首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The increasing interest in click chemistry and its use to stabilize turn structures led us to compare the propensity for β‐turn stabilization of different analogs designed as mimics of the β‐turn structure found in tendamistat. The β‐turn conformation of linear β‐amino acid‐containing peptides and triazole‐cyclized analogs were compared to ‘conventional’ lactam‐ and disulfide‐bridged hexapeptide analogs. Their 3D structures and their propensity to fold in β‐turns in solution, and for those not structured in solution in the presence of α‐amylase, were analyzed by NMR spectroscopy and by restrained molecular dynamics with energy minimization. The linear tetrapeptide Ac‐Ser‐Trp‐Arg‐Tyr‐NH2 and both the amide bond‐cyclized, c[Pro‐Ser‐Trp‐Arg‐Tyr‐D ‐Ala] and the disulfide‐bridged, Ac‐c[Cys‐Ser‐Trp‐Arg‐Tyr‐Cys]‐NH2 hexapeptides adopt dominantly in solution a β‐turn conformation closely related to the one observed in tendamistat. On the contrary, the β‐amino acid‐containing peptides such as Ac‐(R)‐β3‐hSer‐(S)‐Trp‐(S)‐β3‐hArg‐(S)‐β3‐hTyr‐NH2, and the triazole cyclic peptide, c[Lys‐Ser‐Trp‐Arg‐Tyr‐βtA]‐NH2, both specifically designed to mimic this β‐turn, do not adopt stable structures in solution and do not show any characteristics of β‐turn conformation. However, these unstructured peptides specifically interact in the active site of α‐amylase, as shown by TrNOESY and saturation transfer difference NMR experiments performed in the presence of the enzyme, and are displaced by acarbose, a specific α‐amylase inhibitor. Thus, in contrast to amide‐cyclized or disulfide‐bridged hexapeptides, β‐amino acid‐containing peptides and click‐cyclized peptides may not be regarded as β‐turn stabilizers, but can be considered as potential β‐turn inducers. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

2.
Chiral sulfoxides/N‐oxides (R)‐ 1 and (R,R)‐ 2 are effective chiral promoters in the enantioselective allylation of α‐keto ester N‐benzoylhydrazone derivatives 3a , 3b , 3c , 3d , 3e , 3f , 3g to generate the corresponding N‐benzoylhydrazine derivatives 4a , 4b , 4c , 4d , 4e , 4f , 4g , with enantiomeric excesses as high as 98%. Representative hydrazine derivatives 4a , 4b were subsequently treated with SmI2, and the resulting amino esters 5a , 5b with LiOH to obtain quaternary α‐substituted α‐allyl α‐amino acids 6a , 6b , whose absolute configuration was assigned as (S), with fundament on chemical correlation and electronic circular dichroism (ECD) data. Chirality 25:529–540, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

3.
Enantiopure 3((R)‐ and 3((S)‐1‐phenylethyl)‐4‐oxazoline‐2‐ones were evaluated as chiral building blocks for the divergent construction of heterocycles with stereogenic quaternary centers. The N‐(R)‐ or N‐(S)‐1‐phenylethyl group of these compounds proved to be an efficient chiral auxiliary for the asymmetric induction of the 4‐ and 5‐positions of the 4‐oxazolin‐2‐one ring through thermal and MW‐promoted nucleophilic conjugated addition to Michael acceptors and alkyl halides. The resulting adducts were transformed via a cascade process into fused six‐membered carbo‐ and heterocycles. The structure of the reaction products depended on the electrophiles and reaction conditions used. Alternative isomeric 4‐methylene‐2‐oxazolidinones served as chiral precursors for a versatile and divergent approach to highly substituted cyclic carbamates. DFT quantum calculations showed that the formation of bicyclic pyranyl compounds was generated by a diastereoselective concerted hetero‐Diels‐Alder cycloaddition.  相似文献   

4.
The reduction of the axially chiral N‐(o‐aryl)‐5,5‐dimethyl‐2,4‐oxazolidinediones by NaBH4 yielded axially chiral N‐(o‐aryl)‐4‐hydroxy‐5,5‐dimethyl‐2‐oxazolidinone enantiomers having a chiral center at C‐4, with 100% diastereoselectivity as has been shown by their 1H and 13C NMR spectra and by enantioselective HPLC analysis. The resolved enantiomeric isomers were found to interconvert thermally through an aldehyde intermediate formed upon ring cleavage via a latent ring‐chain‐ring tautomerization. It was found that the rate of enantiomerization depended on the size and the electronic effect of the ortho substituent present on the aryl ring bonded to the nitrogen of the heterocycle. Chirality 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

5.
A single chiral cyclic α,α‐disubstituted amino acid, (3S,4S)‐1‐amino‐(3,4‐dimethoxy)cyclopentanecarboxylic acid [(S,S)‐Ac5cdOM], was placed at the N‐terminal or C‐terminal positions of achiral α‐aminoisobutyric acid (Aib) peptide segments. The IR and 1H NMR spectra indicated that the dominant conformations of two peptides Cbz‐[(S,S)‐Ac5cdOM]‐(Aib)4‐OEt ( 1) and Cbz‐(Aib)4‐[(S,S)‐Ac5cdOM]‐OMe (2) in solution were helical structures. X‐ray crystallographic analysis of 1 and 2 revealed that a left‐handed (M) 310‐helical structure was present in 1 and that a right‐handed (P) 310‐helical structure was present in 2 in their crystalline states. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

6.
Novel 3‐alkyl‐4,1‐benzoxazepine‐2,5‐diones were synthesized in good ee exploiting the chiral pool methodology, an economical way of asymmetric synthesis. Various anthranilic acids are coupled with different α‐haloacids to afford N‐acylated anthranilic acid intermediates which undergo cyclization to (3R)‐3‐alkyl‐4,1‐benzoxazepines‐2,5‐diones. Chirality 25:865–870, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

7.
A simple and stereoselective synthesis of 3‐methylthalidomide, a configurationally stable thalidomide analog, is presented. Herein we describe the synthesis of (R)‐3‐methylthalidomide starting from (S)‐alanine by piperidin‐2‐one ring assembly approach in high yield and enantiomeric purity without using a chiral auxiliary or reagent. Starting from (R)‐alanine, the corresponding (S)‐3‐methylthalidomide can be prepared using the same methodology. Chirality 27:619–624, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

8.
The racemic and enantioselective synthesis of a novel glyceric acid derivative, namely, 2,3‐dihydroxy‐3‐(3,4‐dihydroxyphenyl)‐propionic acid as well as the antioxidant activities is described. The virtually pure enantiomers, (+)‐(2R,3S)‐2,3‐dihydroxy‐3‐(3,4‐dihydroxyphenyl)‐propionic acid and (?)‐(2S,3R)‐2,3‐dihydroxy‐3‐(3,4‐dihydroxyphenyl)‐propionic acid were synthesized for the first time via Sharpless asymmetric dihydroxylation of trans‐caffeic acid derivatives using the enantiocomplementary catalysts, (DHQD)2‐PHAL and (DHQ)2‐PHAL. The determination of enantiomeric purity of the novel chiral glyceric acid derivatives was performed by high‐performance liquid chromatographic techniques on the stage of their alkylated precursors. The novel glyceric acid derivatives show strong antioxidant activity against hypochlorite and N,N‐diphenyl‐N‐picryl‐hydrazyl free radical. Their antioxidant activity is about 40‐fold higher than that of the corresponding natural polyether and three‐fold higher of trans‐caffeic acid itself. Chirality, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

9.
Four groups of organophosphonate derivatives enantiomers were separated on N‐(3,5‐dinitrobenzoyl)‐S‐leucine chiral stationary phase. The three‐dimensional structures of the complexes between the single enantiotopic chiral compounds and chiral stationary phase have been studied using molecular model and molecular dynamics simulation. Detailed results regarding the conformation, auto‐docking, and thermodynamic estimation are presented. The elution order of the enantiomer could be determined from the energy. The predicted chiral discrimination was obtained by computational results. Chirality 25:101–106, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

10.
Accessible chiral syntheses of 3 types of (R)‐2‐sulfanylcarboxylic esters and acids were performed: (R)‐2‐sulfanylpropanoic (thiolactic) ester (53%, 98%ee) and acid (39%, 96%ee), (R)‐2‐sulfanylsucciinic diester (59%, 96%ee), and (R)‐2‐mandelic ester (78%, 90%ee) and acid (59%, 96%ee). The present practical and robust method involves (i) clean SN2 displacement of methanesulfonates of (S)‐2‐hydroxyesters by using commercially available AcSK with tris(2‐[2‐methoxyethoxy])ethylamine and (ii) sufficiently mild deacetylation. The optical purity was determined by the corresponding (2R,5R)‐trans‐thiazolidin‐4‐one and (2S,5R)‐cis‐thiazolidin‐4‐one derivatives based on accurate high‐performance liquid chromatography analysis with high‐resolution efficiency. Compared with the reported method utilizing AcSCs (generated from AcSH and CsCO3), the present method has several advantages, that is, the use of odorless AcCOSK reagent, reasonable reaction velocity, isolation procedure, and accurate, reliable optical purity determination. The use of accessible AcSK has advantages because of easy‐to‐handle odorless and hygroscopic solid that can be used in a bench‐top procedure. The Ti(OiPr)4 catalyst promoted smooth trans‐cyclo‐condensation to afford (2R,5R)‐trans‐thiazolidin‐4‐one formation of (R)‐2‐sulfanylcarboxylic esters with available N‐(benzylidene)methylamine under neutral conditions without any racemization, whereas (2S,5R)‐cis‐thiazollidin‐4‐ones were obtained via cis‐cyclo‐condensation and no catalysts. Direct high‐performance liquid chromatography analysis of methyl (R)‐mandelate was also performed; however, the resolution efficiency was inferior to that of the thaizolidin‐4‐one derivatizations.  相似文献   

11.
The synthesis of new dermorphin analogues is described. The (R)‐alanine or phenylalanine residues of natural dermorphin were substituted by the corresponding α‐methyl‐β‐azidoalanine or α‐benzyl‐β‐azido(1‐piperidinyl)alanine residues. The potency and selectivity of the new analogues were evaluated by a competitive receptor binding assay in rat brain using [3H]DAMGO (a μ ligand) and [3H]DELT (a δ ligand). The most active analogue in this series, Tyr‐(R)‐Ala‐(R)‐α‐benzyl‐β‐azidoAla‐Gly‐Tyr‐Pro‐Ser‐NH2 and its epimer were analysed by 1H and 13C NMR spectroscopy and restrained molecular dynamics simulations. The dominant conformation of the investigated peptides depended on the absolute configuration around Cα in the α‐benzyl‐β‐azidoAla residue in position 3. The (R) configuration led to the formation of a type I β‐turn, whilst switching to the (S) configuration gave rise to an inverse β‐turn of type I′, followed by the formation of a very short β‐sheet. The selectivity of Tyr‐(R)‐Ala‐(R) and (S)‐α‐benzyl‐β‐azidoAla‐Gly‐Tyr‐Pro‐Ser‐NH2 was shown to be very similar; nevertheless, the two analogues exhibited different conformational preferences. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

12.
α‐Amino acid residues with a ?,ψ constrained conformation are known to significantly bias the peptide backbone 3D structure. An intriguing member of this class of compounds is (αMe)Aze, characterized by an Nα‐alkylated four‐membered ring and Cα‐methylation. We have already reported that (S)‐(αMe)Aze, when followed by (S)‐Ala in the homochiral dipeptide sequential motif ‐(S)‐(αMe)Aze‐(S)‐Ala‐, tends to generate the unprecedented γ‐bend ribbon conformation, as formation of a regular, fully intramolecularly H‐bonded γ‐helix is precluded, due to the occurrence of a tertiary amide bond every two residues. In this work, we have expanded this study to the preparation and 3D structural analysis of the heterochiral (S)‐Ala/(R)‐(αMe)Aze sequential peptides from dimer to hexamer. Our conformational results show that members of this series may fold in type‐II β‐turns or in γ‐turns depending on the experimental conditions.  相似文献   

13.
A profound influence of water has previously been detected in the complexation of the enantiomers of methyl 2‐chloropropanoate (MCP) and the chiral selector octakis(3‐O‐butanoyl‐2,6‐di‐O‐pentyl)‐γ‐cyclodextrin (Lipodex‐E) in NMR and sensor experiments. We therefore investigated the retention behavior of MCP enantiomers on Lipodex‐E by gas chromatography (GC) under hydrous conditions. Addition of water to the N2 carrier gas modestly reduced the retention factors k of the enantiomers, notably for the second eluted enantiomer (S)‐MCP. This resulted in an overall decrease of enantioselectivity ‐ΔS,R(ΔG) in the presence of water. The effect was fully reversible. Consequently, for a conditioned column in the absence of residual water, the determined thermodynamic data, i.e. ΔS,R(ΔH) = –12.64 ± 0.08 kJ mol‐1 and ΔS,R(ΔS) = –28.18 ± 0.23 J K‐1 mol‐1, refer to a true 1:1 complexation process devoid of hydrophobic hydration. Chirality 28:124–131, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

14.
Metoprolol is available for clinical use as a racemic mixture. The S‐(?)‐metoprolol enantiomer is the one expressing higher activity in the blockade of the β1‐adrenergic receptor. The α‐hydroxymetoprolol metabolite also has activity in the blockade of the β1‐adrenergic receptor. The present study describes the development and validation of a stereoselective method for sequential analysis of metoprolol and of α‐hydroxymetoprolol in plasma using high‐performance liquid chromatography with tandem mass spectrometry (LC‐MS/MS). 1‐ml aliquots of plasma were extracted with dichloromethane : diisopropyl ether (1:1, v/v). Metoprolol enantiomers and α‐hydroxymetoprolol isomers were separated on a Chiralpak AD column (Daicel Chemical Industries, New York, NY, USA) and quantitated by LC‐MS/MS. The limit of quantitation obtained was 0.2 ng of each metoprolol enantiomer/ml plasma and 0.1 ng/ml of each α‐hydroxymetoprolol isomer/ml plasma. The method was applied to the study of kinetic disposition of metoprolol in plasma samples collected up to 24 h after the administration of a single oral dose of 100‐mg metoprolol tartrate to a hypertensive parturient with a gestational age of 42 weeks. The clinical study showed that the metoprolol pharmakokinetics is enantioselective, with the observation of higher area under the curve (AUC)0?∞ values for S‐(?)‐metoprolol (AUCS‐(?)/AUCR‐(+) = 1.81) and the favoring of the formation of the new chiral center 1′R of α‐hydroxymetoprolol (AUC0?∞1′R/1′S = 2.78). Chirality, 25:1–7, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

15.
The relationship between the conformation and biological activity of the peptide allosteric modulator of the interleukin‐1 receptor 101.10 (D ‐Arg‐D ‐Tyr‐D ‐Thr‐D ‐Val‐D ‐Glu‐D ‐Leu‐D ‐Ala‐NH2) has been studied using (R)‐ and (S)‐Bgl residues. Twelve Bgl peptides were synthesized using (R)‐ and (S)‐cyclic sulfamidate reagents derived from L ‐ and D ‐aspartic acid in an optimized Fmoc‐compatible protocol for efficient lactam installment onto the supported peptide resin. Examination of these (R)‐ and (S)‐Bgl 101.10 analogs for their potential to inhibit IL‐1β‐induced thymocyte cell proliferation using a novel fluorescence assay revealed that certain analogs exhibited retained and improved potency relative to the parent peptide 101.10. In light of previous reports that Bgl residues may stabilize type II′β‐turn‐like conformations in peptides, CD spectroscopy was performed on selected compounds to identify secondary structure necessary for peptide biological activity. Results indicate that the presence of a fold about the central residues of the parent peptide may be important for activity. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

16.
Compounds based on the pyrroloquinoxaline system can interact with serotonin 5‐HT3, cannabinoid CB1, and μ‐opioid receptors. Herein, a chiral pool synthesis of diastereomerically and enantiomerically pure bromolactam (S,R,R,R)‐ 14A is presented. Introduction of the cyclohexenyl ring at the N‐atom of (S)‐proline derivatives 8 or methyl (S)‐pyroglutamate ( 12 ) led to the N‐cyclohexenyl substituted pyrrolidine derivatives 4 and 13 , respectively. All attempts to cyclize the (S)‐proline derivatives 4 with a basic pyrrolidine N‐atom via [3 + 2] cycloaddition, aziridination, or bromolactamization failed. Fast aromatization occurred during treatment of cyclohexenamines under halolactamization conditions. In contrast, reaction of a 1:1 mixture of diastereomeric pyroglutamates (S,R)‐ 13bA and (S,S)‐ 13bB with LiOtBu and NBS provided the tricyclic bromolactam (S,R,R,R)‐ 14A with high diastereoselectivity from (S,R)‐ 13bA , but did not transform the diastereomer (S,S)‐ 13bB . The different behavior of the diastereomeric pyroglutamates (S,R)‐ 13bA and (S,S)‐ 13bB is explained by different energetically favored conformations. Chirality 26:793–800, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

17.
18.
Readily available L‐tartaric acid, which is a bidentate ligand with two chiral centers forming a seven‐membered chelate ring, was applied to the chiral ligand for the chiral nuclear magnetic resonance (NMR) shift reagent of samarium(III) formed in situ. This simple method does not cause serious signal broadening in the high magnetic field. Enantiomeric 13C and 1H NMR signals and enantiotopic 1H NMR signals of α‐amino acids were successfully resolved at pH 8.0 and the 1:3 molar ratio of Sm(NO3)3:L‐tartaric acid. It is elucidated that the enantiomeric signal resolution is attributed to the anisotropic magnetic environment for the enantiomers induced by the chiral L‐tartarato samarium(III) complex rather than differences in stability of the diastereomeric substrate adducts. The present 13C NMR signal resolution was also effective for the practical simultaneous analysis of plural kinds of DL‐amino acids. Chirality 27:353–357, 2015.© 2015 Wiley Periodicals, Inc.  相似文献   

19.
β‐Amino acids containing α,β‐hybrid peptides show great potential as peptidomimetics. In this paper, we describe the synthesis and affinity to μ‐opioid and δ‐opioid receptors of α,β‐hybrids, analogs of the tetrapeptide Tyr‐ d ‐Ala‐Phe‐Phe‐NH2 (TAPP). Each amino acid was replaced with an l ‐ or d ‐β3h‐amino acid. All α,β‐hybrids of TAPP analogs were synthesized in solution and tested for affinity to μ‐opioid and δ‐opioid receptors. The analog Tyr‐β3h‐ d ‐Ala‐Phe‐PheNH2 was found to be as active as the native tetrapeptide. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

20.
Paclobutrazol, with two stereogenic centers, but gives only (2R, 3R) and (2S, 3S)‐enantiomers because of steric‐hindrance effects, is an important plant growth regulator in agriculture and horticulture. Enantioselective degradation of paclobutrazol was investigated in rat liver microsomes in vitro. The degradation kinetics and the enantiomer fraction were determined using a Lux Cellulose‐1 chiral column on a reverse‐phase liquid chromatography–tandem mass spectrometry system. The t1/2 of (2R, 3R)‐paclobutrazol is 18.60 min, while the t1/2 of (2S, 3S)‐paclobutrazol is 10.93 min. Such consequences clearly indicated that the degradation of paclobutrazol in rat liver microsomes was stereoselective and the degradation rate of (2S, 3S)‐paclobutrazol was much faster than (2R, 3R)‐paclobutrazol. In addition, significant differences between the two enantiomers were also observed in enzyme kinetic parameters. The Vmax of (2S, 3S)‐paclobutrazol was more than 2‐fold of (2R, 3R)‐paclobutrazol and the Clint of (2S, 3S)‐paclobutrazol was higher than that of (2R, 3R)‐paclobutrazol after incubation in rat liver microsomes. These results may have potential implications for better environmental and ecological risk assessment for paclobutrazol. Chirality 27:344–348, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号