首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Rapid cooling after acute hyperthermia may cause a sustained increase in body temperature and exacerbate intestinal damage in pigs. Therefore, the study objective was to evaluate the temporal effects of rapid and gradual cooling on body temperature response and intestinal integrity after acute hyperthermia in pigs. In three repetitions, 54 pigs [83.3 ± 6.7 kg initial body weight (BW)], balanced by sex were exposed to thermoneutral conditions for 6 h (TN; n = 6 pigs/repetition; 21.1 ± 2.0°C), or heat stress conditions (HS; 39.3 ± 1.6°C) for 3 h, followed by a 3 h recovery period of gradual cooling [HSGC; n = 6 pigs/repetition; gradual decrease from HS to TN conditions] or rapid cooling [HSRC; n = 6 pigs/repetition; rapid TN exposure and cold water (4.0°C) dousing every 30 min for 1.5 h]. Feed was withheld throughout the entire 6 h period, but water was provided ad libitum. Gastrointestinal (TGI) and rectal (TR) temperatures were recorded every 15 min during the HS and recovery periods. Six pigs per repetition (n = 2/treatment) were euthanized and jejunal and ileal samples were collected for histology immediately after (d 0), 2 d after, and 4 d after the recovery period. Data were analyzed using PROC MIXED in SAS 9.4. Overall, rapid cooling reduced TR and TGI (P < 0.01; 0.95°C and 0.74°C, respectively) compared to gradual cooling. Jejunal villus height was reduced overall (P = 0.02; 14.01%) in HSGC compared to HSRC and TN pigs. Jejunal villus height-to-crypt depth ratio was reduced overall (P = 0.05; 16.76%) in HSGC compared to TN pigs. Ileal villus height was reduced overall (P < 0.01; 16.95%) in HSGC compared to HSRC and TN pigs. No other intestinal morphology differences were detected. In summary, HSRC did not cause a sustained increase in body temperature and did not negatively impact biomarkers of intestinal integrity in pigs.  相似文献   

2.
Boars from sows with elevated plasma cortisol during pregnancy have shorter anogenital distance (AGD), a trait associated with subfertility. Since gestating sows often experience summer heat stress (HS), a mouse model was used to evaluate the effect of prenatal HS on AGD and fertility; efficacy of the heat stress-mitigating supplement Artemisia absinthium (AB) was also evaluated. Dams were treated from d 8–18 of gestation, residing in ambient temperatures from 0700 to 1900 h. From 1900 to 0700 h females were exposed to 34.13±0.27 °C (HS) with access to water (HSW; n=9), HS with access to a 1% w/v decoction of AB (HSA; n=9), 20.81±0.20 °C (thermal neutral; TN) with water (TNW; n=10) or TN with AB (TNA; n=10). Daily liquid consumption was measured from d 6–18, and tail temperature was recorded at 0700 and 1900 h from d 8–18. Progeny weight and AGD were recorded at birth and weaning. At maturity, males were mated to non-littermate females from each treatment; these females were euthanized after 16 d of TN gestation. Reproductive traits were compared among all male/female treatment combinations; testes were weighed. Average liquid intake differed among treatments with HS and AB animals drinking more (P<0.0004). A treatment by time interaction for tail temperature (P<0.001) was observed; HS increased tail temperature of HSA and HSW animals similarly compared to TNA and TNW. Treatment affected (P<0.01) male birth AGD (HSW shortest; P<0.07). At maturity, HSW males also had the smallest testes (P<0.02). However, we observed no differences in fertility (P>0.10). These data indicate that in utero HS decreases both male birth AGD and adult testis size, effects which maternal AB consumption mitigates.  相似文献   

3.
The aim of this study was to investigate the effect of time left alone on dog behaviour and cardiac activity. Twelve privately owned dogs, with no history of separation related behaviour problems, were video-recorded on three different occasions when left alone in their home environment. The treatments lasted for 0.5 h (T0.5); 2 h (T2) and 4 h (T4). Video-recording started 10 min before the owner left the house and continued until 10 min after the owner returned, so that interactions between dog and owner as well as behaviour during separation could be studied. Data on heart rate (HR) and heart rate variability (HRV) were collected within the same time period in each treatment. In addition to analysing behaviours separately, behaviours were also grouped together and defined as new variables; physically active, attentive behaviour, vocal, interaction initiated by owner and interaction initiated by dog. There were no differences in behaviour between treatments at equivalent time intervals until the owner returned, although a number of differences were observed at reunion with the owner. Dogs showed a higher frequency of physical activity (P < 0.05) and attentive behaviour (P < 0.01) in T2 (0.37 ± 0.07; 0.52 ± 0.08, mean frequency of occurrence/15 s ± SE) and T4 (0.48 ± 0.08; 0.48 ± 0.07) compared to T0.5 (0.20 ± 0.07; 0.21 ± 0.05). They also showed more tail wagging (P < 0.01) and interacted more with their owners (P < 0.01) in T2 (0.27 ± 0.08; 0.47 ± 0.09) and T4 (0.26 ± 0.04; 0.42 ± 0.09) compared to T0.5 (0.09 ± 0.04; 0.14 ± 0.03). After a longer time of separation, the dogs also showed higher frequencies of lip licking (P < 0.05) and body shaking (P < 0.05) at the owner's return (T0.5 = 0.09 ± 0.05; T2 = 0.24 ± 0.08; T4 = 0.27 ± 0.06 and T0.5 = 0.03 ± 0.01; T2 = 0.08 ± 0.03; T4 = 0.07 ± 0.01, respectively). There was a tendency for higher HR (P < 0.1) during the first and second minute after reunion in T2 (127.6 ± 1.25, mean bpm ± SE; 111.3 ± 1.24) compared to T0.5 (106.2 ± 1.06; 87.5 ± 1.02). According to the results of this study, the effect of time left alone was shown by a more intense greeting behaviour by the dog towards their owner as well as by a higher frequency of physical activity and attentive behaviour when the owner returned, already after 2 h of separation. Although this study cannot distinguish between whether dogs were aware of the length of time they were alone (but did not signal it) or whether they were unaware until reminded of it by the return of their owner, it does confirm that dogs are affected by the duration of time at home alone.  相似文献   

4.
The aim of the investigation was to verify our hypothesis that extreme tolerance of newborn rodents to anoxia is determined by their ability to maintain reduced body temperature and to keep on gasping.Newborn Wistar rats were used. In separate experiments we checked (1) effect of extreme thermal conditions on rectal temperature (Tre) of the newborns in their nests; (2) effect of ambient temperature (Ta) on oxygen consumption; (3) effects of controlled changes in Tre on thermoregulatory and respiratory responses to anoxia and on anoxia tolerance.In their nests rat pups controlled Tre at 32–36 °C while the TreTa difference changed within a range of 1–20 °C. The lowest oxygen consumption of ∼24 ml O2 kg−1 min−1 was recorded at Ta of 32 °C. Pups, exposed to anoxia at their normal Tre of 33 °C, were able to decrease Tre by another 1.7 °C and they kept on extremely slow and quiescent gasping for scheduled 25 min. In contrast, rats at Tre of 37 °C and 39 °C reached a critical phase of accelerated and shallow gasping after 14.95±0.40 min and 9.25±0.30 min, respectively.In conclusion, reduced Tre and unique gasping ability make newborn rats extremely tolerant to asphyxia.  相似文献   

5.
While continuous cooling strategies may induce some ergonomic problems to occupational workers, cooling between work bouts may be an alternative for cooling them down in hot environments. The purpose of this study was to assess the effects of wearing a newly designed hybrid cooling vest (HCV) between two bouts of exercise. Inside a climatic chamber set at an air temperature of 37 °C and a relative humidity of 60%, twelve male participants underwent two bouts of intermittent exercise interspersed with a 30 min between-bout recovery session, during which HCV or a passive rest without any cooling (PAS) was administered. The results indicated that thermoregulatory, physiological, and perceptual strains were significantly lower in HCV than those in PAS during the recovery session (p≤0.022), which were accompanied with a large effect of cooling (Cohen's d=0.84–2.11). For the second exercise bout, the exercise time following HCV (22.13±12.27 min) was significantly longer than that following PAS (11.04±3.40 min, p=0.005, d=1.23) During this period, core temperature Tc was significantly lower by 0.14±0.0.15 °C in HCV than that in PAS. The heart rate drift over time was declined by 2±2 bpm min−1 (p=0.001, d=1.00) and the rise in physiological strain index was reduced by 0.11±0.12 unit min−1 (p=0.010, d=0.96) following the use of HCV. These findings suggested that using HCV could accelerate between-bout recovery and improve subsequent exercise performance by the enlarged body core temperature margin and blunted cardiovascular drift.  相似文献   

6.
Heat stress (HS) adversely influences productivity and welfare of dairy cattle. We hypothesized that the thermoregulatory mechanisms vary depending on the exposure time to HS, with a cumulative effect on the adaptive responses and thermal strain of the cow. To identify the effect of HS on adaptive thermoregulatory mechanisms and predictors of caloric balance, Holstein cows were housed in climate chambers and randomly distributed into thermoneutral (TN; n=12) or HS (n=12) treatments for 16 days. Vaginal temperature (VT), rectal temperature (Tre), respiratory rate (RR), heart rate (HR), and dry matter intake (DMI) were measured. The temperature and humidity under TN were 25.9±0.2 °C and 73.0±0.8%, respectively, and under HS were 36.3±0.3 °C and 60.9±0.9%, respectively. The RR of the HS cows increased immediately after exposure to heat and was higher (76.02±1.70bpm, p<0.001) than in the TN (39.70±0.71bpm). An increase in Tre (39.87±0.07 °C in the HS vs. 38.56±0.03 °C in the TN, p<0.001) and in VT (39.82±0.10 °C in the HS vs. 38.26±0.03 °C in the TN, p<0.001) followed the increase in RR. A decrease (p<0.05) in HR occurred in the HS (62.13±0.99bpm) compared with the TN (66.23±0.79bpm); however, the magnitude of the differences was not the same over time. The DMI was lower in HS cows from the third day (8.27±0.33 kg d−1 in the HS vs. 14.03±0.29 kg d−1 in the TN, p<0.001), and the reduction of DMI was strongly affected (r=−0.65) by changes in the temperature humidity index. The effect of environmental variables from the previous day on physiological parameters and DMI was more important than the immediate effect, and ambient temperature represented the most determinant factor for heat exchange. The difference in the responses to acute and chronic exposure to HS suggests an adaptive response. Thus, intense thermal stress strongly influence thermoregulatory mechanisms and the acclimation process depend critically on heat exposure time.  相似文献   

7.
The purpose of this study was to investigate the effect of active pre-warming combined with three regimens of fluid ingestion: (1) fluid replacement equal to sweat rate (FF), (2) fluid replacement equal to half the sweat rate (HF), and (3) no fluid replacement (NF). Eight males cycled to voluntary fatigue at 70% of peak power output (PPO) in 31.3±0.4°C, 63.3±1.2% relative humidity in a randomised fashion in either of FF, HF or NF conditions. For each trial the time to fatigue test was preceded by 2×20 min active pre-warming periods where subjects also cycled at 70% PPO. Subjects commenced each exercise period with identical rectal temperatures (Tre). The rate of increase in Tre for each condition during the first 20 min of active pre-warming was not different. However, the rate of increase in Tre was significantly reduced in the second active pre-warming period for all fluid conditions but no differences between conditions were noted. During the fatigue test, the rate of increase in Tre for FF was 0.29°C h−1 and 0.58°C h−1 for HF but were not significantly different. The rate of increase in Tre for the NF trial was 0.92°C h−1 and was significantly higher compared to the FF trial. Overall mean skin temperatures and mean body temperatures were higher for NF compared to FF and HF. The rate of heat storage during the fatigue test was similar for FF (80.1±11.7 W m−2) and HF (73.0±13.7 W m−2) conditions but increased to 155.8±31.2 W m−2 (P<0.05) in the NF trial. The results indicate that fluid ingestion equal to sweat rate has no added benefit over fluid ingestion equal to half the sweat rate in determining time to fatigue over 40 min of sub-maximal exercise in warm humid conditions. Fluid restriction accelerates the rate of increase in Tre after 40 min of exercise, thereby reducing the time to fatigue. The data support the model that anticipation of impending thermal limits reduces efferent command to working skeletal muscle ensuring cellular preservation.  相似文献   

8.
Body temperature (Tb) represents one of the key parameters in ecophysiological studies with focus on energy saving strategies. In this study we therefore comparatively evaluated the usefulness of two types of temperature-sensitive passive transponders (LifeChips and IPTT-300) and one data logger (iButton, DS1922L) mounted onto a collar to measure Tb in the field. First we tested the accuracy of all three devices in a water bath with water temperature ranging from 0 to 40 °C. Second, we evaluated the usefulness of the LifeChips and the modified iButtons for measuring Tb of small heterothermic mammals under field conditions. For this work we subcutaneously implanted 14 male edible dormice (Glis glis) with transponders, and equipped another 14 males with data loggers to simultaneously record Tb and oxygen consumption with a portable oxygen analyzer (Oxbox). In one individual we recorded Tb with both devices and analyzed recorded Tb patterns.LifeChips are able to measure temperature within the smallest range from 25 to 40 °C with an accuracy of 0.07±0.12 °C. IPTT-300 transponders measured temperature between 10 and 40 °C, but accuracy decreased considerably at values below 30 °C, with maximal deviations of nearly 7 °C. An individual calibration of each transponder is therefore needed, before using it at low Tbs. The accuracy of the data logger was comparatively good (0.12±0.25 °C) and stable over the whole temperature range tested (0–40 °C). In all three devices, the repeatability of measurements was high.LifeChip transponders as well as modified iButtons measured Tb reliably under field conditions. Simultaneous Tb-recordings in one edible dormouse with an implanted LifeChip and a collar-mounted iButton revealed that values of both measurements were closely correlated. Taken together, we conclude that implanted temperature-sensitive transponders represent an appropriate and largely non-invasive method to measure Tb also under field conditions.  相似文献   

9.
Most reptiles thermoregulate to achieve body temperatures needed for biological processes, such as digestion and growth. Temperatures experienced during embryogenesis may also influence post-hatching growth rate, potentially through influencing post-hatching choice of temperatures. We investigated in laboratory settings whether embryonic temperatures (constant 18 °C, 21 °C and 22 °C) influence selected body temperatures (Tsel) of juvenile tuatara (Sphenodon punctatus), providing a possible mechanism for differences in growth rates. We found that incubation temperature does not influence Tsel. Although the average daily mean Tsel was 21.6 ± 0.3 °C, we recorded individual Tsel values up to 33.5 °C in juvenile tuatara, which is higher than expected and above the panting threshold of 31–33 °C reported for adults. We found diel patterns of Tsel of juvenile tuatara, observing a general pattern of two apparent peaks and troughs per day, with Tsel being significantly lower around dawn and at 1500 h than any other time. When comparing our results with other studies on tuatara there is a remarkable consistency in mean Tsel of ~ 21 °C across tuatara of different ages, sizes and acclimatization histories. The ability of juvenile tuatara to withstand a wide range of temperatures supports their former widespread distribution throughout New Zealand and warrants further investigation into their plasticity to withstand climate warming, particularly where they have choices of habitat and the ability to thermoregulate.  相似文献   

10.
This study was conducted to evaluate the effects of supplemental rumen-protected capsule (RPC) on animal performance, serological indicators, and serum heat shock protein 70 (HSP70) of lactating Holstein cows under heat stress (HS). During summer months, 30 healthy multiparous lactating Holstein cows with a parity number of 3.1 ± 0.44, 70 ± 15 d in milk, an average body weight of 622 ± 62 kg, and an average milk yield of 32.28 ± 0.96 kg/d, were used. The cows were randomly allocated to two groups: a control group and an RPC-supplemented group (0.13373 kg K2SO4, 0.02488 kg vitamin C, 0.021148 kg niacin, and 0.044784 kg gamma-aminobutyric acid per cow). During the 42-d experiment, ambient air temperature and relative humidity inside and outside the barn were recorded hourly every day for the determination of temperature-humidity index (THI). Milk and blood samples were collected every week, and body weight and body condition scoring were measured on day 0. Based on the THI values, the animals had moderate HS. On day 42, the RPC group had lower HSP70, adrenocorticotropic hormone (P = 0.0001), lactate dehydrogenase (P = 0.0338), and IL-6 (P = 0.0724) levels than the control group, with no significant differences in creatine kinase, glucocorticoid, or IL-2 levels. Milk yield, energy-corrected milk, and dry matter intake were higher in RPC than in the control group (P = 0.0196). There were no significant differences in milk fat or daily protein levels between the two groups; however, daily protein and milk fat levels were higher in the RPC group than in the control group (P = 0.0114 and P = 0.0665, respectively). Somatic cell counts were no different between the two groups. In conclusion, RPC may alleviate HS and improve dairy cow performance.  相似文献   

11.
12.
The red-tailed phascogale is a small arboreal dasyurid marsupial that inhabits semi-arid to arid regions of Western Australia's wheat belt. Its body mass (34.7 g) is only ~15% of that predicted based on its phylogenetic position among other dasyuromorphs; we interpret this as an adaptation to its scansorial and semi-arid/arid lifestyle. The standard physiology of this species at a thermoneutral ambient temperature of 30 °C conforms to that of other dasyurid marsupials; body temperature (34.7 ± 0.37 °C), basal metabolic rate (0.83 ± 0.076 mL O2 g?1 h?1), evaporative water loss (1.68 ± 0.218 mg H2O g?1 h?1) and wet thermal conductance (3.8 ± 0.26 J g?1 h?1 °C?1) all fall within the 95% predication limits for the respective allometric relationships for other dasyurid species. Thermolability confers an energy savings at low Ta and water savings at high Ta. Torpor, observed at low Ta, was found to be more beneficial for energy savings than for water economy. The red-tailed phascogale therefore has a physiology suitable for the challenges of arid environments without any obvious requirement for adaptations to its scansorial lifestyle, other than its considerably lower-than-expected body mass.  相似文献   

13.
Previously, we reported on the usefulness of pentafluorobenzyl bromide (PFB-Br) for the simultaneous derivatization and quantitative determination of nitrite and nitrate in various biological fluids by GC–MS using their 15N-labelled analogues as internal standards. As nitrite may be distributed unevenly in plasma and blood cells, its quantification in whole blood rather than in plasma or serum may be the most appropriate approach to determine nitrite concentration in the circulation. So far, GC–MS methods based on PFB-Br derivatization failed to measure nitrite in whole blood and erythrocytes because of rapid nitrite loss by oxidation and other unknown reactions during derivatization. The present article reports optimized and validated procedures for sample preparation and nitrite derivatization which allow for reliable quantification of nitrite in human whole blood and erythrocytes. Essential measures for stabilizing nitrite in these samples include sample cooling (0–4 °C), hemoglobin (Hb) removal by precipitation with acetone and short derivatization of the Hb-free supernatant (5 min, 50 °C). Potassium ferricyanide (K3Fe(CN)6) is useful in preventing Hb-caused nitrite loss, however, this chemical is not absolutely required in the present method. Our results show that accurate GC–MS quantification of nitrite as PFB derivative is feasible virtually in every biological matrix with similar accuracy and precision. In EDTA-anticoagulated venous blood of 10 healthy young volunteers, endogenous nitrite concentration was measured to be 486 ± 280 nM in whole blood, 672 ± 496 nM in plasma (CP), and 620 ± 350 nM in erythrocytes (CE). The CE-to-CP ratio was 0.993 ± 0.188 indicating almost even distribution of endogenous nitrite between plasma and erythrocytes. By contrast, the major fraction of nitrite added to whole blood remained in plasma. The present GC–MS method is useful to investigate distribution and metabolism of endogenous and exogenous nitrite in blood compartments under basal conditions and during hyperemia.  相似文献   

14.
《Process Biochemistry》2014,49(8):1288-1296
This study details on cloning and characterization of Cu,Zn superoxide dismutase (Ca–Cu,Zn SOD) from a medicinally important plant species Curcuma aromatica. Ca–Cu,Zn SOD was 692 bp with an open reading frame of 459 bp. Expression of the gene in Escherichia coli cells followed by purification yielded the enzyme with Km of 0.047 ± 0.008 μM and Vmax of 1250 ± 24 units/mg of protein. The enzyme functioned (i) across a temperature range of −10 to +80 °C with temperature optima at 20 °C; and (ii) at pH range of 6–9 with optimum activity at pH 7.8. Ca–Cu,Zn SOD retained 50% of the maximum activity after autoclaving, and was stable at a wide storage pH ranging from 3 to 10. The enzyme tolerated varying concentrations of denaturating agent, reductants, inhibitors, trypsin, was fairly resistant to inactivation at 80 °C for 180 min (kd, 6.54 ± 0.17 × 10−3 min−1; t1/2, 106.07 ± 2.68 min), and had midpoint of thermal transition (Tm) of 70.45 °C. The results suggested Ca–Cu,Zn SOD to be a kinetically stable protein that could be used for various industrial applications.  相似文献   

15.
《Journal of Asia》2014,17(3):349-354
Temperature-dependent development of Spodoptera exigua (Hübner) were evaluated at eight constant temperatures of 12, 15, 20, 25, 30, 33, 34 and 36 °C with a variation of 0.5 °C on sugar beet leaves. No development occurred at 12 °C and 36 °C. Total developmental time varied from 120.50 days at 15 °C to 14.50 days at 33 °C. As temperature increased from 15 °C to 33 °C, developmental rate (1/developmental time) of S. exigua increased but declined at 34 °C. The lower temperature threshold (Tmin) was estimated to be 12.98 °C and 12.45 °C, and the thermal constant (K) was 294.99 DD and 311.76 DD, using the traditional and Ikemoto–Takai linear models, respectively. The slopes of the Ikemoto–Takai linear model for different immature stages were different, violating the assumption of rate isomorphy. Data were fitted to three nonlinear models to predict the developmental rate and estimate the critical temperatures. The Tmin values estimated by Lactin-2 (12.90 °C) and SSI (13.35 °C) were higher than the value estimated by Briere-2 (8.67 °C). The estimated fastest development temperatures (Tfast) by the Briere-2, Lactin-2 and SSI models for overall immature stages development of S. exigua were 33.4 °C, 33.9 °C and 32.4 °C, respectively. The intrinsic optimum temperature (TΦ) estimated from the SSI model was 28.5 °C, in which the probability of enzyme being in its native state is maximal. The upper temperature threshold (Tmax) values estimated by these three nonlinear models varied from 34.00 °C to 34.69 °C. These findings on thermal requirements can be used to predict the occurrence, number of generations and population dynamics of S. exigua.  相似文献   

16.
17.
Tensiomyography is a non-invasive method of neuromuscular assessment used to measure muscle action characteristics, muscle tone, and muscle fiber type, and provides information on acute and chronic responses of muscle to different training loads. The aims of the present study were: to analyse differences in muscle response and mechanical characteristics of two major muscles of the lower extremity in a large group of Spanish soccer players according to playing position, and to provide group norms against which clinical findings may be compared. Data were collected from 78 professional soccer players (age 26.6 ± 4.4 years; height: 179.2 ± 5.3 cm; body mass: 75.8 ± 5.3 kg). Tensiomyography was recorded from the rectus femoris (RF) and biceps femoris (BF) muscles after 2 days without take part in any strenuous exercise or training. Five tensiomyographic parameters were analyzed: maximal displacement (Dm), contraction time (Tc), sustain time (Ts), delay time (Td), and half-relaxation time (Tr). A good to excellent intra-session reliability was found for all contractile parameters (ICC ranged from 0.78 to 0.95). No significant differences between players of any position were observed in absolute values of BF. However, significant differences were observed for Tc, Tr and Ts between the different playing positions on RF (P < 0.05, effect size ranged from 1.3 to 1.6). Professional soccer players showed muscles with ability to rapidly generate force during contractions. The neuromuscular profile provided could help in identifying the normative data that are important for the different positions in order to optimize the training and recovery process of each individual player.  相似文献   

18.
Juvenile Spinibarbus sinensis (n = 48, body length, 5.86 ± 0.10 cm, 25 °C) were fasted for 0, 0.5, 1, 2, 4 and 6 weeks. The fast-start performances of the experimental fish were assessed using high-speed video photography and the locomotive kinematics analysis. The morphological parameters including tail height (H2), tail length (L2), lateral body area (S1), median fin area (S2), dorsal cross section area (S3) and tail cross section area (S4) were also measured using TpsDig and the Photoshop. The results showed that 6 week starvation resulted in significant decreases in the escape distance (d), maximum linear velocity (Vmax) and maximum linear acceleration (amax) of center of mass in Stage 1 and Stage 2 of fast-start process (P < 0.05), however there were two relatively sTable phases in the Vmax and d, during the week 1–2 (Vmax = 0.67 ± 0.06 mm/ms; d = 8.86 ± 0.73 mm) and week 4–6 (Vmax = 0.31 ± 0.04 mm/ms; d = 3.70 ± 0.56 mm). When compared with the control group (0 week starvation group), only the 6 week starvation group showed the significantly different response time (t) with average t = 9.20 ± 0.37 ms in week 1–4. There were no significant difference in mass center turning angles at first stage (Ta1) , second stage (Ta2) and the sum of two stages (Ta(1+2)) was also not different (P > 0.05). The fish did not show any directional preference for left or right during escape turning, and all of the related parameters also remained unchanged among treatment group (P > 0.05). The areas of dorsal body cross-section decreased more acutely (P < 0.05) than caudal body cross-section (45.4% vs 38.0%) during the entire starvation period while no significant differences were observed in both the tail height and tail length among all treatment groups (P > 0.05). The results indicated that fast-start performance of juvenile S. sinensis is affected by the starvation; metabolic energy related traits such as the maximum linear velocity and the maximum linear acceleration decreased significantly after starvation; whereas traits with no direct link to metabolic energy such as the response time and turning angle remained unchanged during starvation. The lack of starvation induced change in the maneuverability of the fish suggests that fast-start ability related to escape strategy is relatively well conservative in juvenile S. sinensis.  相似文献   

19.
There is growing interest in developing high-yield and low-cost production of xylanolytic enzymes for industrial applications using agroindustrial byproducts. A native strain of Aspergillus niger GS1 was used to produce β-xylosidase (EC 3.2.1.37) on solid state fermentation using corn pericarp (CP) with innovative alkaline electrolyzed water (AEW) pretreatment at room temperature. β-xylosidase was purified by ammonium sulfate fractionation followed by anion exchange and hydrophobic interaction chromatographies. β-Xylosidase showed a molecular weight of 111 kDa, isoelectric point of 5.35 and specific activity of 386.7 U (mg protein)?1, using p-nitrophenyl-β-d-xylopyranoside as substrate, at pH 5 and 60 °C, and optimal activity at pH 4.5. Optimal temperature was 65 °C, showing full activity after 1 h at 60 °C. Activity was reduced by 1 mM β-mercaptoethanol (55.6 ± 0.1%), and enhanced by 1 mM SDS (11.0 ± 0.03%). Km and Vmax were 6.1 ± 0.9 mM and 1364 ± 105 U (mg protein)?1, respectively, whereas kcat was 5.1 s?1. A predominant α-helix (41%) was determined from circular dichroism on β-xylosidase, while thermal transition profiles produced a Tm of 54.1 ± 5.8 °C, enthalpy change for unfolding of 67.4 ± 6.7 kJ/mol, and onset temperature of 37 °C. Pre-treatment of CP using AEW is an ecologically friendly alternative to chemical and heat treatments for the production of relatively high levels of β-xylosidase.  相似文献   

20.
The effects of heating rate (HR) on the performance of two-phase (batch followed by fed-batch) high cell-density cultivations (HCDC) of E. coli DH5α for the production of plasmid DNA (pDNA) were investigated. Optimal temperatures for the HCDC, as selected from shake flask experiments at constant temperatures between 30 and 45 °C, were 35 °C for biomass accumulation in the batch phase and 42 °C for inducing pDNA replication during the fed-batch. In HCDC the temperature was increased at HR of 0.025, 0.05, 0.10 and 0.25 °C/min and the performance of the cultivations were compared to a HCDC run at constant temperature (35 °C). Compared to constant 35 °C, heat-induced HCDC accumulated up to 50% less biomass within the same cultivation time and acetate and glucose accumulated to high concentrations. The overall specific productivity (QP) and average pDNA yield (Yp/x) in HCDC at 35 °C were 0.22 ± 0.02 mg/g h and 5.3 ± 0.00 mg/g, respectively. Such parameters were maximum at a HR of 0.05 °C/min, reaching 0.56 ± 0.06 mg/g h and 9.3 ± 0.6 mg/g, respectively. At HR above 0.5 °C/min, Yp/x remained relatively constant, whereas QP tended to decrease. The supercoiled pDNA fraction remained around 80% at all HR. Bioreactors were equipped with a capacitance/conductivity probe. In all cases biomass concentration correlated closely with the capacitance signal and acetate and glucose accumulation was accompanied by an increase in the conductivity signal. Thus, it was possible to calculate acetate and biomass concentrations, as well as μ, from online capacitance and conductivity signals using estimators. Altogether, in this study it was shown that it is possible to maximize pDNA productivity by choosing an appropriate HR and that relevant parameters can be estimated by capacitance/conductivity signals, which are useful for better process control and development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号