首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Caveolae position CaV3.2 (T‐type Ca2+ channel encoded by the α‐3.2 subunit) sufficiently close to RyR (ryanodine receptors) for extracellular Ca2+ influx to trigger Ca2+ sparks and large‐conductance Ca2+‐activated K+ channel feedback in vascular smooth muscle. We hypothesize that this mechanism of Ca2+ spark generation is affected by age. Using smooth muscle cells (VSMCs) from mouse mesenteric arteries, we found that both Cav3.2 channel inhibition by Ni2+ (50 µM) and caveolae disruption by methyl‐ß‐cyclodextrin or genetic abolition of Eps15 homology domain‐containing protein (EHD2) inhibited Ca2+ sparks in cells from young (4 months) but not old (12 months) mice. In accordance, expression of Cav3.2 channel was higher in mesenteric arteries from young than old mice. Similar effects were observed for caveolae density. Using SMAKO Cav1.2?/? mice, caffeine (RyR activator) and thapsigargin (Ca2+ transport ATPase inhibitor), we found that sufficient SR Ca2+ load is a prerequisite for the CaV3.2‐RyR axis to generate Ca2+ sparks. We identified a fraction of Ca2+ sparks in aged VSMCs, which is sensitive to the TRP channel blocker Gd3+ (100 µM), but insensitive to CaV1.2 and CaV3.2 channel blockade. Our data demonstrate that the VSMC CaV3.2‐RyR axis is down‐regulated by aging. This defective CaV3.2‐RyR coupling is counterbalanced by a Gd3+ sensitive Ca2+ pathway providing compensatory Ca2+ influx for triggering Ca2+ sparks in aged VSMCs.  相似文献   

2.
Malignant mesothelioma (MMe) is a highly aggressive, lethal tumour requiring the development of more effective therapies. The green tea polyphenol epigallocathechin‐3‐gallate (EGCG) inhibits the growth of many types of cancer cells. We found that EGCG is selectively cytotoxic to MMe cells with respect to normal mesothelial cells. MMe cell viability was inhibited by predominant induction of apoptosis at lower doses and necrosis at higher doses. EGCG elicited H2O2 release in cell cultures, and exogenous catalase (CAT) abrogated EGCG‐induced cytotoxicity, apoptosis and necrosis. Confocal imaging of fluo 3‐loaded, EGCG‐exposed MMe cells showed significant [Ca2+]i rise, prevented by CAT, dithiothreitol or the T‐type Ca2+ channel blockers mibefradil and NiCl2. Cell loading with dihydrorhodamine 123 revealed EGCG‐induced ROS production, prevented by CAT, mibefradil or the Ca2+ chelator BAPTA‐AM. Direct exposure of cells to H2O2 produced similar effects on Ca2+ and ROS, and these effects were prevented by the same inhibitors. Sensitivity of REN cells to EGCG was correlated with higher expression of Cav3.2 T‐type Ca2+ channels in these cells, compared to normal mesothelium. Also, Cav3.2 siRNA on MMe cells reduced in vitro EGCG cytotoxicity and abated apoptosis and necrosis. Intriguingly, Cav3.2 expression was observed in malignant pleural mesothelioma biopsies from patients, but not in normal pleura. In conclusion, data showed the expression of T‐type Ca2+ channels in MMe tissue and their role in EGCG selective cytotoxicity to MMe cells, suggesting the possible use of these channels as a novel MMe pharmacological target.  相似文献   

3.
RalA GTPase has been implicated in the regulated delivery of exocytotic vesicles to the plasma membrane (PM) in mammalian cells. We had reported that RalA regulates biphasic insulin secretion, which we have now determined to be contributed by RalA direct interaction with voltage‐gated calcium (Cav) channels. RalA knockdown (KD) in INS‐1 cells and primary rat β‐cells resulted in a reduction in Ca2+ currents arising specifically from L‐(Cav1.2 and Cav1.3) and R‐type (Cav2.3) Ca2+ channels. Restoration of RalA expression in RalA KD cells rescued these defects in Ca2+ currents. RalA co‐immunoprecipitated with the Cavα2δ‐1 auxiliary subunit known to bind the three Cavs. Moreover, the functional molecular interactions between Cavα2δ‐1 and RalA on the PM shown by total internal reflection fluorescent microscopy/FRET analysis could be induced by glucose stimulation. KD of RalA inhibited trafficking of α2δ‐1 to insulin granules without affecting the localization of the other Cav subunits. Furthermore, we confirmed that RalA and α2δ‐1 functionally interact since RalA KD‐induced inhibition of Cav currents could not be recovered by RalA when α2δ‐1 was simultaneously knocked down. These data provide a mechanism for RalA function in insulin secretion, whereby RalA binds α2δ‐1 on insulin granules to tether these granules to PM Ca2+ channels. This acts as a chaperoning step prior to and in preparation for sequential assembly of exocyst and excitosome complexes that mediate biphasic insulin secretion.  相似文献   

4.
Age‐related increase in L‐type Ca2+ channel (LTCC) expression in hippocampal pyramidal neurons has been hypothesized to underlie the increased Ca2+ influx and subsequent reduced intrinsic neuronal excitability of these neurons that lead to age‐related cognitive deficits. Here, using specific antibodies against Cav1.2 and Cav1.3 subunits of LTCCs, we systematically re‐examined the expression of these proteins in the hippocampus from young (3 to 4 month old) and aged (30 to 32 month old) F344xBN rats. Western blot analysis of the total expression levels revealed significant reductions in both Cav1.2 and Cav1.3 subunits from all three major hippocampal regions of aged rats. Despite the decreases in total expression levels, surface biotinylation experiments revealed significantly higher proportion of expression on the plasma membrane of Cav1.2 in the CA1 and CA3 regions and of Cav1.3 in the CA3 region from aged rats. Furthermore, the surface biotinylation results were supported by immunohistochemical analysis that revealed significant increases in Cav1.2 immunoreactivity in the CA1 and CA3 regions of aged hippocampal pyramidal neurons. In addition, we found a significant increase in the level of phosphorylated Cav1.2 on the plasma membrane in the dentate gyrus of aged rats. Taken together, our present findings strongly suggest that age‐related cognitive deficits cannot be attributed to a global change in L‐type channel expression nor to the level of phosphorylation of Cav1.2 on the plasma membrane of hippocampal neurons. Rather, increased expression and density of LTCCs on the plasma membrane may underlie the age‐related increase in L‐type Ca2+ channel activity in CA1 pyramidal neurons.  相似文献   

5.
In the WAG/Rij rat, a model for human absence epilepsy, spike‐wave discharges (SWD) and absence epileptic behavior develop after the age of 3 months. The rostral part of the reticular thalamic nucleus (rRTN) is involved in SWD. Ca2+ channels play a central role in the initiation and maintenance of burst firing activity of thalamic cells. We hypothesize that a changed expression of α1‐subunits of one or more high voltage‐activated Ca2+ channel types in the rRTN underlies the development of SWD. To test this hypothesis we compared 3‐ and 6‐month‐old WAG/Rij rats with nonepileptic, age‐matched control rats. By immunocytochemistry, the expressions of α11.3‐, α12.1‐, α12.2‐, and α12.3‐subunits were shown in both strains, demonstrating the presence of Cav1.3, Cav2.1, Cav2.2, and Cav2.3 channels, respectively. Quantification of channel expression indicates that the development of SWD in WAG/Rij rats is concomitant with an increased expression of Cav2.1 channels in the rRTN. These channels are mainly presynaptic, as revealed by double immunofluorescence involving the presynapse marker syntaxin. The mechanism by which this increase could be related to the occurrence of SWD has been discussed. © 2004 Wiley Periodicals, Inc. J Neurobiol 58: 467–478, 2004  相似文献   

6.
Multiple types of voltage‐activated calcium (Ca2+) channels are present in all nerve cells examined so far; however, the underlying functional consequences of their presence is often unclear. We have examined the contribution of Ca2+ influx through N‐ and L‐ type voltage‐activated Ca2+ channels in sympathetic neurons to the depolarization‐induced activation of tyrosine hydroxylase (TH), the rate‐limiting enzyme in norepinephrine (NE) synthesis, and the depolarization‐induced release of NE. Superior cervical ganglia (SCG) were decentralized 4 days prior to their use to eliminate the possibility of indirect effects of depolarization via preganglionic nerve terminals. The presence of both ω‐conotoxin GVIA (1 μM), a specific blocker of N‐type channels, and nimodipine (1 μM), a specific blocker of L‐type Ca2+ channels, was necessary to inhibit completely the stimulation of TH activity by 55 mM K+, indicating that Ca2+ influx through both types of channels contributes to enzyme activation. In contrast, K+ stimulation of TH activity in nerve fibers and terminals in the iris could be inhibited completely by ω‐conotoxin GVIA alone and was unaffected by nimodipine as previously shown. K+ stimulation of NE release from both ganglia and irises was also blocked completely when ω‐conotoxin GVIA was included in the medium, while nimodipine had no significant effect in either tissue. These results indicate that particular cellular processes in specific areas of a neuron are differentially dependent on Ca2+ influx through N‐ and L‐type Ca2+ channels. © 1999 John Wiley & Sons, Inc. J Neurobiol 40: 137–148, 1999  相似文献   

7.
L-type Cav1.2 Ca2+ channel undergoes extensive alternative splicing, generating functionally different channels. Alternatively spliced Cav1.2 Ca2+ channels have been found to be expressed in a tissue-specific manner or under pathological conditions. To provide a more comprehensive understanding of alternative splicing in Cav1.2 channel, we systematically investigated the splicing patterns in the neonatal and adult rat hearts. The neonatal heart expresses a novel 104-bp exon 33L at the IVS3-4 linker that is generated by the use of an alternative acceptor site. Inclusion of exon 33L causes frameshift and C-terminal truncation. Whole-cell electrophysiological recordings of Cav1.233L channels expressed in HEK 293 cells did not detect any current. However, when co-expressed with wild type Cav1.2 channels, Cav1.233L channels reduced the current density and altered the electrophysiological properties of the wild type Cav1.2 channels. Interestingly, the truncated 3.5-domain Cav1.233L channels also yielded a dominant negative effect on Cav1.3 channels, but not on Cav3.2 channels, suggesting that Cavβ subunits is required for Cav1.233L regulation. A biochemical study provided evidence that Cav1.233L channels enhanced protein degradation of wild type channels via the ubiquitin-proteasome system. Although the physiological significance of the Cav1.233L channels in neonatal heart is still unknown, our report demonstrates the ability of this novel truncated channel to modulate the activity of the functional Cav1.2 channels. Moreover, the human Cav1.2 channel also contains exon 33L that is developmentally regulated in heart. Unexpectedly, human exon 33L has a one-nucleotide insertion that allowed in-frame translation of a full Cav1.2 channel. An electrophysiological study showed that human Cav1.233L channel is a functional channel but conducts Ca2+ ions at a much lower level.  相似文献   

8.
The active zone of presynaptic nerve terminals organizes the neurotransmitter release machinery, thereby enabling fast Ca2+‐triggered synaptic vesicle exocytosis. BK‐channels are Ca2+‐activated large‐conductance K+‐channels that require close proximity to Ca2+‐channels for activation and control Ca2+‐triggered neurotransmitter release by accelerating membrane repolarization during action potential firing. How BK‐channels are recruited to presynaptic Ca2+‐channels, however, is unknown. Here, we show that RBPs (for RIM‐binding proteins), which are evolutionarily conserved active zone proteins containing SH3‐ and FN3‐domains, directly bind to BK‐channels. We find that RBPs interact with RIMs and Ca2+‐channels via their SH3‐domains, but to BK‐channels via their FN3‐domains. Deletion of RBPs in calyx of Held synapses decreased and decelerated presynaptic BK‐currents and depleted BK‐channels from active zones. Our data suggest that RBPs recruit BK‐channels into a RIM‐based macromolecular active zone complex that includes Ca2+‐channels, synaptic vesicles, and the membrane fusion machinery, thereby enabling tight spatio‐temporal coupling of Ca2+‐influx to Ca2+‐triggered neurotransmitter release in a presynaptic terminal.  相似文献   

9.
Inorganic ions have been used widely to investigate biophysical properties of high voltage-activated calcium channels (HVA: Cav1 and Cav2 families). In contrast, such information regarding low voltage-activated calcium channels (LVA: Cav3 family) is less documented. We have studied the blocking effect of Cd2+, Co2+ and Ni2+ on T-currents expressed by human Cav3 channels: Cav3.1, Cav3.2, and Cav3.3. With the use of the whole-cell configuration of the patch-clamp technique, we have recorded Ca2+ (2 mM) currents from HEK−293 cells stably expressing recombinant T-type channels. Cd2+ and Co2+ block was 2- to 3-fold more potent for Cav3.2 channels (EC50 = 65 and 122 μM, respectively) than for the other two LVA channel family members. Current-voltage relationships indicate that Co2+ and Ni2+ shift the voltage dependence of Cav3.1 and Cav3.3 channels activation to more positive potentials. Interestingly, block of those two Cav3 channels by Co2+ and Ni2+ was drastically increased at extreme negative voltages; in contrast, block due to Cd2+ was significantly decreased. This unblocking effect was slightly voltage-dependent. Tail-current analysis reveals a differential effect of Cd2+ on Cav3.3 channels, which can not close while the pore is occupied with this metal cation. The results suggest that metal cations affect differentially T-type channel activity by a mechanism involving the ionic radii of inorganic ions and structural characteristics of the channels pore.  相似文献   

10.
L-type Ca2+ channels (LTCCs, Cav1) open readily during membrane depolarization and allow Ca2+ to enter the cell. In this way, LTCCs regulate cell excitability and trigger a variety of Ca2+-dependent physiological processes such as: excitation–contraction coupling in muscle cells, gene expression, synaptic plasticity, neuronal differentiation, hormone secretion, and pacemaker activity in heart, neurons, and endocrine cells. Among the two major isoforms of LTCCs expressed in excitable tissues (Cav1.2 and Cav1.3), Cav1.3 appears suitable for supporting a pacemaker current in spontaneously firing cells. It has steep voltage dependence and low threshold of activation and inactivates slowly. Using Cav1.3−/− KO mice and membrane current recording techniques such as the dynamic and the action potential clamp, it has been possible to resolve the time course of Cav1.3 pacemaker currents that regulate the spontaneous firing of dopaminergic neurons and adrenal chromaffin cells. In several cell types, Cav1.3 is selectively coupled to BK channels within membrane nanodomains and controls both the firing frequency and the action potential repolarization phase. Here we review the most critical aspects of Cav1.3 channel gating and its coupling to large conductance BK channels recently discovered in spontaneously firing neurons and neuroendocrine cells with the aim of furnishing a converging view of the role that these two channel types play in the regulation of cell excitability.  相似文献   

11.
The regulation of intracellular Ca2+ is essential for cardiomyocyte function, and alterations in proteins that regulate Ca2+ influx have dire consequences in the diseased heart. Low voltage-activated, T-type Ca2+ channels are one pathway of Ca2+ entry that is regulated according to developmental stage and in pathological conditions in the adult heart. Cardiac T-type channels consist of two main types, Cav3.1 (α1G) and Cav3.2 (α1H), and both can be induced in the myocardium in disease and injury but still, relatively little is known about mechanisms for their regulation and their respective functions. This article integrates previous data establishing regulation of T-type Ca2+ channels in animal models of cardiac disease, with recent data that begin to address the functional consequences of cardiac Cav3.1 and Cav3.2 Ca2+ channel expression in the pathological setting. The putative association of T-type Ca2+ channels with Ca2+ dependent signaling pathways in the context of cardiac hypertrophy is also discussed.  相似文献   

12.
Sepsis is associated with cardiac dysfunction, which is at least in part due to cardiomyocyte apoptosis. However, the underlying mechanisms are far from being understood. Using the colon ascendens stent peritonitis mouse model of sepsis (CASP), we examined the subcellular mechanisms that mediate sepsis‐induced apoptosis. Wild‐type (WT) CASP mice hearts showed an increase in apoptosis respect to WT‐Sham. CASP transgenic mice expressing a CaMKII inhibitory peptide (AC3‐I) were protected against sepsis‐induced apoptosis. Dantrolene, used to reduce ryanodine receptor (RyR) diastolic sarcoplasmic reticulum (SR) Ca2+ release, prevented apoptosis in WT‐CASP. To examine whether CaMKII‐dependent RyR2 phosphorylation mediates diastolic Ca2+ release and apoptosis in sepsis, we evaluated apoptosis in mutant mice hearts that have the CaMKII phosphorylation site of RyR2 (Serine 2814) mutated to Alanine (S2814A). S2814A CASP mice did not show increased apoptosis. Consistent with RyR2 phosphorylation‐dependent enhancement in diastolic SR Ca2+ release leading to mitochondrial Ca2+ overload, mitochondrial Ca2+ retention capacity was reduced in mitochondria isolated from WT‐CASP compared to Sham and this reduction was absent in mitochondria from CASP S2814A or dantrolene‐treated mice. We conclude that in sepsis, CaMKII‐dependent RyR2 phosphorylation results in diastolic Ca2+ release from SR which leads to mitochondrial Ca2+ overload and apoptosis.  相似文献   

13.
SUR2A is an ATP‐binding protein that serves as a regulatory subunit of cardioprotective ATP‐sensitive K+ (KATP) channels. Based on signalling pathway regulating SUR2A expression and SUR2A role in regulating numbers of fully assembled KATP channels, we have suggested that nicotinamide‐rich diet could improve physical endurance by stimulating SUR2A expression. We have found that mice on nicotinamide‐rich diet significantly improved physical endurance, which was associated with significant increase in expression of SUR2A. Transgenic mice with solely overexpressed SUR2A on control diet had increased physical endurance in a similar manner as the wild‐type mice on nicotinamide‐rich diet. The experiments focused on action membrane potential and intracellular Ca2+ concentration have demonstrated that increased SUR2A expression was associated with the activation of sarcolemmal KATP channels and steady Ca2+ levels in cardiomyocytes in response to β‐adrenergic stimulation. In contrast, the same challenge in the wild‐type was characterized by a lack of the channel activation and rise in intracellular Ca2+. Nicotinamide‐rich diet was ineffective to increase physical endurance in mice lacking KATP channels. This study has shown that nicotinamide‐rich diet improves physical endurance by increasing expression of SUR2A and that this is a sole mechanism of the nicotinamide‐rich diet effect. The obtained results suggest that oral nicotinamide is a regulator of SUR2A expression and has a potential as a drug that can improve physical endurance in conditions where this effect would be desirable.  相似文献   

14.
Ca2+ is a highly versatile second messenger that plays a key role in the regulation of numerous cell processes. One‐way cells ensure the specificity and reliability of Ca2+ signals is by organizing them spatially in the form of waves that propagate throughout the cell or within a specific subcellular region. In non‐excitable cells, the inositol 1,4,5‐trisphosphate receptor (IP3R) is responsible for the release of Ca2+ from the endoplasmic reticulum. The spatial aspect of the Ca2+ signal depends on the organization of various elements of the Ca2+ signaling toolkit and varies from tissue to tissue. Ca2+ is implicated in many of endothelium functions that thus depend on the versatility of Ca2+ signaling. In the present study, we showed that the disruption of caveolae microdomains in bovine aortic endothelial cells (BAEC) with methyl‐ß‐cyclodextrin was not sufficient to disorganize the propagation of Ca2+ waves when the cells were stimulated with ATP or bradykinin. However, disorganizing microfilaments with latrunculin B and microtubules with colchicine both prevented the formation of Ca2+ waves. These results suggest that the organization of the Ca2+ waves mediated by IP3R channels does not depend on the integrity of caveolae in BAEC, but that microtubule and microfilament cytoskeleton assembly is crucial. J. Cell. Biochem. 106: 344–352, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

15.
The role of 5‐hydroxytryptamine (5‐HT, serotonin) in the control of leech behavior is well established and has been analyzed extensively on the cellular level; however, hitherto little is known about the effect of 5‐HT on the cytosolic free calcium concentration ([Ca2+]i) in leech neurons. As [Ca2+]i plays a pivotal role in numerous cellular processes, we investigated the effect of 5‐HT on [Ca2+]i (measured by Fura‐2) in identified leech neurons under different experimental conditions, such as changed extracellular ion composition and blockade of excitatory synaptic transmission. In pressure (P), lateral nociceptive (N1), and Leydig neurons, 5‐HT induced a [Ca2+]i increase which was predominantly due to Ca2+ influx since it was abolished in Ca2+‐free solution. The 5‐HT‐induced Ca2+ influx occurred only if the cells depolarized sufficiently, indicating that it was mediated by voltage‐dependent Ca2+ channels. In P and N1 neurons, the membrane depolarization was due to Na+ influx through cation channels coupled to 5‐HT receptors, whereby the dose‐dependency suggests an involvement in excitatory synaptic transmission. In Leydig neurons, 5‐HT receptor‐coupled cation channels seem to be absent. In these cells, the membrane depolarization activating the voltage‐dependent Ca2+ channels was evoked by 5‐HT‐triggered excitatory glutamatergic input. In Retzius, anterior pagoda (AP), annulus erector (AE), and median nociceptive (N2) neurons, 5‐HT had no effect on [Ca2+]i. © 2004 Wiley Periodicals, Inc. J Neurobiol, 2005  相似文献   

16.
Cardiac TRPM2 channels were activated by intracellular adenosine diphosphate-ribose and blocked by flufenamic acid. In adult cardiac myocytes the ratio of GCa to GNa of TRPM2 channels was 0.56 ± 0.02. To explore the cellular mechanisms by which TRPM2 channels protect against cardiac ischemia/reperfusion (I/R) injury, we analyzed proteomes from WT and TRPM2 KO hearts subjected to I/R. The canonical pathways that exhibited the largest difference between WT-I/R and KO-I/R hearts were mitochondrial dysfunction and the tricarboxylic acid cycle. Complexes I, III, and IV were down-regulated, whereas complexes II and V were up-regulated in KO-I/R compared with WT-I/R hearts. Western blots confirmed reduced expression of the Complex I subunit and other mitochondria-associated proteins in KO-I/R hearts. Bioenergetic analyses revealed that KO myocytes had a lower mitochondrial membrane potential, mitochondrial Ca2+ uptake, ATP levels, and O2 consumption but higher mitochondrial superoxide levels. Additionally, mitochondrial Ca2+ uniporter (MCU) currents were lower in KO myocytes, indicating reduced mitochondrial Ca2+ uptake was likely due to both lower ψm and MCU activity. Similar to isolated myocytes, O2 consumption and ATP levels were also reduced in KO hearts. Under a simulated I/R model, aberrant mitochondrial bioenergetics was exacerbated in KO myocytes. Reactive oxygen species levels were also significantly higher in KO-I/R compared with WT-I/R heart slices, consistent with mitochondrial dysfunction in KO-I/R hearts. We conclude that TRPM2 channels protect the heart from I/R injury by ameliorating mitochondrial dysfunction and reducing reactive oxygen species levels.  相似文献   

17.
We studied the peculiarities of permeability with respect to the main extracellular cations, Na+ and Ca2+, of cloned low-threshold calcium channels (LTCCs) of three subtypes, Cav3.1 (α1G), Cav3.2 (α 1H), and Cav3.3 (α1I), functionally expressed in Xenopus oocytes. In a calcium-free solution containing 100 mM Na+ and 5 mM calcium-chelating EGTA buffer (to eliminate residual concentrations of Ca2+) we observed considerable integral currents possessing the kinetics of inactivation typical of LTCCs and characterized by reversion potentials of −10 ± 1, −12 ± 1, and −18 ± 2 mV, respectively, for Cav3.1, Cav3.2, and Cav3.3 channels. The presence of Ca2+ in the extracellular solution exerted an ambiguous effect on the examined currents. On the one hand, Ca2+ effectively blocked the current of monovalent cations through cloned LTCCs (K d = 2, 10, and 18 μM for currents through channels Cav3.1, Cav3.2, and Cav3.3, respectively). On the other hand, at the concentration of 1 to 100 mM, Ca2+ itself functioned as a carrier of the inward current. Despite the fact that the calcium current reached the level of saturation in the presence of 5 mM Ca2+ in the external solution, extracellular Na+ influenced the permeability of these channels even in the presence of 10 mM Ca2+. The Cav3.3 channels were more permeable with respect to Na+ (P Ca/P Na ∼ 21) than Cav3.1 and Cav3.2 (P Ca/P Na ∼ 66). As a whole, our data indicate that cloned LTCCs form multi-ion Ca2+-selective pores, as these ions possess a high affinity for certain binding sites. Monovalent cations present together with Ca2+ in the external solution modulate the calcium permeability of these channels. Among the above-mentioned subtypes, Cav3.3 channels show the minimum selectivity with respect to Ca2+ and are most permeable for monovalent cations. Neirofiziologiya/Neurophysiology, Vol. 38, No. 3, pp. 183–192, May–June, 2006.  相似文献   

18.
Novel Ca2B2O5·H2O:Eu3+ nanotubes, constructed with nanobelts, were prepared using a hydrothermal method. The Ca3(BO3)2:Eu3+ nanobelts with a thickness of about 100 nm were made for the first time using a two‐step hydrothermal process with Ca2B2O5·H2O:Eu3+ as the precursor. The samples were characterized by energy dispersive X‐ray spectroscopy, X‐ray diffraction, Fourier transform infra‐red spectroscopy, thermogravimetry differential thermal analysis and scanning electron microscopy. The relationship between Ca3(BO3)2:Eu3+ and Ca2B2O5·H2O:Eu3+ was also studied. Possible reaction and growth mechanisms for Ca2B2O5·H2O:Eu3+ and Ca3(BO3)2:Eu3+ were proposed. Ca3(BO3)2:Eu3+ preserved the basic microstructure unit of Ca2B2O5·H2O:Eu3+. Both Ca2B2O5·H2O:Eu3+ and Ca3(BO3)2:Eu3+ exhibited red emissions centred at 614 nm, but the maximum excitation peaks for Ca2B2O5·H2O:Eu3+ and Ca3(BO3)2:Eu3+ differed. Ca3(BO3)2:Eu3+ exhibited higher photoluminescence intensity but a lower R/O value than Ca2B2O5·H2O:Eu3+.  相似文献   

19.
Identified wind‐sensitive giant interneurons in the cricket's cercal sensory system integrate cercal afferent signals and release an avoidance behavior. A calcium‐imaging technique was applied to the giant interneurons to examine the presence of the voltage‐dependent Ca2+ channels (VDCCs) in their dendrites. We found that presynaptic stimuli to the cercal sensory nerve cords elevated the cytosolic Ca2+ concentration ([Ca2+]i) in the dendrites of the giant interneurons. The dendritic Ca2+ rise coincided with the spike burst of the giant interneurons, and the rate of Ca2+ rise depended on the frequency of the action potentials. These results suggest that the action potentials directly caused [Ca2+]i increase. Observation of the [Ca2+]i elevation induced by depolarizing current injection demonstrates the presence of the VDCCs in the dendrites. Although hyperpolarizing current injection into the giant interneuron suppressed action potential generation, EPSPs could induce no [Ca2+]i increase. This result means that ligand‐gated channels do not contribute to the synaptically stimulated Ca2+ elevation. On the other hand, antidromically stimulated spikes also increased [Ca2+]i in all cellular regions including the dendrites. And bath application of a mixture of Ni2+, Co2+, and Cd2+ or tetrodotoxin inhibited the [Ca2+]i elevation induced by the antidromic stimulation. From these findings, we suppose that the axonal spikes antidromically propagate and induce the Ca2+ influx via VDCCs in the dendrites. The spike‐dependent Ca2+ elevation may regulate the sensory signals processing via second‐messenger cascades in the giant interneurons. © 2000 John Wiley & Sons, Inc. J Neurobiol 44: 45–56, 2000  相似文献   

20.
Increase in 4‐hydroxy‐2‐nonenal (4HNE) due to oxidative stress has been observed in a variety of cardiac diseases such as diabetic cardiomyopathy. 4HNE exerts a damaging effect in the myocardium by interfering with subcellular organelles like mitochondria by forming adducts. Therefore, we hypothesized that increased 4HNE adduct formation in the heart results in proteasome inactivation in isoproterenol (ISO)‐infused type 1 diabetes mellitus (DM) rats. Eight‐week‐old male Sprague Dawley rats were injected with streptozotocin (STZ, 65 mg kg?1). The rats were infused with ISO (5 mg kg?1) for 2 weeks by mini pumps, after 8 weeks of STZ injection. We studied normal control (n = 8) and DM + ISO (n = 10) groups. Cardiac performance was assessed by echocardiography and Millar catheter at the end of the protocol at 20 weeks. Initially, we found an increase in 4HNE adducts in the hearts of the DM + ISO group. There was also a decrease in myocardial proteasomal peptidase (chymotrypsin and trypsin‐like) activity. Increases in cardiomyocyte area (446 ± 32·7 vs 221 ± 10·83) (µm2), per cent area of cardiac fibrosis (7·4 ± 0·7 vs 2·7 ± 0·5) and cardiac dysfunction were also found in DM + ISO (P < 0·05) relative to controls. We also found increased 4HNE adduct formation on proteasomal subunits. Furthermore, reduced aldehyde dehydrogenase 2 activity was observed in the myocardium of the DM + ISO group. Treatment with 4HNE (100 μM) for 4 h on cultured H9c2 cardiomyocytes attenuated proteasome activity. Therefore, we conclude that the 4HNE‐induced decrease in proteasome activity may be involved in the cardiac pathology in STZ‐injected rats infused with ISO. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号