimum inhibitory concentration (MIC) of specific antimicrobials that prevents the growth of an individual bacterial isolate in vitro. By including many isolates of the same organism into a test population, the MIC can be calculated that inhibits the growth of 50% (MIC50) or 90% (MIC90) of the isolates.22 MIC have been published for C. bovis isolates obtained from dairy cows.25 In the dairy industry, dry cow therapy (the administration of antibiotics at the end of lactation) is highly effective at eliminating subclinical mastitis caused by Corynebacterium spp.1 However, elimination of C. bovis from immunodeficient mouse populations is much more challenging.15,17 To date, the dose of amoxicillin used to treat C. bovis-infected immunodeficient mice has been informed by MIC data from dairy cows isolates25 and in vivo pharmacokinetic data in the form of blood plasma concentrations of amoxicillin administered in the drinking water.16 However, our group and others have demonstrated the reemergence of infection in immunodeficient mice after the discontinuation of antibiotic administration in a C. bovis-free environment. These findings suggest that the MIC for C. bovis isolates from mice may differ from that of cows.2Recently, the genomes of C. bovis isolates obtained from humans, cows, mice, and rats were sequenced. Subsequent genomic comparisons assessing the average nucleotide identity between isolates identified sequence divergence obtained from humans and cows as compared with isolates from rodents.4 In particular, the number of genomic islands and virulence factors were significantly higher in the rodent isolates than in the human and cow isolates. However, whether phenotypic changes in antimicrobial susceptibility accompany this genetic divergence is unknown. Considering the prior observations and new developments in our understanding of C. bovis across multiple species, the purpose of this study is to describe antimicrobial susceptibility profiles of C. bovis isolates obtained exclusively from immunodeficient rats and mice.  相似文献   

18.
PSI is an essential component of the photosynthetic apparatus of oxygenic photosynthesis. While most of its subunits are conserved, recent data have shown that the arrangement of the light-harvesting complexes I (LHCIs) differs substantially in different organisms. Here we studied the PSI-LHCI supercomplex of Botryococccus braunii, a colonial green alga with potential for lipid and sugar production, using functional analysis and single-particle electron microscopy of the isolated PSI-LHCI supercomplexes complemented by time-resolved fluorescence spectroscopy in vivo. We established that the largest purified PSI-LHCI supercomplex contains 10 LHCIs (∼240 chlorophylls). However, electron microscopy showed heterogeneity in the particles and a total of 13 unique binding sites for the LHCIs around the PSI core. Time-resolved fluorescence spectroscopy indicated that the PSI antenna size in vivo is even larger than that of the purified complex. Based on the comparison of the known PSI structures, we propose that PSI in B. braunii can bind LHCIs at all known positions surrounding the core. This organization maximizes the antenna size while maintaining fast excitation energy transfer, and thus high trapping efficiency, within the complex.

The multisubunit-pigment-protein complex PSI is an essential component of the electron transport chain in oxygenic photosynthetic organisms. It utilizes solar energy in the form of visible light to transfer electrons from plastocyanin to ferredoxin.PSI consists of a core complex composed of 12 to 14 proteins, which contains the reaction center (RC) and ∼100 chlorophylls (Chls), and a peripheral antenna system, which enlarges the absorption cross section of the core and differs in different organisms (Mazor et al., 2017; Iwai et al., 2018; Pi et al., 2018; Suga et al., 2019; for reviews, see Croce and van Amerongen, 2020; Suga and Shen, 2020). For the antenna system, cyanobacteria use water-soluble phycobilisomes; green algae, mosses, and plants use membrane-embedded light-harvesting complexes (LHCs); and red algae contain both phycobilisomes and LHCs (Busch and Hippler, 2011). In the core complex, PsaA and PsaB, the subunits that bind the RC Chls, are highly conserved, while the small subunits PsaK, PsaL, PsaM, PsaN, and PsaF have undergone substantial changes in their amino acid sequences during the evolution from cyanobacteria to vascular plants (Grotjohann and Fromme, 2013). The appearance of the core subunits PsaH and PsaG and the change of the PSI supramolecular organization from trimer/tetramer to monomer are associated with the evolution of LHCs in green algae and land plants (Busch and Hippler, 2011; Watanabe et al., 2014).A characteristic of the PSI complexes conserved through evolution is the presence of “red” forms, i.e. Chls that are lower in energy than the RC (Croce and van Amerongen, 2013). These forms extend the spectral range of PSI beyond that of PSII and contribute significantly to light harvesting in a dense canopy or algae mat, which is enriched in far-red light (Rivadossi et al., 1999). The red forms slow down the energy migration to the RC by introducing uphill transfer steps, but they have little effect on the PSI quantum efficiency, which remains ∼1 (Gobets et al., 2001; Jennings et al., 2003; Engelmann et al., 2006; Wientjes et al., 2011). In addition to their role in light-harvesting, the red forms were suggested to be important for photoprotection (Carbonera et al., 2005).Two types of LHCs can act as PSI antennae in green algae, mosses, and plants: (1) PSI-specific (e.g. LHCI; Croce et al., 2002; Mozzo et al., 2010), Lhcb9 in Physcomitrella patens (Iwai et al., 2018), and Tidi in Dunaliela salina (Varsano et al., 2006); and (2) promiscuous antennae (i.e. complexes that can serve both PSI and PSII; Kyle et al., 1983; Wientjes et al., 2013a; Drop et al., 2014; Pietrzykowska et al., 2014).PSI-specific antenna proteins vary in type and number between algae, mosses, and plants. For example, the genomes of several green algae contain a larger number of lhca genes than those of vascular plants (Neilson and Durnford, 2010). The PSI-LHCI complex of plants includes only four Lhcas (Lhca1–Lhc4), which are present in all conditions analyzed so far (Ballottari et al., 2007; Wientjes et al., 2009; Mazor et al., 2017), while in algae and mosses, 8 to 10 Lhcas bind to the PSI core (Drop et al., 2011; Iwai et al., 2018; Pinnola et al., 2018; Kubota-Kawai et al., 2019; Suga et al., 2019). Moreover, some PSI-specific antennae are either only expressed, or differently expressed, under certain environmental conditions (Moseley et al., 2002; Varsano et al., 2006; Swingley et al., 2010; Iwai and Yokono, 2017), contributing to the variability of the PSI antenna size in algae and mosses.The colonial green alga Botryococcus braunii (Trebouxiophyceae) is found worldwide throughout different climate zones and has been targeted for the production of hydrocarbons and sugars (Metzger and Largeau, 2005; Eroglu et al., 2011; Tasić et al., 2016). Here, we have purified and characterized PSI from an industrially relevant strain isolated from a mountain lake in Portugal (Gouveia et al., 2017). This B. braunii strain forms colonies, and since the light intensity inside the colony is low, it is expected that PSI in this strain has a large antenna size (van den Berg et al., 2019). We provide evidence that B. braunii PSI differs from that of closely related organisms through the particular organization of its antenna. The structural and functional characterization of B. braunii PSI highlights a large flexibility of PSI and its antennae throughout the green lineage.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号