首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
β‐Amino acids containing α,β‐hybrid peptides show great potential as peptidomimetics. In this paper, we describe the synthesis and affinity to μ‐opioid and δ‐opioid receptors of α,β‐hybrids, analogs of the tetrapeptide Tyr‐ d ‐Ala‐Phe‐Phe‐NH2 (TAPP). Each amino acid was replaced with an l ‐ or d ‐β3h‐amino acid. All α,β‐hybrids of TAPP analogs were synthesized in solution and tested for affinity to μ‐opioid and δ‐opioid receptors. The analog Tyr‐β3h‐ d ‐Ala‐Phe‐PheNH2 was found to be as active as the native tetrapeptide. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

2.
《Chirality》2017,29(3-4):120-129
Novel poly(biphenylylacetylene) derivatives bearing two acetyloxy groups at the 2‐ and 2′‐positions and an alkoxycarbonyl group at the 4′‐position of the biphenyl pendants (poly‐ Ac 's) were synthesized by the polymerization of the corresponding biphenylylacetylenes using a rhodium catalyst. The obtained stereoregular (cis transoidal ) poly‐ Ac 's folded into a predominantly one‐handed helical conformation accompanied by a preferred‐handed axially twisted conformation of the biphenyl pendants through noncovalent interactions with a chiral alcohol and both the induced main‐chain helicity and the pendant axial chirality were maintained, that is, memorized, after complete removal of the chiral alcohol. The stability of the helicity memory of the poly‐ Ac 's in a solution was lower than that of the analogous poly(biphenylylacetylene)s bearing two methoxymethoxy groups at the 2‐ and 2′‐positions of the biphenyl pendants (poly‐ MOM 's). In the solid state, however, the helicity memory of the poly‐ Ac 's was much more stable and showed a better chiral recognition ability toward several racemates than that of the previously reported poly‐ MOM when used as a chiral stationary phase for high‐performance liquid chromatography. In particular, the poly‐ Ac ‐based CSP with a helicity memory efficiently separated racemic benzoin derivatives into enantiomers.  相似文献   

3.
The aim of this work was to prepare L ‐ and D ‐(adamant‐1‐yl)‐Gly‐L ‐Ala‐D ‐isoGln peptides in order to study their adjuvant (immunostimulating) activities. Adjuvant activity of adamant‐1‐yl tripeptides was tested in the mouse model using ovalbumin as an antigen and in comparison to the peptidoglycan monomer (PGM; β‐D ‐GlcNAc‐(1→4)‐D ‐MurNAc‐L ‐Ala‐D ‐isoGln‐mesoDAP(εNH2)‐D ‐Ala‐D ‐Ala) and structurally related adamant‐2‐yl tripeptides.  相似文献   

4.
The relationship between the conformation and biological activity of the peptide allosteric modulator of the interleukin‐1 receptor 101.10 (D ‐Arg‐D ‐Tyr‐D ‐Thr‐D ‐Val‐D ‐Glu‐D ‐Leu‐D ‐Ala‐NH2) has been studied using (R)‐ and (S)‐Bgl residues. Twelve Bgl peptides were synthesized using (R)‐ and (S)‐cyclic sulfamidate reagents derived from L ‐ and D ‐aspartic acid in an optimized Fmoc‐compatible protocol for efficient lactam installment onto the supported peptide resin. Examination of these (R)‐ and (S)‐Bgl 101.10 analogs for their potential to inhibit IL‐1β‐induced thymocyte cell proliferation using a novel fluorescence assay revealed that certain analogs exhibited retained and improved potency relative to the parent peptide 101.10. In light of previous reports that Bgl residues may stabilize type II′β‐turn‐like conformations in peptides, CD spectroscopy was performed on selected compounds to identify secondary structure necessary for peptide biological activity. Results indicate that the presence of a fold about the central residues of the parent peptide may be important for activity. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

5.
In this study, the functional consequences of the pharmacological modulation of the M‐current (IKM) on cytoplasmic Ca2+ intracellular Ca2+concentration ([Ca2+]i) changes and excitatory neurotransmitter release triggered by various stimuli from isolated rat cortical synaptosomes have been investigated. Kv7.2 immunoreactivity was identified in pre‐synaptic elements in cortical slices and isolated glutamatergic cortical synaptosomes. In cerebrocortical synaptosomes exposed to 20 mM [K+]e, the IKM activator retigabine (RT, 10 μM) inhibited [3H]d ‐aspartate ([3H]d ‐Asp) release and caused membrane hyperpolarization; both these effects were prevented by the IKM blocker XE‐991 (20 μM). The IKM activators RT (0.1–30 μM), flupirtine (10 μM) and BMS‐204352 (10 μM) inhibited 20 mM [K+]e‐induced synaptosomal [Ca2+]i increases; XE‐991 (20 μM) abolished RT‐induced inhibition of depolarization‐triggered [Ca2+]i transients. The P/Q‐type voltage‐sensitive Ca2+channel (VSCC) blocker ω‐agatoxin IVA prevented RT‐induced inhibition of depolarization‐induced [Ca2+]i increase and [3H]d ‐Asp release, whereas the N‐type blocker ω‐conotoxin GVIA failed to do so. Finally, 10 μM RT did not modify the increase of [Ca2+]i and the resulting enhancement of [3H]d ‐Asp release induced by [Ca2+]i mobilization from intracellular stores, or by store‐operated Ca2+channel activation. Collectively, the present data reveal that the pharmacological activation of IKM regulates depolarization‐induced [3H]d ‐Asp release from cerebrocortical synaptosomes by selectively controlling the changes of [Ca2+]i occurring through P/Q‐type VSCCs.  相似文献   

6.
A photoreactive analogue of human melanin‐concentrating hormone was designed, [d‐ Bpa13,Tyr19]‐MCH, containing the d‐ enantiomer of photolabile p‐benzoylphenylalanine (Bpa) in position 13 and tyrosine for radioiodination in position 19. The linear peptide was synthesized by the continuous‐flow solid‐ phase methodology using Fmoc‐strategy and PEG‐PS resins, purified to homogeneity and cyclized by iodine oxidation. Radioiodination of [d ‐Bpa13,Tyr19]‐MCH at its Tyr19 residue was carried out enzymatically using solid‐ phase bound glucose oxidase/lactoperoxidase, followed by purification on a reversed‐ phase mini‐column and HPLC. Saturation binding analysis of [125I]‐[d‐ Bpa13,Tyr19]‐MCH with G4F‐7 mouse melanoma cells gave a KD of 2.2±0.2×10−10 mol/l and a Bmax of 1047±50 receptors/cell. Competition binding analysis showed that MCH and rANF(1–28) displace [125I]‐[d‐ Bpa13,Tyr19]‐MCH from the MCH binding sites on G4F‐7 cells whereas α‐MSH has no effect. Receptor crosslinking by UV‐irradiation of G4F‐7 cells in the presence of [125I]‐[d‐ Bpa13,Tyr19]‐MCH followed by SDS‐polyacrylamide gel electrophoresis and autoradiography yielded a band of 45–50 kDa. Identical crosslinked bands were also detected in B16‐F1 and G4F mouse melanoma cells, in RE and D10 human melanoma cells as well as in COS‐7 cells. Weak staining was found in rat PC12 phaeochromocytoma and Chinese hamster ovary cells. No crosslinking was detected in human MP fibroblasts. These data demonstrate that [125I]‐[d‐ Bpa13,Tyr19]‐MCH is a versatile photocrosslinking analogue of MCH suitable to identify MCH receptors in different cells and tissues; the MCH receptor in these cells appears to have the size of a G protein‐coupled receptor, most likely with a varying degree of glycosylation. Copyright © 1999 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

7.
New analogues of deltorphin I (DT I, Tyr‐d ‐Ala‐Phe‐Asp‐Val‐Val‐Gly‐NH2), with the d ‐Ala residue in position 2 replaced by α‐methyl‐β‐azido(amino, 1‐pyrrolidinyl, 1‐piperidinyl or 4‐morpholinyl)alanine, were synthesized by a combination of solid‐phase and solution methods. All ten new analogues were tested for receptor affinity and selectivity to μ‐ and δ‐opioid receptors. The affinity of analogues containing (R) or (S)‐α‐methyl‐β‐azidoalanine in position 2 to δ‐receptors strongly depended on the chirality of the α,α‐disubstituted residue. Peptide II , containing (S)‐α‐methyl‐β‐azidoalanine in position 2, displayed excellent δ‐receptor selectivity with its δ‐receptor affinity being only three times lower than that of DT I. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

8.
Side-by-side with inhibition of the Na+,K+-ATPase ouabain and other cardiotonic steroids (CTS) can affect cell functions by mechanisms other than regulation of the intracellular Na+ and K+ ratio ([Na+]i/[K+]i). Thus, we compared the doseand time-dependences of the effect of ouabain on intracellular [Na+]i/[K+]i ratio, Na+,K+-ATPase activity, and proliferation of human umbilical vein endothelial cells (HUVEC). Treatment of the cells with 1-3 nM ouabain for 24-72 h decreased the [Na+]i/[K+]i ratio and increased cell proliferation by 20-50%. We discovered that the same ouabain concentrations increased Na+,K+-ATPase activity by 25-30%, as measured by the rate of 86Rb+ influx. Higher ouabain concentrations inhibited Na+,K+-ATPase, increased [Na+]i/[K+]i ratio, suppressed cell growth, and caused cell death. When cells were treated with low ouabain concentrations for 48 or 72 h, a negative correlation between [Na+]i/[K+]i ratio and cell growth activation was observed. In cells treated with high ouabain concentrations for 24 h, the [Na+]i/[K+]i ratio correlated positively with proliferation inhibition. These data demonstrate that inhibition of HUVEC proliferation at high CTS concentrations correlates with dissipation of the Na+ and K+ concentration gradients, whereas cell growth stimulation by low CTS doses results from activation of Na+,K+-ATPase and decrease in the [Na+]i/[K+]i ratio.  相似文献   

9.
《Chirality》2017,29(10):603-609
d ‐ and l ‐Tryptophan (Trp) and d ‐ and l ‐kynurenine (KYN) were derivatized with a chiral reagent, (S )‐4‐(3‐isothiocyanatopyrrolidin‐1‐yl)‐7‐(N,N‐dimethylaminosulfonyl)‐2,1,3‐benzoxadiazole (DBD‐PyNCS), and were separated enantiomerically by high‐performance liquid chromatography (HPLC) equipped with a triazole‐bonded column (Cosmosil HILIC) using tandem mass spectrometric (MS/MS) detection. Effects of column temperature, salt (HCO2NH4) concentration, and pH of the mobile phase in the enantiomeric separation, followed by MS detection of (S )‐DBD‐PyNCS‐d ,l ‐Trp and ‐d ,l ‐KYN, were investigated. The mobile phase consisting of CH3CN/10 mM ammonium formate in H2O (pH 5.0) (90/10) with a column temperature of 50–60 °C gave satisfactory resolution (R s) and mass‐spectrometric detection. The enantiomeric separation of d ,l ‐Trp and d ,l ‐KYN produced R s values of 2.22 and 2.13, and separation factors (α) of 1.08 and 1.08, for the Trp and KYN enantiomers, respectively. The proposed LC–MS/MS method provided excellent detection sensitivity of both enantiomers of Trp and KYN (5.1–19 nM).  相似文献   

10.
Aims: Characterization of substrate specificity of a d ‐lyxose isomerase from Serratia proteamaculans and application of the enzyme in the production of d ‐lyxose and d ‐mannose. Methods and Results: The concentrations of monosaccharides were determined using a Bio‐LC system. The activity of the recombinant protein from Ser. proteamaculans was the highest for d ‐lyxose among aldoses, indicating that it is a d‐ lyxose isomerase. The native recombinant enzyme existed as a 54‐kDa dimer, and the maximal activity for d‐ lyxose isomerization was observed at pH 7·5 and 40°C in the presence of 1 mmol l?1 Mn2+. The Km values for d ‐lyxose, d ‐mannose, d ‐xylulose, and d ‐fructose were 13·3, 32·2, 3·83, and 19·4 mmol l?1, respectively. In 2 ml of reaction volume at pH 7·5 and 35°C, d ‐lyxose was produced at 35% (w/v) from 50% (w/v) d ‐xylulose by the d‐ lyxose isomerase in 3 h, while d ‐mannose were produced at 10% (w/v) from 50% (w/v) d ‐fructose in 5 h. Conclusions: We identified the putative sugar isomerase from Ser. proteamaculans as a d ‐lyxose isomerase. The enzyme exhibited isomerization activity for aldose substrates with the C2 and C3 hydroxyl groups in the left‐hand configuration. High production rates of d‐ lyxose and d ‐mannose by the enzyme were obtained. Significance and Impact of the Study: A new d‐ lyxose isomerase was found, and this enzyme had higher activity for d ‐lyxose and d ‐mannose than previously reported enzymes. Thus, the enzyme can be applied in industrial production of d ‐lyxose and d ‐mannose.  相似文献   

11.
Two new oleanane‐type saponins: β‐d ‐xylopyranosyl‐(1 → 4)‐6‐deoxy‐α‐l ‐mannopyranosyl‐(1 → 2)‐1‐O‐{(3β)‐28‐oxo‐3‐[(2‐Oβ‐d ‐xylopyranosyl‐β‐d ‐glucopyranosyl)oxy]olean‐12‐en‐28‐yl}‐β‐d ‐glucopyranose ( 1 ) and 1‐O‐[(3β)‐28‐oxo‐3‐{[β‐d ‐xylopyranosyl‐(1 → 2)‐α‐l ‐arabinopyranosyl‐(1 → 6)‐2‐acetamido‐2‐deoxy‐β‐d ‐glucopyranosyl]oxy}olean‐12‐en‐28‐yl]β‐d ‐glucopyranose ( 2 ), along with two known saponins: (3β)‐3‐[(β‐d ‐Glucopyranosyl‐(1 → 2)‐β‐d ‐glucopyranosyl)oxy]olean‐12‐en‐28‐oic acid ( 3 ) and (3β)‐3‐{[α‐l ‐arabinopyranosyl‐(1 → 6)‐[β‐d ‐glucopyranosyl‐(1 → 2)]‐β‐d ‐glucopyranosyl]oxy}olean‐12‐en‐28‐oic acid ( 4 ) were isolated from the acetone‐insoluble fraction obtained from the 80% aqueous MeOH extract of Albizia anthelmintica Brongn . leaves. Their structures were identified using different NMR experiments including: 1H‐ and 13C‐NMR, HSQC, HMBC and 1H,1H‐COSY, together with HR‐ESI‐MS/MS, as well as by acid hydrolysis. The four isolated saponins and the fractions of the extract exhibited cytotoxic activity against HepG‐2 and HCT‐116 cell lines. Compound 2 showed the most potent cytotoxic activity among the other tested compounds against the HepG2 cell line with an IC50 value of 3.60μm . Whereas, compound 1 showed the most potent cytotoxic effect with an IC50 value of 4.75μm on HCT‐116 cells.  相似文献   

12.
One chiral L ‐valine (L ‐Val) was inserted into the C‐terminal position of achiral peptide segments constructed from α‐aminoisobutyric acid (Aib) and α,β‐dehydrophenylalanine (ΔZPhe) residues. The IR, 1H NMR and CD spectra indicated that the dominant conformations of the pentapeptide Boc‐Aib‐ΔPhe‐(Aib)2‐L ‐Val‐NH‐Bn (3) and the hexapeptide Boc‐Aib‐ΔPhe‐(Aib)3‐L ‐Val‐NH‐Bn (4) in solution were both right‐handed (P) 310‐helical structures. X‐ray crystallographic analyses of 3 and 4 revealed that only a right‐handed (P) 310‐helical structure was present in their crystalline states. The conformation of 4 was also studied by molecular‐mechanics calculations. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

13.
The reactions of adenosine with malonaldehyde and glyoxal, and with malonaldehyde and methylglyoxal resulted in the formation of one malonaldehyde–glyoxal and one malonaldehyde–methylglyoxal conjugate adduct, respectively. These adducts were isolated and purified by reversed‐phase liquid chromatography, and structurally characterized by UV, 1H‐ and 13C‐NMR spectroscopy, and mass spectrometry. The malonaldehyde–glyoxal adduct was identified as 8‐(diformylmethyl)‐3‐(β‐D ‐ribofuranosyl)imidazo[2,1‐i]purine (M1Gx‐A), while the malonaldehyde–methylglyoxal one as 8‐(diformylmethyl)‐7‐methyl‐3‐(β‐D ‐ribofuranosyl)imidazo[2,1‐i]purine (M1MGx‐A). Both adducts were also observed in calf thymus DNA when incubated in the respective aldehydes under physiological pH and temperature. Moreover, in the reaction of methylglyoxal and malonaldehyde with adenosine, an additional adduct was formed. This adduct was found to consist of one unit derived from methylglyoxal and one unit from formaldehyde. The adduct was identified as N6‐(2,3‐dihydroxy‐2‐methylpropanoyl)‐9‐(β‐D ‐ribofuranosyl)purine (MGxFA‐A). Formaldehyde was found to originate from the commercial methylglyoxal in which it was present as an impurity.  相似文献   

14.
To understand the terminal effect of chiral residue for determining a helical screw sense, we adopted five kinds of peptides IV containing N‐ and/or C‐terminal chiral Leu residue(s): Boc–L ‐Leu–(Aib–ΔPhe)2–Aib–OMe ( I ), Boc–(Aib–ΔPhe)2–L ‐Leu–OMe ( II ), Boc–L ‐Leu–(Aib–ΔPhe)2–L ‐Leu–OMe ( III ), Boc–D ‐Leu–(Aib–ΔPhe)2–L ‐Leu–OMe ( IV ), and Boc–D ‐Leu–(Aib–ΔPhe)2–Aib–OMe ( V ). The segment –(Aib–ΔPhe)2– was used for a backbone composed of two “enantiomeric” (left‐/right‐handed) helices. Actually, this could be confirmed by 1H‐nmr [nuclear Overhauser effect (NOE) and solvent accessibility of NH resonances] and CD spectroscopy on Boc–(Aib–ΔPhe)2–Aib–OMe, which took a left‐/right‐handed 310‐helix. Peptides IV were also found to take 310‐type helical conformations in CDCl3, from difference NOE measurement and solvent accessibility of NH resonances. Chloroform, acetonitrile, methanol, and tetrahydrofuran were used for CD measurement. The CD spectra of peptides IIII in all solvents showed marked exciton couplets with a positive peak at longer wavelengths, indicating that their main chains prefer a left‐handed screw sense over a right‐handed one. Peptide V in all solvents showed exciton couplets with a negative peak at longer wavelengths, indicating it prefers a right‐handed screw sense. Peptide IV in chloroform showed a nonsplit type CD pattern having only a small negative signal around 280 nm, meaning that left‐ and right‐handed helices should exist with almost the same content. In the other solvents, peptide IV showed exciton couplets with a negative peak at longer wavelengths, corresponding to a right‐handed screw sense. From conformational energy calculation and the above 1H‐nmr studies, an N‐ or C‐terminal L ‐Leu residue in the lowest energy left‐handed 310‐helical conformation was found to take an irregular conformation that deviates from a left‐handed helix. The positional effect of the L ‐residue on helical screw sense was discussed based on CD data of peptides IV and of Boc–(L ‐Leu–ΔPhe)n–L ‐Leu–OMe (n = 2 and 3). © 1999 John Wiley & Sons, Inc. Biopoly 49: 551–564, 1999  相似文献   

15.
We report the hierarchical supramolecular organization of metallosupramolecular homochiral complexes 1 ‐Λ‐(S,S,S,S)‐M2+/ 1 ‐?‐(R,R,R,R)‐M2+ and 2 ‐ Λ‐(S,S,S,S)‐M2+/ 2 ‐?‐ (R,R,R,R)‐M2+ of M2+ = Co2+, Fe2+, Zn2+ metal ions with chiral pseudo‐terpyridine‐type ligands: 1‐ (S,S) or 1‐ (R,R) = 2,6‐bis (naphthyl ethylimine)pyridine and 2‐ (S,S) or 2‐ (R,R) = 2,6‐bis (phenyl‐ethylimine)pyridine. Circular dichroism measurements in solution were used to confirm the enantiomeric nature of all twelve complexes. For crystal structures of 1 ‐ Λ‐ (S,S,S,S)‐M2+ or 1 ‐?‐ (R,R,R,R)‐M2+ complexes, absolute configurations {? (or P), Λ (or M)} were confirmed by refinement of the Flack parameter x: ?0.007 ≤ x ≤ 0.11 for the single crystals of 1 ‐Λ‐(S,S,S,S)‐M2+/ 1 ‐?‐ (R,R,R,R)‐M2+, 2 ‐ Λ‐ (S,S,S,S)‐Fe2+, and 2 ‐?‐ (R,R,R,R)‐Co2+.  相似文献   

16.
Single‐walled carbon nanotube‐(7,6) chirality was used for the design of multimode enantioselective sensors using different carbon matrices such as graphene paste, graphite paste, and carbon nanopowder‐based paste. l ‐ and d ‐malic acids were used as model analytes. The responses of the multimode sensors were evaluated for potentiometric and differential pulse voltammetry (DPV) modes. When carbon nanopowder was used as matrix, the multimode sensor was enantioselective for d ‐malic acid in the concentration range 10?3 to 10?15 mol/L for the potentiometric mode and 10?5 to 10?8 mol/L for the DPV mode. The graphite paste‐based sensor was enantioselective for l ‐malic acid in the ranges: 10?10 to 10?13 for the potentiometric mode and 10?4 to 10?7 mol/L for the DPV mode. The sensors based on graphene and chiral single‐walled carbon nanotubes were enantioselective for d ‐malic acid, and a response was obtained only in the DPV mode. Accordingly, the matrix influenced both the enantioselectivity and the sensitivity of the measurements. The application of the sensors was for the enantioanalysis of malic acid in wines and apple juice samples. The proposed method is fast and reliable and allows the quantification of l ‐ and d ‐malic acids using electrochemical methods based on different principles, from the real samples after a buffering of the samples. The enantioanalysis of malic acid in wine and juice samples was performed with high recoveries (higher than 90.00%) and low relative standard deviation (RSD) (%) values (lower than 1.00%).  相似文献   

17.
The mannosylated derivative of adamant‐1‐yl tripeptide (D ‐(Ad‐1‐yl)Gly‐L ‐Ala‐D ‐isoGln) was prepared to study the effects of mannosylation on adjuvant (immunostimulating) activity. Mannosylated adamant‐1‐yl tripeptide (Man‐OCH2CH(Me)CO‐D ‐(Ad‐1‐yl)Gly‐L ‐Ala‐D ‐isoGln) is a non‐pyrogenic, H2O‐soluble, and non‐toxic compound. Adjuvant activity of mannosylated adamantyl tripeptide was tested in the mouse model with ovalbumin as an antigen and in comparison to the parent tripeptide and peptidoglycan monomer (PGM, β‐D ‐GlcNAc‐(1→4)‐D ‐MurNAc‐L ‐Ala‐D ‐isoGln‐mesoDAP(εNH2)‐D ‐Ala‐D ‐Ala), a well‐known effective adjuvant. The mannosylation of adamantyl tripeptide caused the amplification of its immunostimulating activity in such a way that it was comparable to that of PGM.  相似文献   

18.
19.
20.
Methylated inositol, d ‐pinitol (3‐O‐methyl‐d ‐chiro‐inositol), is a common constituent in legumes. It is synthesized from myo‐inositol in two reactions: the first reaction, catalyzed by myo‐inositol‐O‐methyltransferase (IMT), consists of a transfer of a methyl group from S‐adenosylmethionine to myo‐inositol with the formation of d ‐ononitol, while the second reaction, catalyzed by d ‐ononitol epimerase (OEP), involves epimerization of d ‐ononitol to d ‐pinitol. To identify the genes involved in d ‐pinitol biosynthesis in a model legume Medicago truncatula, we conducted a BLAST search on its genome using soybean IMT cDNA as a query and found putative IMT (MtIMT) gene. Subsequent co‐expression analysis performed on publicly available microarray data revealed two potential OEP genes: MtOEPA, encoding an aldo‐keto reductase and MtOEPB, encoding a short‐chain dehydrogenase. cDNAs of all three genes were cloned and expressed as recombinant proteins in E. coli. In vitro assays confirmed that putative MtIMT enzyme catalyzes methylation of myo‐inositol to d ‐ononitol and showed that MtOEPA enzyme has NAD+‐dependent d ‐ononitol dehydrogenase activity, while MtOEPB enzyme has NADP+‐dependent d ‐pinitol dehydrogenase activity. Both enzymes are required for epimerization of d ‐ononitol to d ‐pinitol, which occurs in the presence of NAD+ and NADPH. Introduction of MtIMT, MtOEPA, and MtOEPB genes into tobacco plants resulted in production of d ‐ononitol and d ‐pinitol in transformants. As this two‐step pathway of d ‐ononitol epimerization is coupled with a transfer of reducing equivalents from NADPH to NAD+, we speculate that one of the functions of this pathway might be regeneration of NADP+ during drought stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号