首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
AIM: Formulation of an inexpensive cane molasses medium for improved cell-bound phytase production by Pichia anomala. METHODS AND RESULTS: Cell-bound phytase production by Pichia anomala was compared in synthetic glucose-beef extract and cane molasses media. The yeast was cultivated in 250 ml flasks containing 50 ml of the medium, inoculated with a 12 h-old inoculum (3 x 10(6) CFU ml(-1)) and incubated at 25 degrees C for 24 h at 250 rev min(-1). Different cultural parameters were optimized in cane molasses medium in batch fermentation. The cell-bound phytase content increased significantly in cane molasses medium (176 U g(-1) dry biomass) when compared with the synthetic medium (100 U g(-1) dry biomass). In fed-batch fermentation, a marked increase in biomass (20 g l(-1)) and the phytase yield (3000 U l(-1)) were recorded in cane molasses medium. The cost of production in cane molasses medium was pound 0.006 per 1000 U, which is much lower when compared with that in synthetic medium (pound 0.25 per 1000 U). CONCLUSIONS: An overall 86.6% enhancement in phytase yield was attained in optimized cane molasses medium using fed-batch fermentation when compared with that in synthetic medium. Furthermore, the production in cane molasses medium is cost-effective. SIGNIFICANCE AND IMPACT OF THE STUDY: Phytase yield was improved in cane molasses when compared with the synthetic medium, and the cost of production was also significantly reduced. This enzyme can find application in the animal feed industry for improving the nutritional status of feed and combating environmental pollution.  相似文献   

2.
By cultivating Geobacillus thermoleovorans in shake flasks containing cane molasses medium at 70 degrees C, the fermentation variables were optimized by 'one variable at a time' approach followed by response surface methodology (RSM). The statistical model was obtained by central composite design (CCD) using three variables (cane-molasses, urea and inoculum density). An overall 1.6- and 2.1-fold increase in enzyme production was achieved in the optimized medium in shake flasks and fermenter, respectively. The alpha-amylase titre increased significantly in cane-molasses medium (60 U ml(-1)) as compared to that in the synthetic medium (26 U ml(-1)). Thus the cost of enzyme produced in cane molasses medium (0.823 euros per million U) was much lower than that produced in the synthetic starch-yeast extract-tryptone medium (18.52 euros per million U). The shelf life of bread was improved by supplementing dough with alpha-amylase, and thus, the enzyme was found to be useful in preventing the staling of bread. Reducing sugars liberated from 20% and 30% raw pearl millet starch were fermented to ethanol; ethanol production levels attained were 35.40 and 28.0 g l(-1), respectively.  相似文献   

3.
Alginate-entrapped sporangiospores of Thermomucor indicae-seudaticae were used for the production of glucoamylase. The critical variables that affected glucoamylase production were identified by Plackett-Burman design (sucrose, yeast-extract, K(2)HPO(4) and asparagine) and further optimized by using a four factor central composite design (CCD) of response surface methodology (RSM). Immobilized sporangiospores secreted 41% and 60% higher glucoamylase titers in shake flasks and airlift fermenter, respectively, when the variables were used at their optimum levels (sucrose 3.0%, yeast-extract 0.2%, K(2)HPO(4) 0.1% and asparagine 0.35%). Glucoamylase production (26.3 U ml(-1)) in the optimized medium was in good agreement with the values predicted by the quadratic model (26.7 U ml(-1)), thereby confirming its validity. The enzyme production was sustainable in flasks of higher volume and also airlift fermenter, and attained a peak within 32 h in the fermenter as compared to that of 48 h in shake flasks.  相似文献   

4.
Thermomucor indicae-seudaticae was immobilized in alginate, κ-carrageenan, agarose, agar, polyacrylamide and loofah (Luffa cylindrica) sponge (as such or coated with alginate/starch/Emerson YpSs agar), and used for the production of glucoamylase in submerged fermentation. The mycelium developed from alginate-immobilized sporangiospores secreted higher glucoamylase titres (22.7 U ml−1) than those immobilized in other gel matrices and the freely growing mycelial pellets (18.5 U ml−1). Loofah network provided a good support for mycelial growth, but the enzyme production was lower than that attained with alginate beads. Glucoamylase production increased with inoculum density and the optimum levels were achieved when 40 calcium alginate beads (∼5 × 106 immobilized spores) were used to inoculate 50 ml production medium. The alginate bead inoculum displayed high storage stability at 4°C and produced comparable enzyme titres up to 120 days. The glucoamylase production by hyphae emerged from the immobilized sporangiospores was almost stable over eight batches of repeated fermentation. Scanning electron micrographs of alginate beads, after batch fermentation, revealed extensive mycelial growth inside and around the beads.  相似文献   

5.
Summary Glucoamylase production by Aureobasidium pollulans A-124 was compared in free-living cells, cells immobilized in calcium alginate gel beads aerated on a rotary shaker (agitation rate 150 rpm), and immobilized cells aerated in an air bubble column reactor. Fermentation conditions in the bioreactor were established for bead concentration, substrate (starch) concentration, calcium chloride addition to the fermentation medium, and rate of aeration. Production of glucoamylase was optimized at approximately 1.5 units of enzyme activity/ml medium in the bioreactor under the following conditions: aeration rate, 2.0 vol air per working volume of the bioreactor (280 ml) per minute; gel bead concentration, 30% of the working volume; substrate (starch) concentration, at 0.3% (w/v); addition of calcium chloride to the medium at a final concentration of 0.01 M. Productivity levels were stabilized through the equivalent of ten batches of medium with the original inoculum of immobilized beads. Offprint requests to: M. Petruccioli  相似文献   

6.
Citric acid production by a thermophilic strain of the filamentous fungus Aspergillus niger IIB-6 in a medium containing blackstrap cane molasses was improved by the addition of kaolin to the fermentation medium. The fermentation was run in a 7.5-l stirred bioreactor (60% working volume). The optimal sugar concentration was found to be 150 g/l. Kaolin (1.0 ml) was added to the fermentation medium to enhance volumetric production. The best results in terms of product formation were observed when 15 parts per million (ppm) kaolin was added 24 h after inoculation. With added kaolin, citric acid production was enhanced 2.34-fold, compared to a control fermentation without added kaolin. The length of incubation to attain this product yield was shortened from 168 to 96 h. The comparison of kinetic parameters showed improved citrate synthase activity of the culture (Y (p/x)=7.046 g/g). When the culture grown at various kaolin concentrations was monitored for Q (p), Q (s), and q (p), there was significant improvement in these variables over the control. Specific production by the culture (q (p)=0.073 g/g cells/h) was improved several fold. The addition of kaolin substantially improved the enthalpy (DeltaH (D)=74.5 kJ/mol) and entropy of activation (DeltaS=-174 J/mol/K) for citric acid production, free energies for transition state formation, and substrate binding for sucrose hydrolysis. The performance of fuzzy logic control of the bioreactor was found to be very promising for an improvement ( approximately 4.2-fold) in the production of citric acid (96.88 g/l), which is of value in commercial applications.  相似文献   

7.
AIMS: Statistical optimization of phytase production by a thermophilic mould Sporotrichum thermophile in a cost-effective cane molasses medium. METHODS AND RESULTS: Sporotrichum thermophile secreted phytase in cane molasses medium at 45 degrees C and 250 rev min(-1) after 5 days. The important factors identified by Plackett-Burman design (magnesium sulfate, Tween 80, ammonium sulfate and incubation period) were further optimized by response surface methodology (RSM). An overall 107% improvement in phytase production was achieved due to optimization. Supplementation of the medium with inorganic phosphate repressed the enzyme synthesis. When inorganic phosphate was reduced from the cane molasses medium by treatment with calcium chloride, the enzyme production increased. The phytase activity was not affected by the enzyme treatment with trypsin and pepsin. CONCLUSIONS: A twofold increase in phytase production was achieved due to optimization using statistical designs in a cost-effective cane molasses medium. SIGNIFICANCE AND IMPACT OF THE STUDY: Phytase production was doubled due to optimization. The enzyme, being resistant to trypsin and pepsin, thermostable and acid stable, can find application in animal feed industry for improving nutritional status of the feed and combating environmental phosphorus pollution.  相似文献   

8.
The enzyme glucosyltransferase is an industrially important enzyme since it produces non-cariogenic isomaltulose (6-O-alpha-D-glucopyronosyl-1-6-D-fructofuranose) from sucrose by intramolecular transglucosylation. The experimental designs and response surface methodology (RSM) were applied for the optimisation of the nutrient concentrations in the culture medium for the production of glucosyltransferase by Erwinia sp. D12 in shaken flasks at 200 rpm and 30 degrees C. A statistical analysis of the results showed that, in the range studied, the factors had a significant effect (P < 0.05) on glucosyltransferase production and the highest enzyme activity (10.84 U/ml) was observed in culture medium containing sugar cane molasses (150 g l(-1)), corn steep liquor (20 g l(-1)), yeast extract Prodex Lac SD (15 g l(-1)) and K2HPO4 (0.5 g l(-1)) after 8 h at 30 degrees C. The production of cell biomass by the strain of Erwinia sp. D12 was carried out in a 6.6-l fermenter with a mixing rate of 200 rpm and an aeration rate of 1 vvm. Fermentation time, cellular growth, medium pH and glucosyltransferase production were observed. The greatest glucosyltransferase activity was 22.49 U/ml, obtained after 8 h of fermentation. The isomaltulose production from sucrose was performed using free Erwinia sp. D12 cells in a batch process using an orbital shaker. The influence of the parameters sucrose concentration, temperature, pH, and cell concentration on the conversion of sucrose into isomaltulose was studied. The free cells showed a high conversion rate of sucrose into isomaltulose using batch fermentation, obtaining an isomaltulose yield of 72.11% from sucrose solution 35% at 35 degrees C.  相似文献   

9.
Summary Saccharomyces cerevisiae yeast immobilized in calcium alginate gel beads was employed in packed-bed column reactors for continuous ethanol production from glucose or cane molasses, and for beer fermentation from barley malt wort. With properly balanced nutrient content or periodical regeneration of cells by nutrient addition and aeration, ethanol production could be maintained for several months. About 7 percent (w/v) ethanol content could be easily maintained with cane molasses diluted to about 17.5 percent (w/v) of total reducing sugars at about 4 to 5 h residence time. Beer of up to 4.5 percent (wv) of ethanol could be produced from barley wort at about 2 h residence time without any addition of nutrients.  相似文献   

10.
The production of polyhydroxybutyrate (PHB) by Alcaligenes eutrophus DSM 545 was studied in a synthetic medium with 3% glucose at pH 7.0 supplemented with several ammonium substrates and cane molasses. Growth was measured by dry cell weight, and the PHB content was measured by gas chromatography. The effects of ammonium sources such as sulfate, nitrate, phosphate, and chloride salts and those of different ammonium sulfate concentrations were evaluated. The best growth and PHB production were obtained with ammonium sulfate; however, NH(inf4)(sup+) concentrations between 0.5 and 1.5 g/liter showed no significant difference. Ammonium sulfate was therefore used as the sole source of NH(inf4)(sup+) for experiments with cane molasses as the growth activator. Optimal growth and PHB production were obtained with 0.3% molasses. However, the yields of biomass (39 to 48%) and PHB (17 to 26%) varied significantly among the different ammonium substrates and cane molasses concentrations.  相似文献   

11.
Liu YP  Zheng P  Sun ZH  Ni Y  Dong JJ  Zhu LL 《Bioresource technology》2008,99(6):1736-1742
In this work, production of succinic acid by Actinobacillus succinogenes CGMCC1593 using cane molasses as a low cost carbon source was developed. In anaerobic bottles fermentation, succinic acid concentration of 50.6+/-0.9 g l(-1) was attained at 60 h using an optimum medium containing molasses pretreated with sulfuric acid, resulting in a succinic acid yield of 79.5+/-1.1% and sugar utilization of 97.1+/-0.6%. When batch fermentation was carried out in a 5-l stirred bioreactor with pretreated molasses, 46.4 g l(-1) of succinic acid was attained at 48 h and faster cells growth was also observed. Fed batch fermentation was performed to minimize the substrate (sugar) inhibition effect, giving 55.2 g l(-1) of succinic acid and 1.15 g l(-1)h(-1) of productivity at 48 h. The present study suggests that the inexpensive cane molasses could be utilized for the economical and efficient production of succinic acid by A. succinogenes.  相似文献   

12.
Summary The performance of an external loop air-lift bioreactor was investigated by assessing the inter-relationships between various hydrodynamic properties and mass transfer. The feasibility of using this bioreactor for the production of monoclonal antibodies by mouse hybridoma cells immobilized in calcium alginate gel beads and alginate/poly-l-lysine microcapsules was also examined. When the superficial gas velocity, V g , in the 300 ml reactor was varied from 2 to 36 cm/min, the average liquid velocity increased from 3 to 14 cm/sec, the gas hold-up rose from 0.2 to 3.0%, and the oxygen mass transfer coefficient, k L a, increased from 2.5 to 18.1 h-1. A minimum liquid velocity of 4 cm/s was required to maintain alginate gel beads (1000 m diameter, occupying 3% of reactor volume) in suspension. Batch culture of hybridoma cells immobilized in alginate beads followed logarithmic growth, reaching a concentration of 4×107 cells/ml beads after 11 days. Significant antibody production did not occur until day 9 into the culture, reaching a value of 100 g/ml of medium at day 11. On the other hand, bioreactor studies with encapsulated hybridoma cells gave monoclonal antibody concentrations of up to 800 g/ml capsules (the antibody being retained within the semipermeable capsule) and maximum cell densities of 2×108 cells/ml capsule at day 11. The volumetric productivities of the alginate gel immobilized cell system and the encapsulated cell system were 9 and 3 g antibody per ml of reactor volume per day, respectively. The main advantage of the bioreactor system is its simple design, since no mechanical input is required to vary the hydrodynamic properties.  相似文献   

13.
The response surface methodology (RSM) involving central composite design (CCD) was employed to optimize the fermentation medium for the cell growth and schizophllan production by Schizophyllum commune CGMCC 5.113 in submerged culture at pH 6.5 and 26 degrees C. The four variables involved in this study were glucose, yeast extract, ammonium nitrate, and magnesium sulfate. The statistical analysis of the results showed that, in the range studied, glucose and yeast extract had a highly significant effect on schizophyllan production. The optimal medium for schizophyllan production calculated from the regression model of RSM was as follows: glucose, 18 g/l; yeast extract, 0.5 g/l; NH4NO3, 0.48 g/l; and MgSO4, 0.05 g/l, with a predicted maximum schizophyllan production of 11.74 g/l. These predicted values were experimentally validated. The excellent correlation between predicted and measured values justifies the validity of the response model. The results of bioreactor fermentation also show that the optimized medium enhanced schizophyllan production (12.80 g/l) by S. commune in a 5-1 fermenter.  相似文献   

14.
Aims: Phytase production by Sporotrichum thermophile in a cost‐effective cane molasses medium in submerged fermentation and its application in bread. Methods and Results: The production of phytase by a thermophilic mould S. thermophile was investigated using free and immobilized conidiospores in cane molasses medium in shake flasks, and stirred tank and air‐lift fermenters. Among surfactants tested, Tweens (Tween‐20, 40 and 80) and sodium oleate increased phytase accumulation, whereas SDS and Triton X‐100 inhibited the enzyme production. The mould produced phytase optimally at aw 0·95, and it declined sharply below this aw value. The enzyme production was comparable in air‐lift and stirred tank reactors with a marked reduction in fermentation time. Among the matrices tried, Ca‐alginate was the best for conidiospore immobilization, and fungus secreted sustained levels of enzyme titres over five cycles. The phytic acid in the dough was efficiently hydrolysed by the enzyme accompanied by the liberation of soluble phosphate in the bread. Conclusions: The phytase production by S. thermophile was enhanced in the presence of Tween‐80 in cane molasses medium. A peak in enzyme production was attained in 48 h in the fermenter when compared with that of 96 h in shake flasks. Ca‐alginate immobilized conidiospores germinated to produce fungal growth that secreted sustained levels of phytase over five cycles. The bread made with phytase contained reduced level of phytic acid and a high‐soluble phosphate. Significance and Impact of the Study: The phytase accumulation by S. thermophile was increased by the surfactants. The sustainability of enzyme production in stirred tank and air‐lift fermenters suggested the possibility for scaling up of phytase. The bread made with phytase contained low level of antinutrient, i.e. phytic acid.  相似文献   

15.
Ergosterol is an economically important metabolite produced by fungi. Recombinant Saccharomyces cerevisiae YEH56(pHXA42) with increased capacity of ergosterol formation was constructed by combined overexpression of sterol C-24(28) reductase and sterol acyltransferase in the yeast strain YEH56. The production of ergosterol by this recombinant strain using cane molasses (CM) as an inexpensive carbon source was investigated. An ergosterol content of 52.6 mg/g was obtained with 6.1 g/l of biomass from CM medium containing 60 g/l of total sugar in 30 h in shake flask. The ergosterol yield was enhanced through the increasing cell biomass by supplementation of urea to a concentration of 6 g/l in molasses medium. Fermentation was performed in 5-l bioreactor using the optimized molasses medium. In batch fermentation, the effect of agitation velocity on ergosterol production was examined. The highest ergosterol yield was obtained at 400 rpm that increased 60.4 mg/l in comparison with the shake flask culture. In fed-batch fermentation, yeast cells were cultivated, firstly, in the starting medium containing molasses with 20 g/l of total sugar, 1.68 g/l of phosphate acid, and 6 g/l of urea (pH 5.4) for 5 h, then molasses containing 350 g/l of total sugar was fed exponentially into the bioreactor to keep the ethanol level in the broth below 0.5%. After 40 h of cultivation, the ergosterol yield reached 1,707 mg/l, which was 3.1-fold of that in the batch fermentation.  相似文献   

16.
Powders of edible leguminous seeds, greengram (Vigna radiata) or soybean (Glycine max), were used as the major protein source with different combinations of soluble starch and/or cane sugar molasses as the major carbohydrate source for the production of delta-endotoxin by Bacillus thuringiensis var. thuringiensis serotype 1 in submerged fermentation. The primary product (lyophilized with 6 g of lactose) yield was 8.7 to 9.1 g/liter from media with dehusked greengram powder and 9.7 to 10.3 g/liter from media with defatted soybean powder in basal medium. The toxicity of primary products was assayed against fifth-instar Bombyx mori larvae by force-feeding. The primary product from the medium containing defatted soybean powder and soluble starch gave a maximum viable spore count of 91.3 x 10(6)/mg, with a corresponding potency of 35,800 IU/mg, whereas the medium containing dehusked greengram powder and cane sugar molasses gave a spore count of 49.5 x 10(6)/mg, with a highest potency of 38,300 IU/mg. Either legume protein in combination with cane sugar molasses yielded primary product 2.1 to 2.4 times more potent than the U.S. standard. The combined carbohydrate source consisting of soluble starch and cane sugar molasses, irrespective of the source of protein in the media, drastically reduced delta-endotoxin production, thereby reducing the potency of the primary products compared to the U.S. standard.  相似文献   

17.
Summary The present paper studies the production of laccase by Trametes hirsuta immobilized into alginate beads in an airlift bioreactor. In order to enhance laccase production fresh ammonium chloride was added, which led to the production, of high laccase activities (around 1000 U l−1). The bioreactor operated for 40 days without operational problems and the bioparticles maintained their shape throughout fermentation. Dye decolorization was performed at bioreactor scale operating in the batch mode. High decolorization percentages were obtained in a short time (96% for indigo carmine and 69% for phenol red in 24 h), indicating the suitability of this process for application to synthetic dye decolorization. On the other hand, in vitro decolorization of several industrial azo dyes by crude laccase produced in the above bioreactor was also performed. It was found that some of the dyes needed the addition of 1-hydroxybenzotriazole for their decolorization.  相似文献   

18.
产糖化酶黑曲霉固定化方法比较的研究   总被引:5,自引:0,他引:5  
采用海藻酸钙凝胶电埋法、以沸石、多孔聚酯等材料为固定化载体的吸附法固定黑曲霉(Aspergillus niger AS3.4309)菌丝细胞,以游离菌丝体作为对照,进行发酵产糖化酶的比较,结果表明:以聚酯泡沫作为固定化载体吸附固定化菌丝细胞产糖化酶活力最高。在产糖化酶的发酵过程中,与游离菌丝体细胞相比,固定化黑曲霉持续产酶时间有一定程度的延长。  相似文献   

19.
An attempt was made to use cane molasses as a culture medium for ε-PolyLysine (ε-PL) production by a natural bacterial isolate. The bacterium was identified as Bacillus sp., as confirmed by 16S rDNA sequence analysis. A BLAST result of the sequence indicated that the closest relative of this Bacillus BHU strain was B. thuringiensis, with 97 % homology. The molasses was found to be a better culture medium compared to commonly used culture media comprised of either glucose or glycerol as a carbon source. The various physicochemical parameters were studied for culture growth and polymer production, and were further optimized using response surface methodology (RSM). The correlation coefficient of the resulting model was found to be R 2?=?0.9828. The RSM predicted optimum conditions for ε-PL production (2.46 g/l) by the Bacillus strain was achieved by using molasses, 59.7 g/l; yeast extract, 15.2 mg/l; pH, 6.8 and fermentation time, 42 h at 30 °C. This study represents the first report on the potential application of cane molasses (a byproduct of sugarcane industries) as a culture medium for ε-PL production by Bacillus species. The specific Bacillus strain used in the present study can be exploited for developing a novel technology using inexpensive renewable resources for ε-PL production, a polymer of commercial interest.  相似文献   

20.
Cordyceps pruinosa is an entomogenous fungus noteworthy for its various bioactivities. The influence of synthetic medium and cultural conditions on polysaccharides production was investigated in shake flask culture. In the present study, optimal medium and submerged culture conditions were investigated using an orthogonal layout. Media and cultural conditions including potato starch 2% (w/v), sucrose 2.5%, soybean 0.5%, beef extract 0.5%, yeast extract 0.1%, KCl 0.02%, K2HPO4 0.1%, MgSO4·7H2O 0.05%, pH 7.0, inoculum size 5%, medium capacity 50 ml/250 ml flask, dispersant 15 beads, culture time 7 days were employed. In fermentation medium, sucrose, beef extract and yeast extract were replaced with molasses of sucrose, groundnut and Vitamin B complex, respectively. Under optimal culture conditions, the yield of polysaccharides production was 9.51 g l−1 after 54 h of fermentation in a 25 l fermenter, which was approximately twice as high as that in shake flask cultures. In addition the entire period of fermentation was shorted to around 1/4 of flask culture time (9 days). Thus, it will meet closely the requirements of industrial fermentation scale of polysaccharides production in C. pruinosa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号