首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inhibition of the metalloenzyme carbonic anhydrase (CA; EC 4.2.1.1) has pharmacologic applications in the field of anti-glaucoma, anti-convulsant and anti-cancer agents. But recently, it has also emerged that these enzymes have the potential for designing anti-infective drugs (anti-fungal and anti-bacterial agents) with a novel mechanism of action. Sulphonamides and their isosteres (sulphamates/sulphamides) constitute the main class of CA inhibitors (CAIs), which bind to the metal ion from the enzyme active site. Recently, the dithiocarbamates (DTCs), possessing a similar mechanism of action, were reported as a new class of inhibitors. These types of CAIs will be discussed in detail in this review. Novel drug design strategies have been reported ultimately based on the tail approach for obtaining sulphonamides/DTCs, which exploit more external binding regions within the enzyme active site (in addition to coordination to the metal ion), leading thus to isoform-selective compounds. Most of the promising data have been obtained by combining x-ray crystallography of enzyme-inhibitor adducts with novel synthetic approaches for generating chemical diversity. Whereas sulphonamide – NO donating hybrid drugs were reported as effective anti-glaucoma agents, most of the interesting new inhibitors were designed for inhibiting specifically the tumour-associated isoforms CA IX and XII, validated targets for imaging and treatment of hypoxic tumours. Promising compounds that inhibit CAs from bacterial and fungal pathogens, of the DTC and carboxylate types, will be also reviewed.  相似文献   

2.
Abstract

In addition to the sulfonamides and their isosteres, recently novel carbonic anhydrase (CA, EC 4.2.1.1) inhibitors (CAIs) which act by binding to the metal ion from the active site were discovered. Based on the X-ray crystal structure of the CA II–trithiocarbonate adduct, dithiocarbamates, xanthates and thioxanthates were shown to potently inhibit α- and β-CAs. The hydroxamates constitute another class of recently studied CAIs both against mammalian and protozoan enzymes. Another chemotype for which CA inhibitory properties were recently reported is the salicylaldoxime scaffold. X-ray crystal structures were reported for CA II complexed with dithiocarbamates and hydroxamates, whereas the xanthates and salicylaldoximes were investigated by kinetic measurements and docking studies. The dithiocarbamates and the xanthates showed potent antiglaucoma activity in animal models of the disease whereas some hydroxamates inhibited the growth of Trypanosoma cruzii probably by inhibiting the protozoan CA.  相似文献   

3.
Six genetic families of the enzyme carbonic anhydrase (CA, EC 4.2.1.1) were described to date. Inhibition of CAs has pharmacologic applications in the field of antiglaucoma, anticonvulsant, anticancer, and anti-infective agents. New classes of CA inhibitors (CAIs) were described in the last decade with enzyme inhibition mechanisms differing considerably from the classical inhibitors of the sulfonamide or anion type. Five different CA inhibition mechanisms are known: (i) the zinc binders coordinate to the catalytically crucial Zn(II) ion from the enzyme active site, with the metal in tetrahedral or trigonal bipyramidal geometries. Sulfonamides and their isosters, most anions, dithiocarbamates and their isosters, carboxylates, and hydroxamates bind in this way; (ii) inhibitors that anchor to the zinc-coordinated water molecule/hydroxide ion (phenols, carboxylates, polyamines, 2-thioxocoumarins, sulfocoumarins); (iii) inhibitors which occlude the entrance to the active site cavity (coumarins and their isosters), this binding site coinciding with that where CA activators bind; (iv) compounds which bind out of the active site cavity (a carboxylic acid derivative was seen to inhibit CA in this manner), and (v) compounds for which the inhibition mechanism is not known, among which the secondary/tertiary sulfonamides as well as imatinib/nilotinib are the most investigated examples. As CAIs are used clinically in many pathologies, with a sulfonamide inhibitor (SLC-0111) in Phase I clinical trials for the management of metastatic solid tumors, this review updates the recent findings in the field which may be useful for a structure-based drug design approach of more selective/potent modulators of the activity of these enzymes.  相似文献   

4.
Pyridinium containing sulfonamides have been largely investigated as carbonic anhydrase inhibitors (CAIs), showing interesting selectivity features. Nevertheless, only few structural studies are so far available on adducts that these compounds form with diverse CA isoforms. In this paper, we report the structural characterization of the adduct that a triphenylpyridinium derivative forms with hCA II, showing that the substitution of the pyridinium ring plays a key role in determining the conformation of the inhibitor in the active site and consequently the binding affinity to the enzyme. These findings open new perspectives on the basic structural requirements for designing sulfonamide CAIs with a selective inhibition profile.  相似文献   

5.
Carbonic anhydrases (CAs, EC 4.2.1.1) are inhibited by sulfonamides, inorganic anions, phenols, salicylic acid derivatives (acting as drug or prodrugs). A novel class of CA inhibitors (CAIs), interacting with the CA isozymes I and II (cytosolic) in a different manner, is reported here. Kinetic measurements allowed us to identify thiazolidin-based compounds as submicromolar-low micromolar inhibitors of these two CA isozymes. Molecular docking studies of a set of such inhibitors within CA I and II active site allowed us to understand the inhibition mechanism. This new class of inhibitors bind differently compared to other classes of inhibitors known to date: they were found between the phenol-binding site, filling thus the middle of the enzyme cavity.  相似文献   

6.
Carbonic anhydrases (CAs, EC 4.2.1.1) are inhibited by sulfonamides, inorganic anions, phenols, coumarins (acting as prodrugs) and polyamines. A novel class of CA inhibitors (CAIs), interacting with the CA isozymes I, II (cytosolic) and IX, XII (transmembrane, tumor-associated) in a different manner, is reported here. Kinetic measurements allowed us to identify hydroxy-/methoxy-substituted benzoic acids as well as di-/tri-methoxy benzenes as submicromolar-low micromolar inhibitors of the four CA isozymes. Molecular docking studies of a set of such inhibitors within CA I and II allowed us to understand the inhibition mechanism. This new class of inhibitors binds differently compared to all other classes of inhibitors known to date: they were found between the phenol-binding site and the coumarin-binding site, filling thus the middle of the enzyme cavity. They exploit different interactions with amino acid residues and water molecules from the CA active site compared to other classes of inhibitors, offering the possibility to design CAIs with an interesting inhibition profile compared to the clinically used sulfonamides/sulfamates.  相似文献   

7.
Sulphamate and sulphamide derivatives have been largely investigated as carbonic anhydrase inhibitors (CAIs) by means of different experimental techniques. However, the structural determinants responsible for their different binding mode to the enzyme active site were not clearly defined so far. In this paper, we report the X-ray crystal structure of hCA II in complex with a sulphamate inhibitor incorporating a nitroimidazole moiety. The comparison with the structure of hCA II in complex with its sulphamide analogue revealed that the two inhibitors adopt a completely different binding mode within the hCA II active site. Starting from these results, we performed a theoretical study on sulphamate and sulphamide derivatives, demonstrating that electrostatic interactions with residues within the enzyme active site play a key role in determining their binding conformation. These findings open new perspectives in the design of effective CAIs using the sulphamate and sulphamide zinc binding groups as lead compounds.  相似文献   

8.
Combinated ligand- and pharmacophore-based virtual screening approaches were used to discover novel potential pharmacophores acting as carbonic anhydrase (CA, EC 4.2.1.1) inhibitors (CAIs). A free database of commercially available compounds was screened through drug-like filters using a four-point pharmacophore, and followed by docking calculation within the active site of an X-ray structure of isoform CA II. One compound, bearing a trifluoro-dihydroxy-propanone moiety, showed an interesting, selective inhibitory activity in low micromolar range against this isoform versus CA I. The chemical originality of this new pharmacophore can represent an important bioisosteric alternative to the sulfonamido-based functionalities, thus leading to the development of a new class of CAIs.  相似文献   

9.
Carbonic anhydrases (CAs, EC 4.2.1.1) are wide-spread enzymes, present in mammals in at least 14 different isoforms. Some of these isozymes are cytosolic (CA I, CA II, CA III, CA VII, CA XIII), others are membrane-bound (CA IV, CA IX, CA XII and CA XIV), CA V is mitochondrial and CA VI is secreted in the saliva and milk. Three cytosolic acatalytic forms are also known (CARP VIII, CARP X and CARP XI). The catalytically active isoforms, which play important physiological and patho-physiological functions, are strongly inhibited by aromatic and heterocyclic sulfonamides. The catalytic and inhibition mechanisms of these enzymes are understood in great detail, and this greatly helped the design of potent inhibitors, some of which possess important clinical applications. The use of such CA inhibitors (CAIs) as antiglaucoma drugs are discussed in detail, together with the recent developments that led to isozyme-specific and organ-selective inhibitors. A recent discovery is connected with the involvement of CAs and their sulfonamide inhibitors in cancer: many potent CAIs were shown to inhibit the growth of several tumor cell lines in vitro and in vivo, thus constituting interesting leads for developing novel antitumor therapies. Future prospects for drug design of inhibitors of these ubiquitous enzymes are dealt with. Although activation of CAs has been a controversial issue for some time, recent kinetic, spectroscopic and X-ray crystallographic experiments offered an explanation of this phenomenon, based on the catalytic mechanism. It has been demonstrated recently, that molecules that act as carbonic anhydrase activators (CAAs) bind at the entrance of the enzyme active site participating in facilitated proton transfer processes between the active site and the reaction medium. In addition to CA II-activator adducts, X-ray crystallographic studies have been also reported for ternary complexes of this isozyme with activators and anion (azide) inhibitors. Structure-activity correlations for diverse classes of activators is discussed for the isozymes for which the phenomenon has been studied, i.e., CA I, II, III and IV. The possible physiological relevance of CA activation/inhibition is also addressed, together with recent pharmacological/ biomedical applications of such compounds in different fields of life sciences.  相似文献   

10.
We investigated a series of derivatized fullerenes possessing alcohol, amine, and amino acid pendant groups as inhibitors of the zinc enzymes carbonic anhydrases (CAs, EC 4.2.1.1). We discovered that fullerenes bind CAs with submicromolar—low micromolar affinity, despite the fact that these compounds do not possess moieties normally associated with CA inhibitors such as the sulfonamides and their isosteres, or the coumarins. The 13 different mammalian CA isoforms showed a diverse inhibition profile with these compounds. By means of computational methods we assessed the inhibition mechanism as being due to occlusion of the active site entrance by means of the fullerene cage (possessing dimension of the same order of magnitude as the opening of the enzyme cavity, of 1 nm). The pendant moieties to the fullerene cage make interactions with amino acid residues from the active site, among which His64, His94, His96, Val121, and Thr200. Fullerenes thus represent a totally new class of nanoscale CA inhibitors which may show applications for targeting physiologically relevant isoforms, such as the dominant CA II and the tumor-associated CA IX.  相似文献   

11.
Abstract

Grayanotoxin III (GTX3) was investigated for inhibition of all catalytically active mammalian carbonic anhydrase (CA, EC 4.2.1.1) isoforms, i.e. CA I to CA XIV. It showed micromolar inhibition (KIs of 8.01 and 6.13?µM) for cytosolic isoforms CA I and II, respectively. GTX3 showed a submicromolar inhibition (KIs in the range of 0.51–2.15?µM) for the remaining cytosolic (CA III, VII and XIII), membrane-associated/transmembrane (CA IV, IX, XII and XIV), mitochondrial (CA VA and CA VB) and secreted (CA VI) isoforms. This inhibition profile is very different from that of the sulfonamide CA inhibitors (CAIs), which possess different clinical applications. A molecular docking study for GTX3 within the active sites of CA I and II assisted to the understanding of molecular mechanism of the ligand. The interesting inhibition profile, coupled with various possibilities of interacting with the enzyme active site make this family of natural compounds attractive leads for designing novel chemotypes acting as CAIs.  相似文献   

12.
Review Article     
Carbonic anhydrases (CAs, EC 4.2.1.1) are wide-spread enzymes, present in mammals in at least 14 different isoforms. Some of these isozymes are cytosolic (CA I, CA II, CA III, CA VII, CA XIII), others are membrane-bound (CA IV, CA IX, CA XII and CA XIV), CA V is mitochondrial and CA VI is secreted in the saliva and milk. Three cytosolic acatalytic forms are also known (CARP VIII, CARP X and CARP XI). The catalytically active isoforms, which play important physiological and patho-physiological functions, are strongly inhibited by aromatic and heterocyclic sulfonamides. The catalytic and inhibition mechanisms of these enzymes are understood in great detail, and this greatly helped the design of potent inhibitors, some of which possess important clinical applications. The use of such CA inhibitors (CAIs) as antiglaucoma drugs are discussed in detail, together with the recent developments that led to isozyme-specific and organ-selective inhibitors. A recent discovery is connected with the involvement of CAs and their sulfonamide inhibitors in cancer: many potent CAIs were shown to inhibit the growth of several tumor cell lines in vitro and in vivo, thus constituting interesting leads for developing novel antitumor therapies. Future prospects for drug design of inhibitors of these ubiquitous enzymes are dealt with. Although activation of CAs has been a controversial issue for some time, recent kinetic, spectroscopic and X-ray crystallographic experiments offered an explanation of this phenomenon, based on the catalytic mechanism. It has been demonstrated recently, that molecules that act as carbonic anhydrase activators (CAAs) bind at the entrance of the enzyme active site participating in facilitated proton transfer processes between the active site and the reaction medium. In addition to CA II-activator adducts, X-ray crystallographic studies have been also reported for ternary complexes of this isozyme with activators and anion (azide) inhibitors. Structure-activity correlations for diverse classes of activators is discussed for the isozymes for which the phenomenon has been studied, i.e, CA I, II, III and IV. The possible physiological relevance of CA activation/inhibition is also addressed, together with recent pharmacological/biomedical applications of such compounds in different fields of life sciences.  相似文献   

13.
Infections caused by pathogens resistant to the available antimicrobial treatments represent nowadays a threat to global public health. Recently, it has been demonstrated that carbonic anhydrases (CAs) are essential for the growth of many pathogens and their inhibition leads to growth defects. Principal drawbacks in using CA inhibitors (CAIs) as antimicrobial agents are the side effects due to the lack of selectivity toward human CA isoforms. Herein we report a new class of CAIs, which preferentially interacts with microbial CA active sites over the human ones. The mechanism of action of these inhibitors was investigated against an important fungal pathogen, Cryptococcus neoformans, revealing that they are also able to inhibit CA in microbial cells growing in vitro. At our best knowledge, this is the first report on newly designed synthetic compounds selectively targeting β-CAs and provides a proof of concept of microbial CAs suitability as an antimicrobial drug target.  相似文献   

14.
The synthesis of a new class of sulfonamide carbonic anhydrase (CA, EC 4.2.1.1) inhibitors (CAIs), also possessing carboxylate/hydroxamate moieties in their molecule, is reported. These compounds may act on dual antitumor targets, the tumor-associated CA isozymes (CA IX) and some matrix metalloproteinases (MMPs). The compounds were prepared by an original method starting from iminodiacetic acid, and assayed as inhibitors of three isozymes, hCA I, II (cytosolic), and IX (transmembrane). The new derivatives showed weak inhibitory activity against isozyme I (K(I)s in the range of 95-8300 nM), were excellent to moderate CA II inhibitors (K(I)s in the range of 8.4-65 nM), and very good and selective CA IX inhibitors (K(I)s in the range of 3.8-26 nM). The primary sulfonamide moiety is a better zinc-binding group in the design of CAIs as compared to the carboxylate/hydroxamate one, but the presence of hydroxamate functionalities in the molecule of CAIs leads to selectivity for the tumor-associated isozyme IX over the ubiquitous, cytosolic isoform II.  相似文献   

15.
Polyfluorinated CAIs show very good inhibitory properties against different carbonic anhydrase (CA) isozymes, such as CA I, II, and IV, but such compounds have not been tested for their interaction with the transmembrane, tumor-associated isozyme CA IX. Thus, a series of such compounds has been obtained by attaching 2,3,5,6-tetrafluorobenzoyl- and 2,3,5,6-tetrafluorophenylsulfonyl- moieties to aromatic/heterocyclic sulfonamides possessing derivatizable amino moieties. Some of these compounds showed excellent CA IX inhibitory properties and also selectivity ratios favorable to CA IX over CA II, the other physiologically relevant isozyme with high affinity for sulfonamide inhibitors. The first subnanomolar and rather selective CA IX inhibitor has been discovered, as the 2,3,5,6-tetrafluorobenzoyl derivative of metanilamide showed an inhibition constant of 0.8 nM against hCA IX, and a selectivity ratio of 26.25 against CA IX over CA II. Several other low nanomolar CA IX inhibitors were detected among the new derivatives reported here. The reported derivatives constitute valuable candidates for the development of novel antitumor therapies based on the selective inhibition of tumor-associated CA isozymes.  相似文献   

16.
Carbonic anhydrases (CAs, EC 4.2.1.1) are metalloenzymes that catalyze the reversible hydration of carbon dioxide and bicarbonate. Their pivotal role in metabolism, ubiquitous nature, and multiple isoforms (CA I–XIV) has made CAs an attractive drug target in clinical applications. The usefulness of CA inhibitors (CAIs) in the treatment of glaucoma and epilepsy are well documented. In addition several isoforms of CAs (namely, CA IX) also serve as biological markers for certain tumors, and therefore they have the potential for useful applications in the treatment of cancer. This is a structural study on the binding interactions of the widely used CA inhibitory drugs brinzolamide (marketed as Azopt®) and dorzolamide (marketed as Trusopt®) with CA II and a CA IX-mimic, which was created via site-directed mutagenesis of CA II cDNA such that the active site resembles that of CA IX. Also the inhibition of CA II and CA IX and molecular docking reveal brinzolamide to be a more potent inhibitor among the other catalytically active CA isoforms compared to dorzolamide. The structures show that the tail end of the sulfonamide inhibitor is critical in forming stabilizing interactions that influence tight binding; therefore, for future drug design it is the tail moiety that will ultimately determine isoform specificity.  相似文献   

17.
A new series of 1,3,4-thiadiazole-2-thione derivatives have been prepared and assayed for the inhibition of three physiologically relevant carbonic anhydrase (CA, EC 4.2.1.1) isozymes, the cytosolic human isozymes I and II, and the transmembrane, tumor-associated hCA IX. Against hCA I the investigated thiones, showed inhibition constants in the range of 2.55-222 microM, against hCA II in the range of 2.0-433 microM, and against hCA IX in the range of 1.25-148 microM. Compound 5c, 4-(4,5-dihydro-5-thioxo-1,3,4-thiadiazol-2-yl)-1-(5-nitro-2-oxoindolin-3-ylidene)semicarbazide showed interesting inhibition of the tumor-associated hCA IX with K(I) value of 1.25 microM, being the first non-sulfonamide type inhibitor of such activity. This result is rather important taking into consideration the known antitumor activity of thiones. In addition, docking of the tested compounds into CA II active site was performed in order to predict the affinity and orientation of these compounds at the isozyme active site. The results showed similar orientation of the target compounds at CA II active site compared with reported sulfonamide type CAIs with the thione group acting as a zinc-binding moiety.  相似文献   

18.
We investigated the inhibitory activity of sulfonamides incorporating adamantyl moieties against the physiologically relevant human (h) CA (EC 4.2.1.1) isoforms hCA I, II III (cytosolic), IX and XII (transmembrane, tumor-associated). The presence of a benzenesulfonamide instead of an 1,3,4-thiadiazole-sulfonamide fragment in the molecule of CA inhibitors (CAIs) drastically affects both inhibition efficacy and binding within the enzyme active site, as rationalized by means of X-ray crystallography of the adduct of hCA II with 4-(1-adamantylcarboxamidomethyl)benzenesulfonamide. Comparing the present X-ray structure with that of the corresponding 1,3,4-thiadiazole-sulfonamide compound possessing the 1-adamantylcarboxamide moiety, important differences of binding emerged, which explain the highly different inhibition profile of the two compounds against the investigated CA isoforms, most of which (CA I, II, IX and XII) are important drug targets.  相似文献   

19.
A set of compounds incorporating carbon-based zinc-binding groups (ZBGs), of the type PhX (X?=?COOH, CONH2, CONHNH2, CONHOH, CONHOMe), and the corresponding derivatives with sulphur(VI)-based ZBGs (X?=?SO3H, SO2NH2, SO2NHNH2, SO2NHOH, SO2NHOMe) were tested as inhibitors of all mammalian isoforms of carbonic anhydrase (CA, EC 4.2.1.1), CA I–XV. Three factors connected with the ZBG influenced the efficacy as CA inhibitor (CAI) of the investigated compounds: (i) the pKa of the ZBG; (ii) its geometry (tetrahedral, i.e. sulphur-based, versus trigonal, i.e. carbon-based ZBGs), and (iii) orientation of the organic scaffold induced by the nature of the ZBG. Benzenesulphonamide was the best inhibitor of all isoforms, but other ZBGs led to interesting inhibition profiles, although with an efficacy generally reduced when compared to the sulphonamide. The nature of the ZBG also influenced the CA inhibition mechanism. Most of these derivatives were zinc binders, but some of them (sulfonates, carboxylates) may interact with the enzyme by anchoring to the zinc-coordinated water molecule or by other inhibition mechanisms (occlusion of the active site entrance, out of the active site binding, etc.). Exploring structurally diverse ZBGs may lead to interesting new developments in the field of CAIs.  相似文献   

20.
Carbonic anhydrase inhibitors (CAIs) are a class of pharmaceuticals used as anti-glaucoma agents, diuretics and anti-epileptics. We report here the inhibitory capacities of benzenesulphonamides, cyclitols and phenolic compounds 1–11 against three human CA isozymes (hCA I, hCA II and hCA VI) and bovine skeletal muscle carbonic anhydrase III (bCA III). The four isozymes showed quite diverse inhibition profiles with Ki values ranging from low micromolar to millimolar concentrations against all isoenzymes. Compound 5 and 6 had more powerful inhibitory action against hCA I and very similar action against hCA II and hCA VI as compared with acetazolamide (AZA) and sulphapyridine (SPD), specific CAIs. Probably the inhibition mechanism of the tested compounds is distinct of the sulphonamides with RSO2NH2 groups and similar to that of the coumarins/lacosamide, i.e. binding to a distinct part of the active site than that where sulphonamides bind. These data may lead to drug design campaigns of effective CAIs possessing a diverse inhibition mechanism compared to other sulphonamide/sulphamate inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号