首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
The stoichiometry of the reduction of nitrite catalyzed by Pseudomonas aeruginosa nitrite-reductase (cytochrome cd1) has been shown to yield nitrous oxide as the final product. Gas chromatography experiments demonstrated that nitric oxide is also formed as a free intermediate. A sequential formation of NO and N2O is discussed as proposed to the parallel formation of the two products.  相似文献   

4.
5.
While recent studies focused on Quorum Sensing (QS) role in the cell-to-cell communication in free or biofilm cultures, no work has been devoted up to now to investigate the communication between sessile and planktonic bacteria. In this aim, we elaborated an original two-chambered bioreactor and used a proteomic approach to study the alterations induced by Pseudomonas aeruginosa biofilm cells on protein expression in planktonic counterparts (named SIPs for Surface-Influenced Planktonics). Proteomic analyses revealed the existence of 31 proteins whose amount varied in SIPs, among which five corresponded to hypothetic proteins and two (the Fur and BCP proteins) are involved in bacterial response to oxidative stress. An increase in the concentration of C4-HSL (rhlRrhlI-dependent QS) and 3-oxo-C12-HSL (lasRlasI-dependent QS) autoinducer molecules was shown in the planktonic compartment. Interestingly, among proteins that were accumulated by SIPs was 3-oxoacyl-[acyl-carrier-protein] reductase, a protein involved in the production of the autoinducer 3-oxo-C12-HSL. These results demonstrate that planktonic organisms are able to detect the presence of a biofilm in their close environment and to modify their gene expression in consequence.  相似文献   

6.
Pseudomonas aeruginosa type IV pili, composed of PilA subunits, are used for attachment and twitching motility on surfaces. P. aeruginosa strains express one of five phylogenetically distinct PilA proteins, four of which are associated with accessory proteins that are involved either in pilin posttranslational modification or in modulation of pilus retraction dynamics. Full understanding of pilin diversity is crucial for the development of a broadly protective pilus-based vaccine. Here, we report the 1.6-Å X-ray crystal structure of an N-terminally truncated form of the novel PilA from strain Pa110594 (group V), which represents the first non-group II pilin structure solved. Although it maintains the typical T4a pilin fold, with a long N-terminal α-helix and four-stranded antiparallel β-sheet connected to the C-terminus by a disulfide-bonded loop, the presence of an extra helix in the αβ-loop and a disulfide-bonded loop with helical character gives the structure T4b pilin characteristics. Despite the presence of T4b features, the structure of PilA from strain Pa110594 is most similar to the Neisseria gonorrhoeae pilin and is also predicted to assemble into a fiber similar to the GC pilus, based on our comparative pilus modeling. Interactions between surface-exposed areas of the pilin are suggested to contribute to pilus fiber stability. The non-synonymous sequence changes between group III and V pilins are clustered in the same surface-exposed areas, possibly having an effect on accessory protein interactions. However, based on our high-confidence model of group III PilAPA14, compensatory changes allow for maintenance of a similar shape.  相似文献   

7.
Simultaneous Cr(VI) reduction and phenol degradation were investigated in a reactor containing Pseudomonas aeruginosa CCTCC AB91095. Phenol was used as carbon source. P.aeruginosa utilized metabolites formed during phenol degradation as energy source for Cr(VI) reduction. Cr(VI) inhibited both Cr(VI) reduction and phenol degradation when Cr(VI) concentration exceeded the optimum value (20 mg/L), whereas phenol enhanced both Cr(VI) reduction and phenol degradation below the optimum initial concentration of 100 mg/L. Cr(III) was the predominant product of Cr(VI) reduction in cultures after incubation for 24 h. Both Cr(VI) reduction and phenol degradation were influenced by the amount of inocula. The concentration of Cr(VI) and phenol declined quickly from 20, 100 to 3.36, 29.51 mg/L in cultures containing of 5% (v/v) inoculum after incubation for 12 h, respectively. The whole study showed that P. aeruginosa is promising for the reduction of toxic Cr(VI) and degradation of organic pollutants simultaneously in the mineral liquid medium.  相似文献   

8.
We report here the crystal structure of the Pseudomonas aeruginosa multidrug exporter MexB, an intensively studied member of the resistance-nodulation-cell division family of secondary active transporters, at 3.0 Å. MexB forms an asymmetric homotrimer where each subunit adopts a different conformation representing three snapshots of the transport cycle similar to the recently determined structures of its close homologue AcrB from Escherichia coli, so far the sole structurally characterized member of the superfamily. As for AcrB, the conformations of two subunits can be clearly assigned to either the binding step or the extrusion step in the transport process. Unexpectedly, a remarkable conformational shift in the third subunit is observed in MexB, which has potential implications for the assembly of the tripartite MexAB-OprM drug efflux system. Furthermore, an n-dodecyl-d-maltoside molecule was found bound to the internal multidrug-binding cavity, which might indicate that MexB binds and transports detergent molecules as substrates. As the only missing piece of the puzzle in the MexAB-OprM system, the X-ray structure of MexB completes the molecular picture of the major pump mediating intrinsic and acquired multidrug resistance in P. aeruginosa.  相似文献   

9.
Type IV pili are long filamentous appendages required for both adhesion and a unique form of motility known as twitching. Twitching motility involves the extension and retraction of the pilus and requires a number of gene products, including five conserved pilin-like proteins of unknown function (FimU, PilV, PilW, PilX, and PilE in Pseudomonas aeruginosa), termed ‘minor’ pilins. Maintenance of a specific stoichiometric ratio among the minor pilins was important for function, as loss or overexpression of any component impaired motility. Disruption of individual minor pilin genes, or of the AlgR positive regulator of minor pilin operon expression in a strain where pilus retraction was blocked by inactivation of the PilT retraction ATPase, revealed that pili were produced, although levels of piliation were reduced relative to pilT positive control. Differences in the levels of piliation of complemented strains pointed to specific roles for each protein in the assembly process, with FimU and PilX being implicated as key promoters of pilus assembly on the cell surface. Using specific antibodies for each protein, we showed that the minor pilins FimU, PilV, PilW, PilX, and PilE were processed by the pre-pilin peptidase PilD and incorporated throughout the growing pilus filament. This is the first study to demonstrate that the minor pilins, conserved among bacteria expressing type IVa pili, are incorporated into the fiber and support a role for them in the initiation, but not termination, of pilus assembly.  相似文献   

10.
Robust voltammetric responses were obtained for wild-type and Y72F/H83Q/Q107H/Y108F azurins adsorbed on CH3(CH2)nSH:HO(CH2)mSH (n = m = 4, 6, 8, 11; n = 13, 15 m = 11) self-assembled-monolayer (SAM) gold electrodes in acidic solution (pH 4.6) at high ionic strengths. Electron-transfer (ET) rates do not vary substantially with ionic strength, suggesting that the SAM methyl headgroup binds to azurin by hydrophobic interactions. The voltammetric responses for both proteins at higher pH values (>4.6-11) also were strong. A binding model in which the SAM hydroxyl headgroup interacts with the Asn47 carboxamide accounts for the relatively strong coupling to the copper center that can be inferred from the ET rates. Of particular interest is the finding that rate constants for electron tunneling through n = 8, 13 SAMs are higher at pH 11 than those at pH 4.6, possibly owing to enhanced coupling of the SAM to Asn47 caused by deprotonation of nearby surface residues.  相似文献   

11.
Human plasma prekallikrein, precursor of the bradykinin-generating enzyme, was activated in a purified system under a near physiological condition (pH 7.8, ionic strength I = 0.14, 37°C) by Pseudomonas aeruginosa elastase which is a tissue-destructive metalloproteinase. Compared with that, Pseudomonas aeruginosa alkaline proteinase poorly activated it with a rate as low as less than one-twentieth of that of elastate. The activation by elastase was blocked with a specific inhibitor of elastase, HONHCOCH(CH2C6H5)CO-Ala-Gly-NH2 (10 μM). Generation of kallikrein-like amidolytic activity was also observed in plasma deficient in Hageman factor by treatment with elastase, but was not in plasma deficient in prekallikrein. The kallikrein-like activity generated in Hageman factor deficient plasma as well as the generation process itself was indeed inhibited by antihuman prekallikrein goat antibody. These results suggest that the pathological activation of the kallikrein-kinin system might occur under certain clinical conditions in pseudomonal infections.  相似文献   

12.
Pseudomonas aeruginosa is an opportunistic human pathogen causing severe acute and chronic infections. Earlier we have shown that calcium (Ca2+) induces P. aeruginosa biofilm formation and production of virulence factors. To enable further studies of the regulatory role of Ca2+, we characterized Ca2+ homeostasis in P. aeruginosa PAO1 cells. By using Ca2+-binding photoprotein aequorin, we determined that the concentration of free intracellular Ca2+ ([Ca2+]in) is 0.14 ± 0.05 μM. In response to external Ca2+, the [Ca2+]in quickly increased at least 13-fold followed by a multi-phase decline by up to 73%. Growth at elevated Ca2+ modulated this response. Treatment with inhibitors known to affect Ca2+ channels, monovalent cations gradient, or P-type and F-type ATPases impaired [Ca2+]in response, suggesting the importance of the corresponding mechanisms in Ca2+ homeostasis. To identify Ca2+ transporters maintaining this homeostasis, bioinformatic and LC–MS/MS-based membrane proteomic analyses were used. [Ca2+]in homeostasis was monitored for seven Ca2+-affected and eleven bioinformatically predicted transporters by using transposon insertion mutants. Disruption of P-type ATPases PA2435, PA3920, and ion exchanger PA2092 significantly impaired Ca2+ homeostasis. The lack of PA3920 and vanadate treatment abolished Ca2+-induced swarming, suggesting the role of the P-type ATPase in regulating P. aeruginosa response to Ca2+.  相似文献   

13.
J. Singh  D.C. Wharton 《BBA》1973,292(2):391-401
A procedure is described for the purification of cytochrome c-556 from Pseudomonas aeruginosa. The isolated hemoprotein exists as a dimer with a molecular weight of approximately 77 200. The dimer can be dissociated into a monomeric species (or single polypeptide chain) of 40 500 molecular weight by means of sodium dodecyl sulfate or 4 M urea. The amino acid composition demonstrates the presence of four half-cystine residues per 43 000 molecular weight. Heme and iron analyses indicate that two c-type hemes are covalently linked to each polypeptide chain. The absorption spectrum of ferrocytochrome c-556 has a double α-band with a peak at 556 nm and a shoulder at 552 nm; the β-band appears at 521 nm and the Soret band at 420 nm.The electron paramagnetic resonance spectrum of ferricytochrome c-556 contains the elements of two ferric iron species, one a low spin and the other a high spin form.The function of cytochrome c-556 is obscure. The purified cytochrome does not react with Pseudomonas cytochrome oxidase nor with the Pseudomonas cytochrome c-551 or copper protein.The properties of cytochrome c-556 indicate that it is probably not the same species as the cytochrome c-554 previously isolated from the same organism.  相似文献   

14.
Jasbir Singh 《BBA》1974,333(1):28-36
Pseudomonas aeruginosa cytochrome oxidase, which reduces nitrite and oxygen, is also capable of reducing hydroxylamine to ammonia.The Km for hydroxylamine reduction is 6 · 10?4M compared to 5 · 10?5M for nitrite reduction. NADH, NADPH, reduced P. aeruginosa cytochrome c551, and reduced P. aeruginosa copper protein were ineffective as electron donors for hydroxylamine reduction whereas reduced pyocyanine and methylene blue acted as electron mediators.Hydroxylamine reduction did not require the presence of Mn2+ of FAD and was not inhibited by prolonged dialysis versus sodium diethyldithiocarbamate. Cyanide, nitrite, and CO were very effective inhibitors.Removal of heme d and its reconstitution, as well as inhibition by CO, suggest that the reduction of hydroxylamine, like the reduction of nitrite or oxygen, proceeds via the heme d.  相似文献   

15.
Amyloids are typically associated with neurodegenerative diseases, but recent research demonstrates that several bacteria utilize functional amyloid fibrils to fortify the biofilm extracellular matrix and thereby resist antibiotic treatments. In Pseudomonas aeruginosa, these fibrils are composed predominantly of FapC, a protein with high-sequence conservation among the genera. Previous studies established FapC as the major amyloid subunit, but its mechanism of fibril formation in P. aeruginosa remained largely unexplored. Here, we examine the FapC sequence in greater detail through a combination of bioinformatics and protein engineering, and we identify specific motifs that are implicated in amyloid formation. Sequence regions of high evolutionary conservation tend to coincide with regions of high amyloid propensity, and mutation of amyloidogenic motifs to a designed, non-amyloidogenic motif suppresses fibril formation in a pH-dependent manner. We establish the particular significance of the third repeat motif in promoting fibril formation and also demonstrate emergence of soluble oligomer species early in the aggregation pathway. The insights reported here expand our understanding of the mechanism of amyloid polymerization in P. aeruginosa, laying the foundation for development of new amyloid inhibitors to combat recalcitrant biofilm infections.  相似文献   

16.
10 out of 24 Pseudomonas aeruginosa FP sex factors tested were found to protect bacteria against the lethal effects of UV-irradiation. Two of these FP factors (FP50 and FP58) and an R factor R 931, which is also UV-protecting, were studied in detail in an attempt to determine the mechanisms involved. It appeared that a plasmid gene-product contributes to dark repair of both UV and chemical damage (induced by agents such as methyl methanesulphonate (MMS) and nitrosoguanidine (NG) which are thought to induce single-strand gap formation in DNA). Although these plasmids failed to contribute to host cell reactivation of UV-irradiated phage in an Hcr mutant, they nevertheless substantially protected the mutant itself against UV-irradiation. This result suggested that the excision step per se of excision repair is not involved, but does not exclude the possibility that the plasmids might contribute to the repair resynthesis step of the excision repair process in wild type bacteria. An alternative possibility is that the plasmids contribute to some step or steps in a minor optional repair system analogous to the E. coli exrA recA-dependent repair system. This idea gains support from the observation that UV mutagenesis is enhanced in the presence of these plasmids.  相似文献   

17.

Background

Due to increasing antibiotics resistance, antimicrobial peptides (AMPs) are receiving increased attention. Pseudomonas aeruginosa is a major pathogen in this context, involved, e.g., in keratitis and wound infections. Novel bactericidal agents against this pathogen are therefore needed.

Methods

Bactericidal potency was monitored by radial diffusion, viable count, and minimal inhibitory concentration assays, while toxicity was probed by hemolysis. Mechanistic information was obtained from assays on peptide-induced vesicle disruption and lipopolysaccharide binding.

Results

End-tagging by hydrophobic amino acids yields increased potency of AMPs against P. aeruginosa, irrespective of bacterial proteinase production. Exemplifying this by two peptides from kininogen, GKHKNKGKKNGKHNGWK and KNKGKKNGKH, potency increased with tag length, correlating to more efficient bacterial wall and vesicle rupture, and to more pronounced P. aeruginosa lipopolysaccharide binding. End-tag effects remained at high electrolyte concentration and in the presence of plasma or anionic macromolecular scavengers. The tagged peptides displayed stability against P. aeruginosa elastase, and were potent ex vivo, both in a contact lens model and in a skin wound model.

General significance

End-tagging, without need for post-peptide synthesis modification, may be employed to enhance AMP potency against P. aeruginosa at maintained limited toxicity.  相似文献   

18.
Bacterial resistance to antibiotic therapy remains a worldwide problem. In Pseudomonasaeruginosa, rates of efflux confer inherent resistance to many antimicrobial agents, including fluoroquinolones, due to a high level of expression and a relatively high turnover number of the efflux pumps in gram-negative bacteria. To understand the roles of efflux pumps in both the influx and efflux of compounds in P. aeruginosa and to aid the chemistry compound design by bridging in vitro enzymatic binding data (IC50 values) with whole cell results (MIC numbers), a collaborative effort was put forward to validate a series of bacterial penetration/accumulation assays for assessment of intracellular drug concentration. Initially, using 2-(4-dimethylaminostyryl)-1-ethylpyridinium cation (DMP) as the tracer, a 96-well fluorescence assay was established to measure the time-dependent accumulation of DMP in wild-type (PAO1), MexABOprM deletion (PAO200), and MexABOprM-MexCDOprJ-MexJKL:FRT deletion mutants (PAO314). At steady state, the order of DMP accumulation was PAO314 > PAO200 > PAO1. Subsequently, the established assay conditions were applied to a radiolabeled assay format using 3H-labeled ciprofloxacin. At the concentration tested, the accumulation of [3H]ciprofloxacin approached a plateau after 15 min and the amount of accumulation in PAO314 was higher (∼2- to 10-fold) than that in PAO1. Finally, with an additional step of cell lysis, a liquid chromatography/mass spectrometry-based assay was established with ciprofloxacin with (i) superior sensitivity (the detection limit can be as low as 0.24 ng/ml for ciprofloxacin) and (ii) the ability to monitor cold or nonfluorescent compounds in a drug discovery setting.  相似文献   

19.
Membrane-integrated nitric oxide reductase (NOR) reduces nitric oxide (NO) to nitrous oxide (N2O) with protons and electrons. This process is essential for the elimination of the cytotoxic NO that is produced from nitrite (NO2?) during microbial denitrification. A structure-guided mutagenesis of NOR is required to elucidate the mechanism for NOR-catalyzed NO reduction. We have already solved the crystal structure of cytochrome c-dependent NOR (cNOR) from Pseudomonas aeruginosa. In this study, we then constructed its expression system using cNOR-gene deficient and wild-type strains for further functional study. Characterizing the variants of the five conserved Glu residues located around the heme/non-heme iron active center allowed us to establish how the anaerobic growth rate of cNOR-deficient strains expressing cNOR variants correlates with the in vitro enzymatic activity of the variants. Since bacterial strains require active cNOR to eliminate cytotoxic NO and to survive under denitrification conditions, the anaerobic growth rate of a strain with a cNOR variant is a good indicator of NO decomposition capability of the variants and a marker for the screening of functionally important residues without protein purification. Using this in vivo screening system, we examined the residues lining the putative proton transfer pathways for NO reduction in cNOR, and found that the catalytic protons are likely transferred through the Glu57 located at the periplasmic protein surface. The homologous cNOR expression system developed here is an invaluable tool for facile identification of crucial residues in vivo, and for further in vitro functional and structural studies.  相似文献   

20.
Type IV pili (T4P) are bacterial virulence factors responsible for attachment to surfaces and for twitching motility, a motion that involves a succession of pilus extension and retraction cycles. In the opportunistic pathogen Pseudomonas aeruginosa, the PilM/N/O/P proteins are essential for T4P biogenesis, and genetic and biochemical analyses strongly suggest that they form an inner-membrane complex. Here, we show through co-expression and biochemical analysis that the periplasmic domains of PilN and PilO interact to form a heterodimer. The structure of residues 69-201 of the periplasmic domain of PilO was determined to 2.2 Å resolution and reveals the presence of a homodimer in the asymmetric unit. Each monomer consists of two N-terminal coiled coils and a C-terminal ferredoxin-like domain. This structure was used to generate homology models of PilN and the PilN/O heterodimer. Our structural analysis suggests that in vivo PilN/O heterodimerization would require changes in the orientation of the first N-terminal coiled coil, which leads to two alternative models for the role of the transmembrane domains in the PilN/O interaction. Analysis of PilN/O orthologues in the type II secretion system EpsL/M revealed significant similarities in their secondary structures and the tertiary structures of PilO and EpsM, although the way these proteins interact to form inner-membrane complexes appears to be different in T4P and type II secretion. Our analysis suggests that PilN interacts directly, via its N-terminal tail, with the cytoplasmic protein PilM. This work shows a direct interaction between the periplasmic domains of PilN and PilO, with PilO playing a key role in the proper folding of PilN. Our results suggest that PilN/O heterodimers form the foundation of the inner-membrane PilM/N/O/P complex, which is critical for the assembly of a functional T4P complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号