首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Soluble guanylate cyclase (sGC), a physiological nitric oxide (NO) receptor, is a heme-containing protein and catalyzes the conversion of GTP to cyclic GMP. We found that 200 mM imidazole moderately activated sGC in the coexistence with 3-(5'-hydroxymethyl-2'-furyl)-1-benzylindazole (YC-1), although imidazole or YC-1 alone had little effect for activation. GTP facilitated this process. Resonance Raman spectra of imidazole complex of native sGC and CO-bound sGC (CO-sGC) have demonstrated that a simple heme adduct with imidazole at the sixth coordination position is not present for both sGC and CO-sGC below 200 mM of the imidazole concentration and that the Fe-CO stretching band (nuFe-CO)) appears at 492 cm(-1) in the presence of imidazole compared with 473 cm(-1) in its absence. Both frequencies fall on the line of His-coordinated heme proteins in the nuFe-CO vs nuC-O plot. However, it is stressed that the CO-heme of sGC becomes apparently photo-inert in a spinning cell in the presence of imidazole, suggesting the formation of five-coordinate CO-heme or of six-coordinate heme with a very weak trans ligand. These observations suggest that imidazole alters not only the polarity of heme pocket but also the coordination structure at the fifth coordination side presumably by perturbing the heme-protein interactions at propionic side chains. Despite the fact that the isolated sGC stays in the reduced state and is not oxidized by O(2), sGC under the high concentration of imidazole (1.2 M) yielded nu4 at 1373 cm(-1) even after its removal by gel-filtration, but addition of dithionite gave the strong nu4 band at 1360 cm(-1). This indicated that imidazole caused autoxidation of sGC.  相似文献   

2.
The enzyme-soluble guanylate cyclase (sGC), which converts GTP to cGMP, is a receptor for the signaling agent nitric oxide (NO). YC-1, a synthetic benzylindazole derivative, has been shown to activate sGC in an NO-independent fashion. In the presence of carbon monoxide (CO), which by itself activates sGC approximately 5-fold, YC-1 activates sGC to a level comparable to stimulation by NO alone. We have used kinetic analyses and resonance Raman spectroscopy (RR) to investigate the interaction of YC-1 and CO with guanylate cyclase. In the presence of CO and 200 microM YC-1, the V(max)/K(m GTP) increases 226-fold. While YC-1 does not perturb the RR spectrum of the ferrous form of baculovirus/Sf9 cell expressed sGC, it induces a shift in the Fe-CO stretching frequency for the CO-bound form from 474 to 492 cm(-1). Similarly, YC-1 has no effect on the RR spectrum of ferrous beta1(1-385), the isolated sGC heme-binding domain, but shifts the nu(Fe-CO) of CO-beta1(1-385) from 478 to 491 cm(-1), indicating that YC-1 binds in heme-binding region of sGC. In addition, the CO-bound forms of sGC and beta1(1-385) in the presence of YC-1 lie on the nu(Fe-CO) vs nu(C-O) correlation curve for proximal ligands with imidazole character, which suggests that histidine remains the heme proximal ligand in the presence of YC-1. Interestingly, YC-1 does not shift nu(Fe-CO) for the CO-bound form of H105G(Im), the imidazole-rescued heme ligand mutant of beta1(1-385). The data are consistent with binding of CO and YC-1 to the sGC heme-binding domain leading to conformational changes that give rise to an increase in catalytic turnover and a change in the electrostatic environment of the heme pocket.  相似文献   

3.
Soluble guanylate cyclase (sGC), a hemoprotein, is the primary nitric oxide (NO) receptor in higher eukaryotes. The binding of NO to sGC leads to the formation of a five-coordinate ferrous-nitrosyl complex and a several hundred-fold increase in cGMP synthesis. NO activation of sGC is influenced by GTP and the allosteric activators YC-1 and BAY 41-2272. Electron paramagnetic resonance (EPR) spectroscopy shows that the spectrum of the sGC ferrous-nitrosyl complex shifts in the presence of YC-1, BAY 41-2272, or GTP in the presence of excess NO relative to the heme. These molecules shift the EPR signal from one characterized by g 1 = 2.083, g 2 = 2.036, and g 3 = 2.012 to a signal characterized by g 1 = 2.106, g 2 = 2.029, and g 3 = 2.010. The truncated heme domain constructs beta1(1-194) and beta2(1-217) were compared to the full-length enzyme. The EPR spectrum of the beta2(1-217)-NO complex is characterized by g 1 = 2.106, g 2 = 2.025, and g 3 = 2.010, indicating the protein is a good model for the sGC-NO complex in the presence of the activators, while the spectrum of the beta1(1-194)-NO complex resembles the EPR spectrum of sGC in the absence of the activators. Low-temperature resonance Raman spectra of the beta1(1-194)-NO and beta2(1-217)-NO complexes show that the Fe-NO stretching vibration of the beta2(1-217)-NO complex (535 cm (-1)) is significantly different from that of the beta1(1-194)-NO complex (527 cm (-1)). This shows that sGC can adopt different five-coordinate ferrous nitrosyl conformations and suggests that the Fe-NO conformation characterized by this unique EPR signal and Fe-NO stretching vibration represents a highly active sGC state.  相似文献   

4.
Soluble guanylyl cyclase (sGC) is a heterodimeric enzyme formed by an alpha subunit and a beta subunit, the latter containing the heme where nitric oxide (NO) binds. When NO binds, the basal activity of sGC is increased several hundred fold. sGC activity is also increased by YC-1, a benzylindazole allosteric activator. In the presence of NO, YC-1 synergistically increases the catalytic activity of sGC by enhancing the affinity of NO for the heme. The site of interaction of YC-1 with sGC is unknown. We conducted a mutational analysis to identify the binding site and to determine what residues were involved in the propagation of NO and/or YC-1 activation. Because guanylyl cyclases (GCs) and adenylyl cyclases (ACs) are homologous, we used the three-dimensional structure of AC to guide the mutagenesis. Biochemical analysis of purified mutants revealed that YC-1 increases the catalytic activity not only by increasing the NO affinity but also by increasing the efficacy of NO. Effects of YC-1 on NO affinity and efficacy were dissociated by single-point mutations implying that YC-1 has, at least, two types of interaction with sGC. A structural model predicts that YC-1 may adopt two configurations in one site that is pseudosymmetric with the GTP binding site and equivalent to the forskolin site in AC.  相似文献   

5.
Resonance Raman (RR) spectra of soluble guanylate cyclase (sGC) reported by five independent research groups have been classified as two types: sGC(1) and sGC(2). Here we demonstrate that the RR spectra of sGC isolated from bovine lung contain only sGC(2) while both species are observed in the spectra of the CO-bound form (CO-sGC). The relative populations of the two forms were altered from an initial composition in which the CO-sGC(2) form predominated, with the Fe-CO (nu(Fe)(-)(CO)) and C-O stretching modes (nu(CO)) at 472 and 1985 cm(-)(1), respectively, to a composition dominated by the CO-sGC(1) form with nu(Fe)(-)(CO) and nu(CO) at 488 and 1969 cm(-)(1), respectively, following the addition of a xenobiotic, YC-1. Further addition of a substrate, GTP, completed the change. GDP and cGMP had a significantly weaker effect, while a substrate analogue, GTP-gamma-S, had an effect similar to that of GTP. In contrast, ATP had a reverse effect, and suppressed the effects of YC-1 and GTP. In the presence of both YC-1 and GTP, vinyl vibrations of heme were significantly influenced. New CO isotope-sensitive bands were observed at 521, 488, 363, and 227 cm(-)(1). The 521 cm(-)(1) band was assigned to the five-coordinate (5c) species from the model compound studies using ferrous iron protoporphyrin IX in CTAB micelles. Distinct from the 472 cm(-)(1) species, both the 488 and 521 cm(-)(1) species were apparently un-photodissociable when an ordinary Raman spinning cell was used, indicating rapid recombination of photodissociated CO. On the basis of these findings, binding of YC-1 to the heme pocket is proposed.  相似文献   

6.
Soluble guanylyl/guanylate cyclase (sGC), the primary biological receptor for nitric oxide, is required for proper development and health in all animals. We have expressed heterodimeric full-length and N-terminal fragments of Manduca sexta sGC in Escherichia coli, the first time this has been accomplished for any sGC, and have performed the first functional analyses of an insect sGC. Manduca sGC behaves much like its mammalian counterparts, displaying a 170-fold stimulation by NO and sensitivity to compound YC-1. YC-1 reduces the NO and CO off-rates for the approximately 100-kDa N-terminal heterodimeric fragment and increases the CO affinity by approximately 50-fold to 1.7 microm. Binding of NO leads to a transient six-coordinate intermediate, followed by release of the proximal histidine to yield a five-coordinate nitrosyl complex (k(6-5) = 12.8 s(-1)). The conversion rate is insensitive to nucleotides, YC-1, and changes in NO concentration up to approximately 30 microm. NO release is biphasic in the absence of YC-1 (k(off1) = 0.10 s(-1) and k(off2) = 0.0015 s(-1)); binding of YC-1 eliminates the fast phase but has little effect on the slower phase. Our data are consistent with a model for allosteric activation in which sGC undergoes a simple switch between two conformations, with an open or a closed heme pocket, integrating the influence of numerous effectors to give the final catalytic rate. Importantly, YC-1 binding occurs in the N-terminal two-thirds of the protein. Homology modeling and mutagenesis experiments suggest the presence of an H-NOX domain in the alpha subunit with importance for heme binding.  相似文献   

7.
Nitric oxide (NO) is a physiologically relevant activator of the hemoprotein soluble guanylate cyclase (sGC). In the presence of NO, sGC is activated several hundredfold above the basal level by a mechanism that remains to be elucidated. The heme ligand n-butyl isocyanide (BIC) was used to probe the mechanism of NO activation of sGC. Electronic absorption spectroscopy was used to show that BIC binds to the sGC heme, forming a 6-coordinate complex with an absorbance maximum at 429 nm. BIC activates sGC 2-5-fold, and synergizes with the allosteric activator YC-1, to activate the enzyme 15-25-fold. YC-1 activates the sGC-BIC complex, and leads to an increase in both the V(max) and K(m). BIC was also used to probe the mechanism of NO activation. The activity of the sGC-BIC complex increases 15-fold in the presence of NO, without displacing BIC at the heme, which is consistent with previous reports that proposed the involvement of a non-heme NO binding site in the activation process.  相似文献   

8.
Isatin (indole-dione-2,3) is an endogenous indole that exhibits a wide spectrum of biological and pharmacological activities. Physiologically relevant concentrations of isatin (ranged from 1 nM to 10 μM) did not influence basal activity of soluble human platelet guanylate cyclase (sGC), but caused a bell-shaped inhibition of the NO-activated enzyme. Inhibition of the NO-dependent activation by isatin did not depend on a chemical nature of the NO donors. The inhibitory effects of ODC (a heme-dependent inhibitor of sGC) and isatin were non-additive suggesting that the inhibitory effect of isatin may involve the heme binding domain (possibly heme iron) and experiments with hemin revealed some isatin-dependent changes in its spectrum. Isatin also inhibited sGC activation by the allosteric activator YC-1. It is suggested that the bell shaped inhibition of the NO-dependent activation of sGC by isatin may be attributed to complex interaction of isatin with the heme binding domain and the allosteric YC-1-binding site of sGC.  相似文献   

9.
Nitric oxide (NO) performs a central role in biological systems, binding to the heme site of soluble guanylyl cyclase (sGC), leading to enzyme activation and elevation of intracellular levels of cGMP. Organic nitrates, in particular, nitroglycerin (GTN), are clinically important nitrovasodilators that function as NO-mimetics in biological systems. Comparison of sGC activation data with electrochemically measured rates of NO release for genuine NO donors, NONOates and nitrosothiols, yields an excellent correlation between the EC(50) for sGC activation and the rate constant for NO release, k(NO). However, activation of sGC by GTN and the nitrates has very different characteristics, including the requirement for specific added thiols, for example, cysteine. The reaction of GTN with cysteine in anaerobic solution yields NO slowly, and NO release, measured by chemiluminescence detection, is quenched by added metal ion chelator. The generation of NO under aerobic conditions is 100-fold slower than the anaerobic reaction. Furthermore, NO release from the reaction of GTN with cysteine in phosphate buffer is too slow to account for sGC activation by GTN/cysteine. The slow rate of the chemical reaction to release NO suggests that nitrates can activate sGC by an NO-independent mechanism. In contrast to the genuine NO donors, GTN behaves as a partial agonist with respect to sGC activation, but in the presence of the allosteric sGC activator, YC-1, GTN exhibits full agonist activity.  相似文献   

10.
11.
Soluble guanylate cyclase (sGC) is a heterodimeric hemoprotein that catalyzes the conversion of GTP to cGMP. Upon binding NO to its heme cofactor, purified sGC was activated 300-fold. sGC was only activated 67-fold by nitroglycerin (GTN) and Cys; and in the absence of Cys, GTN did not activate sGC. Electronic absorption spectroscopy studies showed that upon NO binding, the Soret of ferrous sGC shifted from 431 to 399 nm. The data also revealed that activation of sGC by GTN/Cys was not via the expected ferrous heme-NO species as indicated by the absence of the 399 nm heme Soret. Furthermore, EPR studies of the reaction of GTN/Cys with sGC confirmed that no ferrous heme-NO species was formed but that there was heme oxidation. Potassium ferricyanide is known to oxidize ferrous sGC to the ferric oxidation state. Spectroscopic and activity data for the reactions of sGC with GTN alone or with K(3)Fe(CN)(6) were indistinguishable. These data suggest the following: 1) GTN/Cys do not activate sGC via GTN biotransformation to NO in vitro, and 2) in the absence of added thiol, GTN oxidizes sGC.  相似文献   

12.
Soluble guanylate cyclase (sGC) is a receptor for endogenous and exogenous nitric oxide (NO) and is activated many fold upon its binding, making it a core enzyme in the nitric oxide signal transduction pathway. Much effort has been made to understand the link between binding of NO at the sGC heme and activation of the cyclase activity. We report here the first direct evidence for the role of conformational changes in transmitting the signal between the heme and cyclase domains. Using both circular dichroism (CD) and fluorescence spectroscopies, we have probed the effect that the sGC activators NO and 3-(5'-hydroxymethyl-2'-furyl)-1-benzyl-indazole (YC-1) and the inhibitor 1H-[1,2,4]-oxadiazolo-[4,3-a]-quinoxalin-1-one (ODQ) have on the structure of the protein. Surprisingly, binding of either ODQ or YC-1 to NO-bound sGC cause virtually identical changes in the far-UV CD spectra of sGC, reflecting a perturbation in the secondary structure of the enzyme. This change is absent upon binding of NO, YC-1 or ODQ alone. Using this and previous data, we propose a working model for the mechanism of activation of sGC by NO and YC-1 and inhibition by ODQ.  相似文献   

13.
Soluble guanylate cyclase (sGC), a heterodimeric heme protein, catalyses the conversion of GTP in to cyclic GMP, which acts as a second messenger in cellular signaling. Nitric oxide activates this enzyme several hundred folds over its basal level. Carbon monoxide, along with some activator molecules like YC-1 and BAY, also synergistically activate sGC. Mechanism of this synergistic activation is a matter of debate. Here we review the existing literature to identify the possible binding site for YC-1 and BAY on bovine lung sGC and its mechanism of activation. These two exogenous compounds bind sGC on α subunit inside a pocket and thus exert allosteric effect via subunit interface, which is relayed to the catalytic site. We used docking studies to further validate this hypothesis. We propose that the binding of YC-1/BAY inside the sensory domain of the α subunit modulates the interactions on the subunit interface resulting in rearrangements in the catalytic site into active conformation and this partly induces the cleavage of Fe-His bond.  相似文献   

14.
Soluble guanylate cyclase (sGC) is a heterodimeric, nitric oxide (NO)-sensing hemoprotein composed of two subunits, alpha1 and beta1. NO binds to the heme cofactor in the beta1 subunit, forming a five-coordinate NO complex that activates the enzyme several hundred-fold. In this paper, the heme domain has been localized to the N-terminal 194 residues of the beta1 subunit. This fragment represents the smallest construct of the beta1 subunit that retains the ligand-binding characteristics of the native enzyme, namely, tight affinity for NO and no observable binding of O(2). A functional heme domain from the rat beta2 subunit has been localized to the first 217 amino acids beta2(1-217). These proteins are approximately 40% identical to the rat beta1 heme domain and form five-coordinate, low-spin NO complexes and six-coordinate, low-spin CO complexes. Similar to sGC, these constructs have a weak Fe-His stretch [208 and 207 cm(-)(1) for beta1(1-194) and beta2(1-217), respectively]. beta2(1-217) forms a CO complex that is very similar to sGC and has a high nu(CO) stretching frequency at 1994 cm(-)(1). The autoxidation rate of beta1(1-194) was 0.073/min, while the beta2(1-217) was substantially more stable in the ferrous form with an autoxidation rate of 0.003/min at 37 degrees C. This paper has identified and characterized the minimum functional ligand-binding heme domain derived from sGC, providing key details toward a comprehensive characterization.  相似文献   

15.
Soluble guanylate cyclase (sGC) is the primary receptor for the signaling agent nitric oxide (NO). Electronic absorption and resonance Raman spectroscopy were used to show that nitrosoalkanes bind to the heme of sGC to form six-coordinate, low-spin complexes. In the sGC-nitrosopentane complex, a band assigned to an Fe-N stretching vibration is observed at 543 cm(-)(1) which is similar to values reported for other six-coordinate NO-bound hemoproteins. Nitrosoalkanes activate sGC 2-6-fold and synergize with YC-1, a synthetic benzylindazole derivative, to activate the enzyme 11-47-fold. In addition, the observed off-rates of nitrosoalkanes from sGC were found to be dependent on the alkyl chain length. A linear correlation was found between the observed off-rates and the alkyl chain length which suggests that the sGC heme has a large hydrophobic distal ligand-binding pocket. Together, these data show that nitrosoalkanes are a novel class of heme-based sGC activators and suggest that heme ligation is a general requirement for YC-1 synergism.  相似文献   

16.
The radial artery (RA) is used as a spastic coronary bypass graft. This study was designed to investigate the mechanism of vasorelaxant effects of YC-1 (3-(5'-hydroxymethyl-2'-furyl)-1-benzyl indazole), a nitric oxide (NO)-independent soluble guanylate cyclase (sGC) activator, and DEA/NO (diethylamine/nitric oxide), a NO-nucleophile adduct, on the human RA. RA segments (n = 25) were obtained from coronary artery bypass grafting patients and were divided into 3-4 mm vascular rings.Using the isolated tissue bath technique, the endothelium-independent vasodilatation function was tested in vitro by the addition of cumulative concentrations of YC-1 (10-10 to 3 x 10-7 mol/L) and DEA/NO (10-8 to 3 x 10-5 mol/L) following vasocontraction by phenylephrine in the presence or absence of 10-5 mol/L ODQ (1H-(1,2,4)oxadiazole(4,3-a)quinoxalin-1-one), the selective sGC inhibitor, 10-7 mol/L iberiotoxin, a blocker of Ca2+-activated K+ channels, or 10-5 mol/L ODQ plus 10-7 mol/L iberiotoxin. We also evaluated the effect of YC-1 and DEA/NO on the cGMP levels in vascular rings obtained from human radial artery (n = 6 for each drug). YC-1 (10-10 to 3 x 10-7 mol/L) and DEA/NO (10-8 to 3 x 10-5 mol/L) caused the concentration-dependent vasorelaxation in RA rings precontracted with phenylephrine (10-5 mol/L) (n = 20 for each drug). Pre-incubation of RA rings with ODQ, iberiotoxin, or ODQ plus iberiotoxin significantly inhibited the vasorelaxant effect of YC-1, but the inhibitor effect of ODQ plus iberiotoxin was significantly more than that of ODQ and iberiotoxin alone (p < 0.05). The vasorelaxant effect of DEA/NO almost completely abolished in the presence of ODQ and iberiotoxin plus ODQ, but did not significantly change in the presence of iberiotoxin alone (p > 0.05). The pEC50 value of DEA/NO was significantly lower than those for YC-1 (p < 0.01), with no change Emax values in RA rings. In addition, YC-1-stimulated RA rings showed more elevation in cGMP than that of DEA/NO (p < 0.05). These findings indicate that YC-1 is a more potent relaxant than DEA/NO in the human RA. The relaxant effects of YC-1 could be due to the stimulation of the sGC and Ca2+-sensitive K+channels, whereas the relaxant effects of DEA/NO could be completely due to the stimulation of the sGC. YC-1 and DEA/NO may be effective as vasodilator for the short-term treatment of perioperative spasm of coronary bypass grafts.  相似文献   

17.
Nitric oxide (NO) regulates cardiovascular hemostasis by binding to soluble guanylyl cyclase (sGC), leading to cGMP production, reduced cytosolic calcium concentration ([Ca(2+)](i)), and vasorelaxation. Thrombospondin-1 (TSP-1), a secreted matricellular protein, was recently discovered to inhibit NO signaling and sGC activity. Inhibition of sGC requires binding to cell-surface receptor CD47. Here, we show that a TSP-1 C-terminal fragment (E3CaG1) readily inhibits sGC in Jurkat T cells and that inhibition requires an increase in [Ca(2+)](i). Using flow cytometry, we show that E3CaG1 binds directly to CD47 on the surface of Jurkat T cells. Using digital imaging microscopy on live cells, we further show that E3CaG1 binding results in a substantial increase in [Ca(2+)](i), up to 300 nM. Addition of angiotensin II, a potent vasoconstrictor known to increase [Ca(2+)](i), also strongly inhibits sGC activity. sGC isolated from calcium-treated cells or from cell-free lysates supplemented with Ca(2+) remains inhibited, while addition of kinase inhibitor staurosporine prevents inhibition, indicating inhibition is likely due to phosphorylation. Inhibition is through an increase in K(m) for GTP, which rises to 834 μM for the NO-stimulated protein, a 13-fold increase over the uninhibited protein. Compounds YC-1 and BAY 41-2272, allosteric stimulators of sGC that are of interest for treating hypertension, overcome E3CaG1-mediated inhibition of NO-ligated sGC. Taken together, these data suggest that sGC not only lowers [Ca(2+)](i) in response to NO, inducing vasodilation, but also is inhibited by high [Ca(2+)](i), providing a fine balance between signals for vasodilation and vasoconstriction.  相似文献   

18.
Accumulating evidence indicates that the functional properties of soluble guanylyl cyclase (sGC) are affected not only by the binding of NO but also by the NO:sGC ratio and a number of cellular factors, including GTP. In this study, we monitored the time-resolved transformations of sGC and sGC-NO complexes generated with stoichiometric or excess NO in the presence and absence of GTP. We demonstrate that the initial five-coordinate sGC-NO complex is highly activated by stoichiometric NO but is unstable and transforms into a five-coordinate sGC-2 state. This sGC-2 rebinds NO to form a low activity sGC-NO complex. The stability of the initial complex is greatly enhanced by GTP binding, binding of an additional NO molecule, or substitution of βHis-107. We propose that the transient nature of the sGC-NO complex, the formation of a desensitized sGC-2 state, and its transformation into a low activity sGC-NO adduct require βHis-107. We conclude that conformational changes leading to sGC desensitization may be prevented by GTP binding to the catalytic site or by binding of an additional NO molecule to the proximal side of the heme. The implications of these observations for cellular NO/cGMP signaling and the process of rapid desensitization of sGC are discussed in the context of the proposed model of sGC/NO interactions and dynamic transformations.  相似文献   

19.
The hypothesis that endogenous carbon monoxide (CO), produced during the oxidation of heme catalyzed by heme oxygenase (HO), plays a role similar to that of nitric oxide (NO) in the regulation of cardiovascular tone has been criticized because of the low potency of CO compared with NO in relaxing blood vessels and stimulating soluble guanylyl cyclase (sGC). This criticism has been muted by the demonstration that, in the presence of YC-1 [3-(5'-hydroxymethyl-2'-furyl)-1-benzylindazole], CO has similar potency to NO in stimulating sGC activity. In this study, we determined that YC-1 potentiated CO-induced relaxation of rat aortic strips (RtAS) by approximately ten-fold. Furthermore, CO-induced relaxation of RtAS was shown to be mediated through stimulation of sGC because vasorelaxation was inhibited by ODQ (1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one), a selective sGC inhibitor, in the absence and presence of YC-1. A gas chromatographic-headspace method was used to measure CO concentration in Krebs' solution following the addition of CO-saturated saline solution to the tissue bath, in order to provide an accurate determination of RtAS exposure to CO. The tissue bath concentration of CO was shown to be approximately one-half of that calculated to be present. We conclude that should an endogenous compound exist with properties similar to that of YC-1, then the potency of CO as a vasorelaxant in the presence of this factor would be increased. As a consequence, CO could play a role in the regulation of cardiovascular tone, comparable to that of NO.  相似文献   

20.
Inhibition of soluble guanylate cyclase by ODQ   总被引:6,自引:0,他引:6  
The heme in soluble guanylate cyclases (sGC) as isolated is ferrous, high-spin, and 5-coordinate. [1H-[1,2,4]oxadiazolo-[4, 3-a]quinoxalin-1-one] (ODQ) has been used extensively as a specific inhibitor for sGC and as a diagnostic tool for identifying a role for sGC in signal transduction events. Addition of ODQ to ferrous sGC leads to a Soret shift from 431 to 392 nm and a decrease in nitric oxide (NO)-stimulated sGC activity. This Soret shift is consistent with oxidation of the ferrous heme to ferric heme. The results reported here further define the molecular mechanism of inhibition of sGC by ODQ. Addition of ODQ to the isolated sGC heme domain [beta1(1-385)] gave the same spectral changes as when sGC was treated with ODQ. EPR and resonance Raman spectroscopy was used to show that the heme in ODQ-treated beta1(1-385) is indeed ferric. Inhibition of the NO-stimulated sGC activity by ODQ is due to oxidation of the sGC heme and not to perturbation of the catalytic site, since the ODQ-treated sGC has the same basal activity as untreated sGC (68 +/- 12 nmol min(-)(1) mg(-)(1)). In addition, ODQ-oxidized sGC can be re-reduced by dithionite, and this re-reduced sGC has identical NO-stimulated activity as the original ferrous sGC. Oxidation of the sGC heme by ODQ is fast with a second-order rate constant of 8.5 x 10(3) M(-)(1) s(-)(1). ODQ can also oxidize hemoglobin, indicating that the reaction is not specific for the heme in sGC versus that in other hemoproteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号