首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bilirubin, the yellow-orange tetrapyrrole pigment of jaundice, is essentially insoluble in pure water, but is much more soluble in solutions of bile salts such as sodium taurocholate. The biophysical chemistry of bilirubin in bile salt solutions is affected by changes in the pH of the solution in the range 5-9, suggesting that interactions with bile salt molecules and micelles may alter the acidity of the pigment. We have examined this possibility by determining the apparent pKa values for a series of carboxyl 13C-enriched model compounds, including the bilirubin analog mesobilirubin XIIIalpha, in solutions of sodium taurocholate and sodium taurodeoxycholate. Apparent pKa values were determined by 13C NMR titrations in dimethyl sulfoxide-water mixtures. The results show that the acidity of all compounds is decreased, or pKa increased, in micellar bile salt solution relative to pure water and that the effect is greatest for the larger, less water-soluble compounds. We have proposed a model to explain these results and discussed the implications of these findings for the biophysical chemistry of bilirubin in bile.  相似文献   

2.
While the decrease of the β-glucuronidase activity of sonicated cells of Clostridium perfringens and Escherichia coli was obvious for sodium deoxycholate (DC), it was not so obvious for other bile salts (sodium glycocholate and sodium cholate). The enzyme activity of intact cells of these bacteria was significantly enhanced by the presence of DC, but not by the other bile salts in the buffer. These results suggest that the permeability of the bacterial cells is increased more by the presence of DC than by other bile salts.  相似文献   

3.
Exposure of Salmonella enterica to sodium cholate, sodium deoxycholate, sodium chenodeoxycholate, sodium glycocholate, sodium taurocholate, or sodium glycochenodeoxycholate induces the SOS response, indicating that the DNA-damaging activity of bile resides in bile salts. Bile increases the frequency of GC --> AT transitions and induces the expression of genes belonging to the OxyR and SoxRS regulons, suggesting that bile salts may cause oxidative DNA damage. S. enterica mutants lacking both exonuclease III (XthA) and endonuclease IV (Nfo) are bile sensitive, indicating that S. enterica requires base excision repair (BER) to overcome DNA damage caused by bile salts. Bile resistance also requires DinB polymerase, suggesting the need of SOS-associated translesion DNA synthesis. Certain recombination functions are also required for bile resistance, and a key factor is the RecBCD enzyme. The extreme bile sensitivity of RecB-, RecC-, and RecA- RecD- mutants provides evidence that bile-induced damage may impair DNA replication.  相似文献   

4.
The influence of rat bile infusion on renal function in rats and the possible role of bile-induced hemolysis in these effects were examined. The hemolytic action of rat bile and some bile salts were determined in vitro. After the i.v. infusion of rat bile (70 mg freeze-dried powder/2.55 ml) into pentobarbitone-anesthetized rats, the urine, sodium and potassium excretion rates were reduced more than half, which was due to the decrease of glomerular filtration rate and increase of tubular water and sodium reabsorption. A fall in blood pressure, a rise in hematocrit, and hemolysis were also found. Infusion of hemolysed (30 microliters RBC) solution produced by distilled water and then made isotonic caused a short-duration increase in renal excretion and glomerular filtration rate, and the blood pressure was unchanged. Infusion of a rat bile-hemolysed solution after removal of bile acids with cholestyramine increased renal excretions at first with reduction thereafter. Infusion of the rat bile-hemolysed solution treated with barium sulfate produced a renal response very similar to rat bile alone. It is proposed that two factors are involved in the renal response after bile infusion, namely bile acid-induced hemolysis producing diuresis with natriuresis, and bile acid-induced antidiuresis and antinatriuresis, possibly due to a direct renal effect.  相似文献   

5.
Despite the fact that a considerable amount of albumin is present in bile, little is known about the effect of albumin on micellar solubility of cholesterol. The effect of albumin on solubility of cholesterol in various micellar bile salt solutions was studied using Millipore filtration after equilibration. In addition, partitioning of cholesterol from micellar solution was studied using a polyethylene disc method. Decrease of the solubility of cholesterol by the presence of albumin was observed only in unconjugated bile salt solution. The lowering effect of albumin on the cholesterol solubility was found to be proportional to the hydrophobicity of bile salt. In contrast, albumin had almost no effect on cholesterol solubility, either in conjugated bile salt solution or in micellar bile salt solution containing phosphatidylcholine. Addition of albumin enhanced the partitioning of cholesterol out of the micelles in sodium chenodeoxycholate solution as a result of decreased micellar solubility and increased the aqueous solubility of cholesterol in the presence of albumin. Therefore, conjugated bile salt and phosphatidylcholine exert a buffering action on the albumin-induced adverse effect on cholesterol solubility, thus stabilising bile against inadvertent precipitation of cholesterol.  相似文献   

6.
Micellization of sodium deoxycholate (NaDC) and sodium ursodeoxycholate (NaUDC) was studied for the critical micelle concentration (CMC), the micelle aggregation number, and the degree of counterion binding to micelle, where sodium cholate (NaC) was used as a reference. The fluorescence probe technique of pyrene was employed to determine accurately the CMC values for the bile salts, which indicated that a certain concentration range of CMC and a stepwise aggregation for micellization were reasonable. The temperature dependences of micellization for NaDC and NaUDC were studied at 288.2, 298.2, 308.2, and 318.2 K by aqueous solubility change with solution pH. Aggregations of the bile salt anions were analyzed using the stepwise association model and found to grow in size with increasing concentration, which confirmed that the mass action model worked quite well. The average aggregation number was found to be 2.5 (NaUDC) and 10.5 (NaDC) at the concentration of 20 mM and at 308.2 K. The aggregation number determined by static light scattering also agreed well with those by the solubility method in the order of size: NaUDC相似文献   

7.
The effect of the bile salts, sodium cholate, deoxycholate, glycocholate and taurocholate, on the solubility in aqueous solution of the hydrophobic, environmental mutagen, 1,8-dinitropyrene (DNP), was examined. In the absence of bile salts, the DNP appeared to precipitate out of solution, whereas bile salts at a concentration of greater than or equal to 4 mM maintained the DNP in solution. In the presence of the model dietary fiber, alpha-cellulose, the DNP absorbed to this preferentially. Bile salts reduced this adsorption at low alpha-cellulose levels, but had little effect at high alpha-cellulose levels. The implication of these results is that bile salts have solubilising properties that could affect the distribution of hydrophobic molecules, including mutagens, in the digestive tract.  相似文献   

8.
Sodium cholate at millimolar concentration is able to induce activity in rabbit muscle phosphorylase b in the absence of AMP. The maximum activation of the enzyme in presence of 7 mM sodium cholate was 24% of that achieved by 1 mM AMP. Other bile salts tested showed a negligible activating effect. The Ka for AMP was lowered fivefold by 5 mM of the steroid detergent, while the cooperative binding of the nucleotide was abolished. Phosphorylase b', a modified form of phosphorylase in which the phosphorylation site has been removed by limited tryptic attack, presented an activation profile similar to that of phosphorylase b. In contrast, phosphorylase a was inhibited by the bile salt, while the activity of liver phosphorylase b was not significantly affected. Modification of the AMP site of the enzyme with 2,3-butanedione could not inhibit sodium-cholate-induced activity. tert-Butanol, an organic solvent activator of phosphorylase b, was found to enhance the activity induced by sodium cholate. The interaction of sodium cholate and phosphorylase b was also followed by difference spectroscopy using a fluorescein isothiocyanate--phosphorylase b conjugate. Furthermore, measurements of electron spin resonance demonstrated that the mobility of a spin-label bound at buried--NH2 groups of phosphorylase b decreases cooperatively with increasing bile salt concentration.  相似文献   

9.
Sphingomyelin in mixed dispersion with bile salts was hydrolysed by the solubilized sphingomyelinase of rat brain lysosomes. In parallel studies, physical properties of these dispersions were determined. The kinetic curves that described the rate of hydrolysis as a function of increasing concentrations of bile salt were multiphasic. A region of very low activity was followed by an ascending portion, a peak, a descending portion, a trough and a second ascending portion. The positions of the initiation points, peaks and troughs were found to be a function of the respective ratios of the bile salt to sphingomyelin for the detergent sodium taurodeoxycholate, but of the absolute concentration of the detergent for sodium taurocholate. Turbidity studies suggested that hydrolysis of sphingomyelin begins at a bile salt concentration that solubilizes the lipid and incorporates it into a mixed micelle with the detergent. Ultracentrifugation studies suggested that the sizes of the mixed aggregates of detergent and lipid were a function of the ratio of taurodeoxycholate to sphingomyelin, but of the absolute concentration of the bile salt, for sodium taurocholate.  相似文献   

10.
L-phenylalanine mustard (L-PAM) was incubated at 37° C in bile of bovine, canine and human origin. Recovery rate constants of L-PAM from bile were 0.1/hr for canine bile (0–3 hours); 0.18/hr for bovine bile; 0.45/hr for human bile. No significant hydrolysis of L-PAM in canine bile was noted for the period of 3 to 6 hours at 37° C. The incubation of L-PAM in sodium taurocholate solution (1000 molar excess) gave a recovery rate constant 0.15/hr at 37° C. However, the incubation of L-PAM in bilirubin solution (2.5 mg/ml H2O) gave a recovery rate constant of 0.52/hr at 37° C. The high concentration of the parent compound L-PAM seen in vivo in canine bile after i.v. administration may be related to its low in vitro degradation rate in canine bile.  相似文献   

11.
Tyrosine residues of the human pancreatic carboxylic-ester hydrolase (EC 3.1.1.1) (also referred to as cholesterol-ester hydrolase, EC 3.1.1.13) were nitrated in the ortho-position by the use of tetranitromethane. The specificity of the reaction has been verified and the inhibition observed was shown to be unrelated to the weak polymerization of the protein. Among the 27 tyrosines present in the enzyme, seven or eight were nitrated but only one residue, with a pK of 8.3, seems to be responsible for the loss of activity. This decrease in enzyme activity appears only in assays which were performed in the presence of bile salts, suggesting that of the two bile salt binding sites postulated on the enzyme, only one, referred to the as the 'unspecific site' (Lombardo, D. and Guy, O. (1980) Biochim. Act 611, 147-155), was modified. This is in agreement with the similar loss of enzyme activity observed on emulsified and soluble substrate. The most important result is the difference observed in experiments of the protective effects of bile salts. The protection with sodium taurodeoxycholate is independent of its critical micellar concentration, showing that monomers protect this site, whereas the protection observed in experiments with sodium cholate appears only for supramicellar concentrations of bile salt. Since this latter bile salt promotes the dimerization of the enzyme, we can conclude that a premicellar bile salt binding site (protected by monomers) is transformed in a functional micellar binding site (protected by micelles). This conformational transformation seems to be consecutive to the dimerization, as has been recently proposed.  相似文献   

12.
The effects of sodium oleate infused into either the duodenum or the terminal ileum on bile and pancreatic secretion were examined in the conscious rat. Rats were prepared with cannulae draining pure bile and pancreatic juice separately, and with an ileal and two duodenal cannulae. A 40 mM taurocholate solution containing 7 mg/ml bovine trypsin was infused into the duodenum throughout the experiment to replace diverted bile-pancreatic juice to maintain the normal regulation of pancreatic secretion. The intraduodenal infusion of sodium oleate significantly increased pancreatic juice flow, protein, and bicarbonate outputs, whereas it did not affect bile secretion. Intravenous infusion of proglumide (300 mg/kg/hr) did not inhibit pancreatic secretion stimulated by intraduodenal infusion of sodium oleate. An intravenous infusion of atropine (100 micrograms/kg/hr) attenuated protein and fluid secretions but not that of bicarbonate in response to intraduodenal oleate. In contrast, the intraileal infusion of oleate had no effect on pancreatic secretion, whereas it decreased bile flow, bicarbonate, and bile salt outputs. In conclusion, sodium oleate introduced in the duodenum stimulates pancreatic secretion but oleate in the terminal ileum inhibits bile secretion.  相似文献   

13.
Hallén S  Fryklund J  Sachs G 《Biochemistry》2000,39(22):6743-6750
Mammalian sodium/bile acid cotransporters (SBATs) constitute a subgroup of the sodium cotransporter superfamily and function in the enterohepatic circulation of bile acids. They are glycoproteins with an exoplasmic N-terminus, seven or nine transmembrane segments, and a cytoplasmic C-terminus. They exhibit no significant homology with other members of the sodium cotransporter family and there is limited structure/function information available for the SBATs. Membrane-impermeant methanethiosulfonates (MTS) inhibited bile acid transport by alkylation of cysteine 270 (apical SBAT)/266 (basolateral SBAT) that is fully conserved among the sodium/bile acid cotransporters. The accessibility of this residue to MTS reagent is regulated by the natural substrates, sodium and bile acid. In experiments with the apical SBAT, sodium alone increases the reactivity with the thiol reagents as compared to sodium-free medium. In contrast, bile acids protect the SBATs from inactivation, although only in the presence of sodium. The inhibition and protection data suggest that cysteine 270/266 lies in a sodium-sensitive region of the SBATs that is implicated in bile acid transport.  相似文献   

14.
The effect of individual bile salts on alpha-amylase hydrolysis of Cibachron Blue starch was studied at pH 6.0. With sodium cholate, taurocholate and taurodeoxycholate, enzyme activity was increased to 150-160 percent of the control value, at a concentration of similar to 1 mmol/l bile salt. The increased activity extended up to 4 mmol/l. The bile salts sodium deoxycholate and taurochenodeoxycholate exerted activation and inhibition depending on the concentration. With deoxycholate (0.75 mmol/l), activation (150 percent) was evident, while inhibition was apparent above 2.5 mmol/l. With taurochenodeoxycholate maximum activity (135 percent) was observed at 0.25 mmol/l, while inhibition was evident above 1.5 mmol/l. Chenodeoxycholate and lithocholate exerted marked inhibition at concentrations as low as 0.5 mmol/l. Inhibition of alpha-amylase by chenodeoxycholate was competitive with both soluble and insoluble starch substrates. Since the pH of the jejunum is in the region of 6.0 the phenomenon of activation and inhibition of alpha-amylase by bile salts at this pH could be of physiological significance.  相似文献   

15.
We have developed a simple biologically non-invasive method for determining the critical micellar concentration (CMC) of bile salts using pure naturally occurring bilirubin IX alpha monoglucuronide (BMG), an important bile pigment present in virtually all mammalian biles. This methodology employs visible absorbance spectroscopy of BMG in bile salts over a range of bile salt concentrations that include the reported CMC. Using 100 microM-BMG in 0.4 M-imidazole buffer at pH 7.8, we calculated that the CMC for sodium taurochenodeoxycholate is between 2.5 and 3.0 mM based on: (1) an abrupt change in lambda max. in this concentration range, (2) a precipitous decrease in the amplitude of the absorbance shoulder at 450 nm, (3) a sudden decrease in the second derivative absorbance of BMG at 400 nm and an increase in absorbance at 470 nm, (4) a sharp change in the 4th derivative absorbance at 375 and 395 nm. In contrast, sodium taurocholate, a bile salt that reportedly does not have a CMC but continuously self-associates over a wide concentration range, exhibited none of these changes. The use of derivative spectroscopy enhances the ability to detect the CMC changes and also indicates the number of BMG species in solution and their relative energy states.  相似文献   

16.
Micellization of sodium chenodeoxycholate (NaCDC) was studied for the critical micelle concentration (CMC), the micelle aggregation number, and the degree of counterion binding to micelle at 288.2, 298.2, 308.2, and 318.2 K. They were compared with those of three other unconjugated bile salts; sodium cholate (NaC), sodium deoxycholate (NaDC), and sodium ursodeoxycholate (NaUDC). The I(1)/I(3) ratio of pyrene fluorescence and the solubility dependence of solution pH were employed to determine the CMC values. As the results, a certain concentration range for the CMC and a stepwise molecular aggregation for micellization were found reasonable. Using a stepwise association model of the bile salt anions, the mean aggregation number (n) of NaCDC micelles was found to increase with the total anion concentration, while the n values decreased with increasing temperature; 9.1, 8.1, 7.4, and 6.3 at 288.2, 298.2, 308.2, and 318.2 K, respectively, at 50 mmol dm(-3). The results from four unconjugated bile salts indicate that the number, location, and orientation of hydroxyl groups in the steroid nucleus are quite important for growth of the micelles. Activity of the counterion (Na(+)) was determined by a sodium ion selective electrode in order to confirm the low counterion binding to micelles. The solubilized amount of cholesterol into the aqueous bile salt solutions increased in the order of NaUDC相似文献   

17.
Modification of arginine residues with 2,3-butanedione inhibits the carboxylic-ester hydrolase activity on soluble and emulsified substrates when assayed with bile salts. The alpha-dicarbonyl reagent modifies seven of the nineteen arginine residues present per enzyme molecule. Nevertheless the inactivation with butanedione is greatly diminished when the protein is in the presence of negatively charged micellar bile salt. In these conditions we observe the protection of one arginine residue by sodium taurodeoxycholate and of two arginine residues by sodium cholate. This suggests that the carboxylic-ester hydrolase from human pancreatic juice contains at least two arginine residues essential for the activation by bile salts. All our data confirm the presence of two bile-salt-binding sites on the enzyme in which one arginine per site is involved and plays the general role of an anionic binding site. This study provides evidence that arginine residues may play an essential role in the interaction between bile salts and protein.  相似文献   

18.
The previously observed differences in properties of human leucocyte and fibroblast cerebroside sulphate sulphatase (cerebroside-3-sulphate 3-sulphohydrolase, EC 3.1.6.8) measured in vitro have been found to be due to subtle differences in incubation conditions. Maximum enzyme activity was observed with either crude sodium taurocholate or with pure sodium taurodeoxycholate. The optimum bile salt concentration of the enzyme in leucocyte or fibroblast extracts, but not the pure ox liver enzyme, was critically dependent on protein concentration. At low concentrations of the latter (less than 0.1 mg/ml), maximum activity was observed at taurocholate concentrations less than 0.5 mg/ml; at protein concentrations greater than 0.20 mg/ml substantially more bile acid (more than 1.3 mg/ml) was required to stimulate maximum activity. Addition of Triton X-100 or bovine serum albumin to the incubation mixtures increased the optimum taurocholate concentration. The dependence of the bile salt optimum on protein concentration appears to be related to the binding of the lipid substrate to membranous protein present in the tissue extracts. Release of the bound lipid is effected either by increasing the bile salt concentration or by adding Triton X-100. In the presence of excess bile salt human leucocyte, fibroblast and liver cerebroside sulphate sulphatase activity is stimulated by Triton at low protein concentrations; under identical conditions the pure or crude ox-liver enzyme is substatially inhibited. Our data also show that cerebroside sulphate sulphatase activity measured in extracts from leucocytes and fibroblasts, the tissues normally used to effect a diagnosis of metachromatic leucodystrophy, is the result of a complex interaction of bile salt, protein, Triton X-100 and probably the substrate itself. Any slight alteration in any of those factors, without a corresponding change in any or all of the others, can have a marked effect on the measured enzyme activity, and may lead to errors in the diagnosis of metachromatic leucodystrophy.  相似文献   

19.
The conjugated bile salts, sodium taurocholate and glycocholate, inhibited oxygen consumption and uncoupled oxidative phosphorylation of mucosal homogenates from rat jejunum and ileum. These bile salts also were capable of increasing the ATP-ase activity, in the presence of Na+ + K+ with Mg++, of both mucosal homogenates. Consequently, it was concluded from the results of this investigation that the previously observed decrease in ATP levels of rat jejunum and ileum, in the presence of bile salts, can be accounted for by both a complete uncoupling of oxidative phosphorylation and by an increase in ATP-ase activity. Furthermore, the mechanism of bile salt inhibition of tissue ATP levels was discussed in relation to a regulatory role played by bile salts in the active transport of water soluble substances across the small intestine.  相似文献   

20.
Bile salt dependent flow and electrolyte secretion in response to two bile salts were studied in awake rabbits. It was found that sodium glycodeoxycholate had a much greater choleretic and cholioneretic efficiency than sodium taurocholate. The effect of the bile salts on flow and electrolyte secretion was not linear across the range of bile salt secretion rates studied. When amiloride was administered significant decreases in choleretic and cholioneretic efficiencies occurred, but furosemide had no effect. It is concluded that bile salts stimulate electrolyte transport via amiloride inhibitable cellular processes, and that this electrolyte transport is in part responsible for bile salt dependent bile flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号