首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of Hg treatment on hemolymph and tissue ferritin in the wax moth Galleria mellonella was examined by western blotting. At 48 h after feeding HgCl2, the level of hemolymph ferritin increased approximately 1.8‐fold over that of control insects that were not fed HgCl2, while there was a small increase in tissue ferritin. Time series experiments showed that tissue ferritin had a typically saturated pattern, with a maximum level from 24 to 72 h, although it decreased 12 h following HgCl2 feeding, while hemolymph ferritin first decreased but subsequently increased. Tissue ferritin in the fat body, gut and Malpighian tubules, the main tissues of ferritin expression, was upregulated over time following treatment with Hg, and in particular, tissue ferritin in the gut increased by a large amount at 12–48 h. The results suggest that in G. mellonella, the ferritin‐inducible mechanisms following treatment with HgCl2 are different for hemolymph and tissue ferritin, as are their biochemical properties.  相似文献   

2.
Alveolar macrophages collected by pulmonary lavage from male Fisher-344 rats at intervals (24–72 h) after HgCl2 injection (1–5 mg/kg, sc) were analyzed by several techniques. Within 24–72 h, the macrophages showed morphological signs of activation (hypertrophy and ruffled plasma membrane). Lipid peroxidation (increased malondialdehyde concentration) was not detected until 48 h. Dose- and time-related effects of HgCl2 on malondialdehyde concentration and time-related effects of HgCl2 on malondialdehyde concentration and mercury content of alveolar macrophages were observed 24–72 h postinjection. Diminished cell viability occurred only at 72 h after the highest dosage of HgCl2. This study demonstrates that the alveolar macrophage was a cellular target for mercury toxicity following parenteral exposure to HgCl2.  相似文献   

3.
Background information. Mercurials inhibit AQPs (aquaporins), and site‐directed mutagenesis has identified Cys189 as a site of the mercurial inhibition of AQP1. On the other hand, AQP4 has been considered to be a mercury‐insensitive water channel because it does not have the reactive cysteine residue corresponding to Cys189 of AQP1. Indeed, the osmotic water permeability (Pf) of AQP4 expressed in various types of cells, including Xenopus oocytes, is not inhibited by HgCl2. To examine the direct effects of mercurials on AQP4 in a proteoliposome reconstitution system, His‐tagged rAPR4 (rat AQP4) M23 was expressed in Saccharomyces cerevisiae, purified with an Ni2+‐nitrilotriacetate affinity column, and reconstituted into liposomes with the dilution method. Results. The water permeability of AQP4 proteoliposomes with or without HgCl2 was measured with a stopped‐flow apparatus. Surprisingly, the Pf of AQP4 proteoliposomes was significantly decreased by 5 μM HgCl2 within 30 s, and this effect was completely reversed by 2‐mercaptoethanol. The dose‐ and time‐dependent inhibitory effects of Hg2+ suggest that the sensitivity to mercury of AQP4 is different from that of AQP1. Site‐directed mutagenesis of six cysteine residues of AQP4 demonstrated that Cys178, which is located at loop D facing the intracellular side, is a target responding to Hg2+. We confirmed that AQP4 is reconstituted into liposome in a bidirectional orientation. Conclusions. Our results suggest that mercury inhibits the Pf of AQP4 by mechanisms different from those for AQP1 and that AQP4 may be gated by modification of a cysteine residue in cytoplasmic loop D.  相似文献   

4.
目的:探讨改良极化液治疗对体外循环(CPB)患者多脏器功能的作用及机制。方法:将40例心脏二尖瓣置换病人随机分为对照(CONTROL)组(19例)和改良极化液(GIK)治疗组(21例)。GIK组于麻醉诱导前经中心静脉给予改良极化液500ml,CON-TROL组给予相同量的平衡盐。分别于术前、术后12h、后24h测定心肌酶谱、肝功能、肾功能,并于术前、麻醉后、CPB15min、开放升主5min、CPB结束前、术后30min、6h、12h、24h采集血样,测定CRP、IL-1、IL-10、TNF-α、肾上腺素、糖皮质激素。结果:GIK组患者AST、CK、LDH、CK-MB、ALT、TBA、BUN、CR术后12、24h均低于CONTROL组;GIK组患者CRP、IL-1、TNF-α水平CPB期及术后均低于CONTROL组,IL-10水平高于CONTROL组;GIK组患者糖皮质激素水平在CPB结束及术后24h低于CONT-ROL组,GIK组患者肾上腺素水平高于CONTROL组。结论:围CPB期给予葡萄糖-胰岛素-氯化钾液(GIK)治疗可以提高患者早期多脏器功能,其机制可能与减轻了炎症反应及降低应激状态有关。  相似文献   

5.

Background and Goals

Mechanical ventilation (MV) can induce or worsen pulmonary oedema. Aquaporins (AQPs) facilitate the selective and rapid bi-directional movement of water. Their role in the development and resolution of pulmonary oedema is controversial. Our objectives are to determine if prolonged MV causes lung oedema and changes in the expression of AQP 1 and AQP 5 in rats.

Methods

25 male Wistar rats were subjected to MV with a tidal volume of 10 ml/kg, during 2 hours (n = 12) and 4 hours (n = 13). Degree of oedema was compared with a group of non-ventilated rats (n = 5). The expression of AQP 1 and AQP 5 were determined by western immunoblotting, measuring the amount of mRNA (previously amplified by RT-PCR) and immunohistochemical staining of AQPs 1 and 5 in lung samples from all groups.

Results

Lung oedema and alveolar-capillary membrane permeability did not change during MV. AQP-5 steady state levels in the western blot were increased (p<0.01) at 2 h and 4 h of MV. But in AQP-1 expression these differences were not found. However, the amount of mRNA for AQP-1 was increased at 2 h and 4 h of MV; and for AQP 5 at 4 h of MV. These findings were corroborated by representative immunohistochemical lung samples.

Conclusion

In lungs from rats ventilated with a low tidal volume the expression of AQP 5 increases gradually with MV duration, but does not cause pulmonary oedema or changes in lung permeability. AQPs may have a protective effect against the oedema induced by MV.  相似文献   

6.

Background

Semaphorin 3A is a secreted protein that regulates cell motility and attachment in axon guidance, vascular growth, immune cell regulation and tumor progression. However, nothing is known about its role in kidney pathophysiology. Here, we determined whether semaphorin3A is induced after acute kidney injury (AKI) and whether urinary semaphorin 3A can predict AKI in humans undergoing cardiopulmonary bypass (CPB).

Methods and Principal Findings

In animals, semaphorin 3A is localized in distal tubules of the kidney and excretion increased within 3 hr after reperfusion of the kidney whereas serum creatinine was significantly raised at 24 hr. In humans, using serum creatinine, AKI was detected on average only 48 hours after CPB. In contrast, urine semaphorin increased at 2 hours after CPB, peaked at 6 hours (2596±591 pg/mg creatinine), and was no longer significantly elevated 12 hours after CPB. The predictive power of semaphorin 3A as demonstrated by area under the receiver-operating characteristic curve for diagnosis of AKI at 2, 6, and 12 hours after CPB was 0.88, 0.81, and 0.74, respectively. The 2-hour urine semaphorin measurement strongly correlated with duration and severity of AKI, as well as length of hospital stay. Adjusting for CPB time and gender, the 2-hour semaphorin remained an independent predictor of AKI, with an odds ratio of 2.19.

Conclusion

Our results suggest that semaphorin 3A is an early, predictive biomarker in experimental and pediatric AKI, and may allow for the reliable early diagnosis and prognosis of AKI after CPB, much before the rise in serum creatinine.  相似文献   

7.
MicroRNA-1 (miR-1) is a cardio-specific/enriched microRNA. Our recent studies have revealed that serum and urine miR-1 could be a novel sensitive biomarker for acute myocardial infarction. Open-heart surgeries with cardiopulmonary bypass (CPB) are often accompanied with surgery injury and CPB-associated injury on the hearts. However, the association of miR-1 and these intra-operative and post-operative cardiac injures is unknown. The objective of this study was to test the hypothesis that urine and serum miR-1 might be a novel biomarker for myocardial injuries in open-heart surgeries with CPB. Serum and urine miR-1 levels in 20 patients with elective mitral valve surgery were measured at pre-surgery, pre-CPB, 60 min post-CBP, and 24h post-CBP. Serum cardiac troponin-I (cTnI) was used as a positive control biomarker for cardiac injury. Compared with these in pre-operative and pre-CPB groups, the levels of miR-1 in serum and urine from patients after open-heart surgeries and CPB were significant increased at all observed time points. A similar pattern of serum cTnI levels and their strong positive correlation with miR-1 levels were identified in these patients. The results suggest that serum and urine miR-1 may be a novel sensitive biomarker for myocardial injury in open-heart surgeries with CPB.  相似文献   

8.
P-selectin and intercellular adhesion molecule-1 (ICAM-1) mediate early interaction and adhesion of neutrophils to coronary endothelial cells and myocytes after myocardial ischemia and reperfusion. In the present study, we examined the physiological consequences of genetic deletions of ICAM-1 and P-selectin in mice. In wild-type mice, after 1 h of ischemia followed by reperfusion, neutrophil influx into the area of ischemia was increased by 3 h with a peak at 24 h and a decline by 72 h. ICAM-1/P-selectin-deficient mice showed a significant reduction in neutrophils by immunohistochemistry or by myeloperoxidase activity at 24 h but no significant difference at 3 h. Infarct size (area of necrosis/area at risk) assessed 24 h after reperfusion was not different between wild-type and deficient mice after 30 min and 1 h of occlusion. Mice with a deficiency in both ICAM-1 and P-selectin have impaired neutrophil trafficking without a difference in infarct size due to myocardial ischemia-reperfusion.  相似文献   

9.
Open heart surgery with a cardiopulmonary bypass (CPB) is associated with a systemic inflammatory response which significantly contributes to adverse postoperative complications. The purpose of this study was to characterize the activation of blood phagocytes during open heart surgery with CPB. Blood samples were collected during and up to 24 h after surgery. The production of reactive oxygen species (ROS) in whole blood, the expression of surface molecules by blood phagocytes and complement activity in the plasma were determined. A cDNA microarray analysis of leukocyte RNA profile of genes was performed related to the inflammatory response. Activation of the complement was already observed at the beginning of CPB. This was followed by an increase in the neutrophil number and in both spontaneous and opsonized zymosan-activated ROS production after the onset of reperfusion. The activation of blood phagocytes was affirmed by changes in surface receptors involved in the adhesion and migration of leukocytes (CD11b, CD62L and CD31). Gene arrays also confirmed the activation of leukocytes 4 h after reperfusion. In conclusion, open heart surgery with a cardiopulmonary bypass was found to be associated with a rapid and pronounced activation of blood phagocytes and complement activation which was partly independent at the onset of CPB.  相似文献   

10.
To assess effects of epidermal growth factor (EGF) and pegylated granulocyte colony‐stimulating factor (P‐GCSF; pegfilgrastim) administration on the cellular origin of renal tubular epithelium regenerating after acute kidney injury initiated by mercuric chloride (HgCl2). Female mice were irradiated and male whole bone marrow (BM) was transplanted into them. Six weeks later recipient mice were assigned to one of eight groups: control, P‐GCSF+, EGF+, P‐GCSF+EGF+, HgCl2, HgCl2+P‐GCSF+, HgCl2+EGF+ and HgCl2+P‐GCSF+EGF+. Following HgCl2, injection tubular injury scores increased and serum urea nitrogen levels reached uraemia after 3 days, but EGF‐treated groups were resistant to this acute kidney injury. A four‐in‐one analytical technique for identification of cellular origin, tubular phenotype, basement membrane and S‐phase status revealed that BM contributed 1% of proximal tubular epithelium in undamaged kidneys and 3% after HgCl2 damage, with no effects of exogenous EGF or P‐GCSF. Only 0.5% proximal tubular cells were seen in S‐phase in the undamaged group kidneys; this increased to 7–8% after HgCl2 damage and to 15% after addition of EGF. Most of the regenerating tubular epithelium originated from the indigenous pool. BM contributed up to 6.6% of the proximal tubular cells in S‐phase after HgCl2 damage, but only to 3.3% after additional EGF. EGF administration attenuated tubular necrosis following HgCl2 damage, and the major cause of this protective effect was division of indigenous cells, whereas BM‐derived cells were less responsive. P‐GCSF did not influence damage or regeneration.  相似文献   

11.
Previous studies have suggested that progesterone may be involved in neuroprotection by preventing brain edema. In this study, we assessed the effects of progesterone on aquaporin-4 (AQP4) expression in an ischemia/reperfusion model of cultured rat astrocytes, and further explored the possible role of the protein kinase C (PKC) pathway in this course. We evaluate primary culture astrocytes exposed to 4 h oxygen–glucose deprivation (OGD) followed by 24 h reperfusion (OGD4h/R24h) as a means of simulating cortex ischemia and reperfusion, and test the effect of progesterone on AQP4 expression in response to OGD4h/R24h. Besides, the cell viability was assessed by MTT reduction and lactate dehydrogenase release assay, accompanied by cell morphology survey. At a concentration of 1 and 2 μM, progesterone significantly attenuated AQP4 at the level of both protein and mRNA and ameliorated the cell viability of astrocytes from OGD/reperfusion injury. Moreover, this effect was blocked by the PKC inhibitor Ro31-8220, which was employed before the OGD. These results indicate that progesterone exerts the protective effects and attenuates AQP4 expression in an astrocyte model of ischemia/reperfusion depending on the PKC signal pathway.  相似文献   

12.
神经细胞水肿是胆红素脑病(bilirubin encephalopathy,BE)发生发展过程中的重要病理变化。水通道蛋白-4(aquaporin-4,AQP4)的表达及分布异常与多种疾病所致细胞毒性脑水肿的发生发展具有密切联系。但胆红素脑病中AQP4的表达变化规律及其在病理进展中的作用尚不清楚。采用7日龄SD大鼠小脑延髓池注射胆红素溶液的方法,建立新生大鼠胆红素脑病模型。胆红素脑病模型根据胆红素作用时间的不同,分为12 h、24 h、48 h、72 h和7 d组。采用HE及尼氏染色,检测各新生大鼠脑组织的病理改变;应用透射电镜(TEM),检测胆红素作用24 h后,鼠脑组织超微结构的变化;应用免疫荧光及Western 印迹,检测 AQP4在脑组织中的表达变化。通过上述实验,以探讨AQP4的表达变化与胆红素所致脑损伤的关系。HE及尼氏染色结果显示,随着胆红素沉积时间的延长,神经细胞逐渐肿胀,细胞间隙增大,尼氏小体数量逐渐减少;电镜结果显示,胆红素脑病24 h后神经细胞线粒体出现肿胀;免疫荧光染色显示,24 h组AQP4的表达范围明显增加,其后表达范围逐渐减少,表达强度也随之减弱;Western 印迹结果显示,AQP4表达在不同时间点呈现先增高后降低的趋势,在24 h达到峰值(24 h组1.38 ± 0.11 vs 对照组0.87 ± 0.21, P<0.05),在之后的各时间点上,AQP4的表达呈现下降趋势,而72 h组与7 d组AQP4表达均低于48 h组(P<0.05),基本恢复到对照组的表达水平(P>0.05)。上述结果提示,胆红素脑病中胆红素的毒性作用将引起AQP4表达量的改变,AQP4的表达变化与胆红素脑病中细胞毒性脑水肿的发生相关,并且可能在胆红素脑病脑损伤的进展中发挥作用。  相似文献   

13.
神经细胞水肿是胆红素脑病(bilirubin encephalopathy,BE)发生发展过程中的重要病理变化。水通道蛋白-4(aquaporin-4,AQP4)的表达及分布异常与多种疾病所致细胞毒性脑水肿的发生发展具有密切联系。但胆红素脑病中AQP4的表达变化规律及其在病理进展中的作用尚不清楚。采用7日龄SD大鼠小脑延髓池注射胆红素溶液的方法,建立新生大鼠胆红素脑病模型。胆红素脑病模型根据胆红素作用时间的不同,分为12 h、24 h、48 h、72 h和7 d组。采用HE及尼氏染色,检测各新生大鼠脑组织的病理改变;应用透射电镜(TEM),检测胆红素作用24 h后,鼠脑组织超微结构的变化;应用免疫荧光及Western 印迹,检测 AQP4在脑组织中的表达变化。通过上述实验,以探讨AQP4的表达变化与胆红素所致脑损伤的关系。HE及尼氏染色结果显示,随着胆红素沉积时间的延长,神经细胞逐渐肿胀,细胞间隙增大,尼氏小体数量逐渐减少;电镜结果显示,胆红素脑病24 h后神经细胞线粒体出现肿胀;免疫荧光染色显示,24 h组AQP4的表达范围明显增加,其后表达范围逐渐减少,表达强度也随之减弱;Western 印迹结果显示,AQP4表达在不同时间点呈现先增高后降低的趋势,在24 h达到峰值(24 h组1.38 ± 0.11 vs 对照组0.87 ± 0.21, P<0.05),在之后的各时间点上,AQP4的表达呈现下降趋势,而72 h组与7 d组AQP4表达均低于48 h组(P<0.05),基本恢复到对照组的表达水平(P>0.05)。上述结果提示,胆红素脑病中胆红素的毒性作用将引起AQP4表达量的改变,AQP4的表达变化与胆红素脑病中细胞毒性脑水肿的发生相关,并且可能在胆红素脑病脑损伤的进展中发挥作用。  相似文献   

14.
15.
The effectiveness of 2,3-dimercaptopropanol (BAL) andmeso-2,3-dimercaptosuccinic acid (DMSA) on HgCl2-induced nephrotoxicity was studied in the rat. Seven groups of adult male rats were given a single sc toxic dose of HgCl2 (0.68 mg/kg) followed by 0.9% saline (positive control group), BAL (15, 30, and 60 mg/kg) or DMSA (50, 100, and 200 mg/kg) administered ip at 0, 24, 48, and 72 h thereafter. Although the renal function of HgCl2-exposed rats was slightly improved after BAL administration, Hg concentrations in the kidney were only reduced at 60 mg/kg. In addition, the protective effect of BAL was not dose-related. In contrast to BAL, DMSA was effective in increasing the urinary excretion of Hg and in reducing the renal Hg content. These results show that DMSA would be more effective than BAL in preventing or in protecting against inorganic Hg-induced nephrotoxicity.  相似文献   

16.
17.
1. Ubiquitin immunohistochemistry was used for investigation of time dependent changes of ubiquitin in the nerve cells reacting to ischemic/reperfusion damage. In the rabbit spinal cord ischemia model a period of 30 min ischemia followed by 24 and 72 h of reperfusion caused neuronal degeneration selectively in the ventral horn motor neurons as well as interneurons of the intermediate zone.2. Ubiquitin aggregates were accumulated in the neurons of lamina IX and the neurons of intermediate zone destined to die 72 h after 30 min of the spinal cord ischemia.3. The activation of ubiquitin hydrolytic system is related to a defective homeostasis and could trigger different degenerative processes. Having in mind this, we used EGb 761 to rescue the motor neurons and interneurons against ischemia/reperfusion damage. Our results show that after 30 min of ischemia and 24 or 72 h of reperfusion with EGb 761 pre-treatment for 7 days the vulnerable neurons in the intermediate zone and lamina IX exhibit marked elevation of ubiquitin–positive granules in the cytoplasm, dendrites and nuclei. Abnormal protein aggregates have not been observed in these cells.4. The rabbits were completely paraplegic after 30 min of ischemia and 24 or 72 h of reperfusion. However, after 7 days EGb 761 pre-treatment, 30 min of ischemia and 24 or 72 h of reperfusion the animals did not show paraplegia.5. Evaluated ubiquitin–positive neurons of the L5–L6 segments showed significant decrease in number and significant increase of density after 30 min of ischemia followed by 24 h and mainly 72 h of reperfusion. Ubiquitin immunohistochemistry confirmed the protective effect of EGb 761 against ischemia/reperfusion damage in the rabbit spinal cord.  相似文献   

18.
BACKGROUND: Cardiopulmonary bypass (CPB) and hypothermic circulatory arrest (HCA) are important components of congenital cardiac surgery. Ischemia/reperfusion injury and inflammatory cascade activation result in endothelial damage and vascular leak which are clinically manifested as pulmonary edema and low cardiac output postoperatively. Newborns are particularly susceptible. Subtraction cloning is a useful method of isolating induced genes and can be applied to CPB/HCA. MATERIALS AND METHODS: We used a newborn lamb model replicating infant CPB with HCA to obtain tissues during various periods of reperfusion. We utilized subtraction cloning to identify mRNA induced in lung following CPB/HCA and reperfusion. Ribonuclease protection was used to quantify mRNA levels. RESULTS: We isolated a cDNA encoding ovine aquaporin-1 in a subtracted cDNA screen comparing control lung with lung exposed to CPB/HCA and reperfusion. Aquaporin-1 mRNA levels increased 3-fold in lung (p = .006) exposed to CPB/HCA and 6 hr of reperfusion. No induction was observed immediately following bypass or after 3 hr of reperfusion. We found no significant induction of aquaporin-1 mRNA following bypass, arrest, and reperfusion in other tissues surveyed, including ventricle, atrium, skeletal muscle, kidney, brain, and liver. CONCLUSIONS: Our finding that aquaporin-1 mRNA is reproducibly induced in lung following CPB/HCA with 6 hr of reperfusion suggests an important role for the water channel in the setting of pulmonary edema. Induction of Aquaporin-1 is late compared with other inflammatory mediators (ICAM-1, E-selectin, IL-8). Further studies are needed to determine if aquaporin-1 contributes to the disease process or if it is part of the recovery phase.  相似文献   

19.
Parenteral administration of mercuric chloride (HgCl2) to rats enhanced lipid peroxidation in liver, kidney, lung, testis, and serum (but not in heart, spleen, or muscle), as measured by the thiobarbituric acid reaction for malondialdehyde (MDA) in fresh tissue homogenates and body fluids. After sc injection of HgCl2 (5 mg/kg body wt), MDA concentrations in liver and kidney became significantly increased by 9 h and reached peak values at 24 h. Dose-response studies were carried out with male albino rats of the Fisher-344 strain (body wt 170–280 g) injected with 1, 3, 5 mg Hg/kg as HgCl2 and sacrificed after 24 h. In time-response studies, animals were administered 5 mg Hg/kg as HgCl2 and sacrificed after 3, 9, 18, 24, and 48 h. Studies in the authors' laboratory have shown that (1) concentrations of MDA are increased in targets (liver, kidney, lung, and testis) of HgCl2-treated rats; (2) severity of hepatotoxicity and nephrotoxicity is generally consistent with the elevation of Hg and MDA concentrations, based upon the time-course and dose-effect relationships observed after administration of HgCl2 to rats; and (3) concentrations of MDA are reduced in target tissues after pretreatment with antioxidants and chelators to HgCl2-treated rats. The results of this study implicate that the lipid peroxidation is one of the molecular mechanisms for cell injury in acute HgCl2 poisoning.  相似文献   

20.
We examined the role of aquaporins (AQPs) in regulating leaf hydraulic conductance (Kleaf) in Vitis vinifera L. (cv Chardonnay) by studying effects of AQP inhibitors, and AQP gene expression during water stress (WS) and recovery (REC). Kleaf was measured after 3 h of petiole perfusion with different solutions and to introduce inhibitors. The addition of 0.1 mm HgCl2 to 15 mm KCl reduced Kleaf compared with perfusion in 15 mM KNO3 or KCl, and these solutions were used for leaves from control, WS and REC plants. Perfusion for 3 h did not significantly alter stomatal conductance (gs) though expression of VvTIP1;1 was increased. WS decreased Kleaf by about 30% and was correlated with gs. The expression of VvTIP2;1 and VvPIP2;1 correlated with Kleaf, and VvTIP2;1 was highly correlated with gs. There was no association between the expression of particular AQPs during WS and REC and inhibition of Kleaf by HgCl2; however, HgCl2 treatment itself increased expression of VvPIP2;3 and decreased expression of VvPIP2;1 . Inhibition by HgCl2 of Kleaf only at early stages of WS and then after REC suggested that apoplasmic pathways become more important during WS. This was confirmed using fluorescent dyes confined to apoplasm or preferentially accumulated in symplasm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号