首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The major drawback of cancer chemotherapy is the development of multidrug-resistant (MDR) tumor cells, which are cross-resistant to a broad range of structurally and functionally unrelated agents, making it difficult to treat these tumors. In the last decade, a number of authors have studied the effects of photodynamic therapy (PDT), a combination of visible light with photosensitizing agents, on MDR cells. The results, although still inconclusive, have raised the possibility of treating MDR tumors by PDT. This review examines the growing literature concerning the responses of MDR cells to PDT, while stressing the need for the development of new photosensitizers that possess the necessary characteristics for the photodynamic treatment of this class of tumor.  相似文献   

2.
The success of photodynamic therapy (PDT), as a minimally invasive approach, in treating both neoplastic and non-neoplastic diseases has stimulated the search for new compounds with potential application in PDT. We have previously reported that Zn(II) N-alkylpyridylporphyrins (ZnTM-2(3,4)-PyP4+ and ZnTE-2-PyP4+) can act as photosensitizers and kill antibiotic-resistant bacteria. This study investigated the photosensitizing effects of the isomers of ZnTMPyP4+ (ZnTM-2(3,4)-PyP4+) and respective ligands on a human colon adenocarcinoma cell line. At 10 μM and 30 min of illumination the isomeric porphyrins completely inhibited cell growth, and at 20 μM killed approximately 50% of the cancer cells. All these effects were entirely light-dependent. The isomers of the ZnTMPyP4+ and the respective ligands show high photosensitizing efficiency and no toxicity in the dark. Their efficacy as photosensitizers is comparable to that of hematoporphyrin derivative (HpD).  相似文献   

3.
Much research has been focused on developing effective drug delivery systems for the preparation of chlorins as potential photosensitizers for PDT. This report describes the evaluation of a new water-soluble formulation of chlorin e6 consisting of a complex of trisodium salt chlorin e6 and polyvinylpyrrolidone (Ce6-PVP) for application in photodynamic therapy (PDT) with 2 specific aims: (i) to investigate its fluorescence kinetics in skin, normal and tumor tissue after intravenous administration, and (ii) to investigate its PDT efficacy. Our results demonstrate that this new formulation possesses photosensitizing properties with rapid accumulation in tumor tissue observed within 1 h after intravenous administration. Although high selectivity in tumor tissue was found between the period of 3 and 6 h, the efficacy of Ce6-PVP mediated PDT was best at 1 h drug-light interval. It is suggested that, the extent of tumor necrosis post PDT is dependent on the plasma concentration of Ce6-PVP, implying a vascular mediated cell death mechanism. A faster clearance rate of Ce6-PVP from the skin of nude mice was observed compared to Ce6. The new formulation of Ce6-PVP seems to show promise as an effective therapeutic agent.  相似文献   

4.
Photodynamic therapy (PDT) in cancer treatment involves the uptake of a photosensitizer by cancer tissue followed by photoirradiation. The use of nanoparticles as carriers of photosensitizers is a very promising approach because these nanomaterials can satisfy all the requirements for an ideal PDT agent. This review describes and compares the different individual types of nanoparticles that are currently in use for PDT applications. Recent advances in the use of nanoparticles, including inorganic oxide-, metallic-, ceramic-, and biodegradable polymer-based nanomaterials as carriers of photosensitizing agents, are highlighted. We describe the nanoparticles in terms of stability, photocytotoxic efficiency, biodistribution and therapeutic efficiency. Finally, we summarize exciting new results concerning the improvement of the photophysical properties of nanoparticles by means of biphotonic absorption and upconversion.  相似文献   

5.
Photodynamic therapy (PDT) is considered a promising strategy for cancer treatment. PDT utilizes light in combination with a photosensitizer (PS) to induce several phototoxic reactions. Phthalocyanines (Pcs), a second generation of photosensitizers, have been studied in several cancer models. Among these, Pcs, have become of interest for the treatment of glioblastomas which are one of the most common and aggressive forms of tumors of the central nervous system. Due to the lipophilic nature of Pcs and their limited solubility in water, Pcs can be loaded in liposomes. In this work, we characterized liposomes of ZnPc and TAZnPc and their effectiveness to photoinactivate glioblastoma cells, was evaluated. Both Pcs show an increase in their photosensitizing activity when they were administrated in Dipalmitoylphosphatidylcholine-cholesterol liposomes compared to Pcs administrated in dimethylformamide.  相似文献   

6.
In photodynamic therapy (PDT), a tumor-selective photosensitizer is administered and then activated by exposure to a light source of applicable wavelength. Multidrug resistance (MDR) is largely caused by the efflux of therapeutics from the tumor cell by means of P-glycoprotein (P-gp), resulting in reduced efficacy of the anticancer therapy. This study deals with photodynamic therapy with Photofrin II (Ph II) and hypericin (Hyp) on sensitive and doxorubicin-resistant colon cancer cell lines. Changes in cytosolic superoxide dismutase (SOD1) activity after PDT and the intracellular accumulation of photosensitizers in sensitive and resistant colon cancer cell lines were examined. The photosensitizers' distributions indicate that Ph II could be a potential substrate for P-gp, in contrast to Hyp. We observed an increase in SOD1 activity after PDT for both photosensitizing agents. The changes in SOD1 activity show that photodynamic action generates oxidative stress in the treated cells. P-gp appears to play a role in the intracellular accumulation of Ph II. Therefore the efficacy of PDT on multidrug-resistant cells depends on the affinity of P-gp to the photosensitizer used. The weaker accumulation of photosensitizing agents enhances the antioxidant response, and this could influence the efficacy of PDT.  相似文献   

7.
Photodynamic therapy (PDT), a new treatment modality for localized cancers involving the selective interaction of visible light with photosensitizers, such as hematoporphyrin derivatives (HpD) or dihematoporphyrin ether/ester (DHE) (Photofrin II). Photodynamic therapy of malignant tumors includes biological, photochemical and photophysical processes. These processes involve: (i) absorption of photosensitizing agent; (ii) selective retention of photosensitizer in tumors and (iii) irradiation of sensitized tumor by laser irradiation. This paper provides a review of photosensitizers, photochemistry, subcellular targets, side effects and lasers involved in photodynamic therapy. In addition, gradual increase in knowledge related to in vivo and in vitro mechanisms of action of PDT, as well as some clinical applications of photodynamic therapy are presented.  相似文献   

8.
Photodynamic therapy (PDT) is a promising cancer treatment which involves activation of a photosensitizing drug with light to produce reactive oxygen species that kill tumors without causing damage to unirradiated normal tissues. To date, only Photofrin®, Foscan® and Levulan® have been approved for clinical treatment of cancer. Tropical habitats such as those found in Malaysia are attractive sources of new therapeutic compounds as tremendous chemical diversity is found in a large number of plants, animals, marine- and micro-organisms. In our screening program for novel photosensitizers from nature, colorful strains of fungi (from Aspergillus and Penicillium genus) and bacteria (including actinomycetes and photosynthetic bacteria) were collected from various habitats in Peninsular Malaysia, such as coastal soil, peat soil, marine sponges and wastewater ponds. Methanolic extracts from a total of 85 different species were evaluated with a short-term cell viability assay for photo-cytotoxicity, where a promyelocytic leukemia cell-line, HL60 incubated with 20 μg/ml of extracts was irradiated with 9.6 J/cm2 of a broad spectrum light. Two of these extracts, one from Rhodobacter sphaeroides (PBUM003) and one from Rhodopseudomonas palustris (PBUM001) showed moderate to strong photo-cytotoxicity. Subsequent bioassay guided isolation of the PBUM001 extract yielded known photosensitisers that are based on bacteriochlorophyll-a by comparing their molecular weight data, HPLC profiles and UV–vis absorption spectra with literature values, thereby demonstrating the validity of our screening approach.  相似文献   

9.
Photodynamic therapy (PDT) is a promising local treatment modality based on the selective accumulation of a photosensitizer in malignant tissues and the subsequent irradiation with laser light. Photodynamic therapy of malignant tumors includes biological, photochemical and photophysical processes. These processes involve: (a) absorption of photosensitizing agent; (b) selective retention of the photosensitizer in tumors and (c) irradiation of sensitized tumor by laser radiation. This report provides a review of photosensitizers, photochemistry, subcellular targets, side effects and laser involved in photodynamic therapy. In addition, gradual increase in knowledge related to in vitro and in vivo mechanisms of action of PDT, as well as some clinical applications of photodynamic therapy are presented.  相似文献   

10.
Photodynamic therapy (PDT) is a non-invasive, selective, and cost-effective cancer therapy. We previously reported that thiophene-based organic D-π-A sensitizers consist of an electron-donating (D) moiety, a π-conjugated bridge (π) moiety, and an electron-accepting (A) moiety, and are readily accessible and stable templates for photosensitizers that could be used in PDT. In addition, acrylic acid acceptor-containing photosensitizers exert a high level of phototoxicity. This study was an investigation into 1) the possibility of increasing phototoxicity by introducing another carboxyl group or by replacing a carboxyl group with a pyridinium group, and 2) the importance of an alkene in the acrylic acid acceptor for phototoxicity. A review of the design, synthesis, and evaluation of sensitizers revealed that neither dicarboxylic acid nor pyridinium photosensitizers enhance phototoxicity. An evaluation of a photosensitizer without an alkene in the acrylic acid moiety revealed that the alkene was not indispensable in the pursuit of phototoxicity. The obtained results provided new insight into the design of ideal D-π-A photosensitizers for PDT.  相似文献   

11.
Destruction of unwanted cells and tissues in photodynamic therapy (PDT) is achieved by a combination of light, oxygen, and light-sensitive molecules. The advantages of PDT compared to other traditional treatment modalities, and the shortcomings of the currently used photosensitizers, have stimulated the search for new, more efficient photosensitizer candidates. Ability to inflict selective damage to particular proteins through photo-irradiation would significantly advance the design of highly specific photosensitizers. Achieving this objective requires comprehensive knowledge concerning the interactions of the particular photosensitizer with specific targets. Here, we summarize the effects of Zn(II) N-alkylpyridylporphyrin-based photosensitizers on intracellular (metabolic, antioxidant and mitochondrial enzymes) and membrane proteins. We emphasize how the structural modifications of the porphyrin side substituents affect their lipophilicity, which in turn influence their subcellular localization. Thus, Zn(II) N-alkylpyridylporphyrins target particular cellular sites and proteins of interest, and are more efficient than hematoporphyrin D, whose commercial preparation (Photofrin) has been clinically approved for PDT.  相似文献   

12.
Properties and applications of photodynamic therapy   总被引:3,自引:0,他引:3  
Photodynamic therapy (PDT) is the treatment of malignant lesions with visible light following the systemic administration of a tumor-localizing photosensitizer. Pharmacological and photochemical properties of the photosensitizer are combined with precise delivery of laser-generated light to produce a treatment which can offer selective tumoricidal action. Hematoporphyrin derivative (HD) and a purified component called Photofrin II are currently being used in clinical PDT. Initial patient results have been encouraging, and considerable interest has developed in the synthesis and evaluation of new photosensitizers with improved photochemical and pharmacological characteristics. In addition, there has been a gradual increase in knowledge related to in vitro and in vivo mechanisms of action of PDT. This report provides an overview of the properties and applications of PDT. Information and data related to drug development, photochemistry, subcellular targets, in vivo responses, and clinical trials of PDT are presented.  相似文献   

13.
DH Kessel  M Price  JJ Reiners 《Autophagy》2012,8(9):1333-1341
Photodynamic therapy (PDT) involves photosensitizing agents that, in the presence of oxygen and light, initiate formation of cytotoxic reactive oxygen species (ROS). PDT commonly induces both apoptosis and autophagy. Previous studies with murine hepatoma 1c1c7 cells indicated that loss of autophagy-related protein 7 (ATG7) inhibited autophagy and enhanced the cytotoxicity of photosensitizers that mediate photodamage to mitochondria or the endoplasmic reticulum. In this study, we examined two photosensitizing agents that target lysosomes: the chlorin NPe6 and the palladium bacteriopheophorbide WST11. Irradiation of wild-type 1c1c7 cultures loaded with either photosensitizer induced apoptosis and autophagy, with a blockage of autophagic flux. An ATG7- or ATG5-deficiency suppressed the induction of autophagy in PDT protocols using either photosensitizer. Whereas ATG5-deficient cells were quantitatively similar to wild-type cultures in their response to NPe6 and WST11 PDT, an ATG7-deficiency suppressed the apoptotic response (as monitored by analyses of chromatin condensation and procaspase-3/7 activation) and increased the LD 50 light dose by > 5-fold (as monitored by colony-forming assays). An ATG7-deficiency did not prevent immediate lysosomal photodamage, as indicated by loss of the lysosomal pH gradient. However, unlike wild-type and ATG5-deficient cells, the lysosomes of ATG7-deficient cells recovered this gradient within 4 h of irradiation, and never underwent permeabilization (monitored as release of endocytosed 10-kDa dextran polymers). We propose that the efficacy of lysosomal photosensitizers is in part due to both promotion of autophagic stress and suppression of autophagic prosurvival functions. In addition, an effect of ATG7 unrelated to autophagy appears to modulate lysosomal photodamage.  相似文献   

14.
《Autophagy》2013,9(9):1333-1341
Photodynamic therapy (PDT) involves photosensitizing agents that, in the presence of oxygen and light, initiate formation of cytotoxic reactive oxygen species (ROS). PDT commonly induces both apoptosis and autophagy. Previous studies with murine hepatoma 1c1c7 cells indicated that loss of autophagy-related protein 7 (ATG7) inhibited autophagy and enhanced the cytotoxicity of photosensitizers that mediate photodamage to mitochondria or the endoplasmic reticulum. In this study, we examined two photosensitizing agents that target lysosomes: the chlorin NPe6 and the palladium bacteriopheophorbide WST11. Irradiation of wild-type 1c1c7 cultures loaded with either photosensitizer induced apoptosis and autophagy, with a blockage of autophagic flux. An ATG7- or ATG5-deficiency suppressed the induction of autophagy in PDT protocols using either photosensitizer. Whereas ATG5-deficient cells were quantitatively similar to wild-type cultures in their response to NPe6 and WST11 PDT, an ATG7-deficiency suppressed the apoptotic response (as monitored by analyses of chromatin condensation and procaspase-3/7 activation) and increased the LD50 light dose by > 5-fold (as monitored by colony-forming assays). An ATG7-deficiency did not prevent immediate lysosomal photodamage, as indicated by loss of the lysosomal pH gradient. However, unlike wild-type and ATG5-deficient cells, the lysosomes of ATG7-deficient cells recovered this gradient within 4 h of irradiation, and never underwent permeabilization (monitored as release of endocytosed 10-kDa dextran polymers). We propose that the efficacy of lysosomal photosensitizers is in part due to both promotion of autophagic stress and suppression of autophagic prosurvival functions. In addition, an effect of ATG7 unrelated to autophagy appears to modulate lysosomal photodamage.  相似文献   

15.
Hypericin in cancer treatment: more light on the way   总被引:16,自引:0,他引:16  
Photodynamic therapy (PDT) has been described as a promising new modality for the treatment of cancer. PDT involves the combination of a photosensitizing agent (photosensitizer), which is preferentially taken up and retained by tumor cells, and visible light of a wavelength matching the absorption spectrum of the drug. Each of these factors is harmless by itself, but when combined they ultimately produce, in the presence of oxygen, cytotoxic products that cause irreversible cellular damage and tumor destruction. Hypericin, a powerful naturally occurring photosensitizer, is found in Hypericum perforatum plants, commonly known as St. John's wort. In recent years increased interest in hypericin as a potential clinical anticancer agent has arisen since several studies established its powerful in vivo and in vitro antineoplastic activity upon irradiation. Investigations of the molecular mechanisms underlying hypericin photocytotoxicity in cancer cells have revealed that this photosensitizer can induce both apoptosis and necrosis in a concentration and light dose-dependent fashion. Moreover, PDT with hypericin results in the activation of multiple pathways that can either promote or counteract the cell death program. This review focuses on the more recent advances in the use of hypericin as a photodynamic agent and discusses the current knowledge on the signaling pathways underlying its photocytotoxic action.  相似文献   

16.
A series of pyropheophorbide-a and bacteriopurpurinimides were investigated to understand the correlation between HSA (site II) binding affinity and in vivo photosensitizing activity. In our study, photosensitizers that bound to site II of HSA produced a significant difference in the circular dichroism spectra of the corresponding complexes, especially at Soret band region of the photosensitizers. Our results suggest that CD spectroscopy of the photosensitizer-HSA complexes could be a valuable tool in screening new photosensitizers before evaluating them for in vivo efficacy.  相似文献   

17.

Background

In recent years, microalgae (MA) have attracted much interest considering their possible therapeutic application. They contain active natural compounds or derivatives (extracts, pure or chemically modified compounds) that have increasing applications in the pharmaceutical industry.

Methods

The present study aims to examine microalgae for new photosensitizers, with a potential to be used in the light-associated treatment of tumors. Semi-purified extracts of several microalgae strains were evaluated as photosensitizers for photodynamic therapy (PDT) applications. Four tumor cell lines (A549, LNCap, MCF-7, and MDA-MB 435) were used to assess 34 samples extracted by three methods: cellulase enzyme, lysozyme enzyme and ultra-sonication. The fluorescence measurements and the recorded images alongside the spectral intensities between 650–800 nm wavelengths provided characteristic features to some of the contents of the examined extracts.

Results

Several microalgae constituents activated by blue light (BL), red light (RL) or both (in sequence) exhibited significant effects on the viability of the tumor cell lines, decreasing it as much as 95% for certain MA constituents. Majority of the MA constituents showed a higher phototoxicity after exposure to both blue and red lights than the photo-induced toxicity when exposed to a single light source. The viability of the tumor cells exhibited the dose dependent response with the MA constituents.

Conclusion

The results clearly showed that MA constituents are potential photosensitizers that have a significant photo-damage effects on the tested cancer cells.  相似文献   

18.
Photodynamic therapy (PDT) conducted by photosensitizers producing cytotoxic reactive oxygen species (ROS) under light irradiation is widely used in cancer treatment. A great number of photoactive nanoscale metal–organic frameworks (NMOFs) have been prepared for PDT. With the development of biomedicine and nanotechnology, many synergistic cancer therapies have emerged. In this mini-review, an overview on the latest progress in the application of NMOFs in PDT is provided, with emphasis on the recent emergence of some synergistic therapies.  相似文献   

19.
In our screening program for new photosensitizers from Malaysian biodiversity for photodynamic therapy (PDT) of cancer, MeOH extracts of ten terrestrial plants from Cameron Highlands in Pahang, Peninsular Malaysia, were tested. In a short-term 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay, 20 μg/ml each of these extracts were incubated in a pro-myelocytic leukemia cell-line, HL60, with or without irradiation with 9.6 J/cm(2) of a broad spectrum light. Three samples, Labisia longistyla, Dichroa febrifuga, and Piper penangense, were photocytotoxic by having at least twofold lower cell viability when irradiated compared to the unirradiated assay. The extract of the leaves of Piper penangense, a shrub belonging to the family Piperaceae and widely distributed in the tropical and subtropical regions in the world, was subsequently subjected to bioassay-guided fractionation using standard chromatography methods. Eight derivatives of pheophorbide-a and -b were identified from the fractions that exhibited strong photocytotoxicity. By spectroscopic analysis, these compounds were identified as pheophorbide-a methyl ester (1), (R,S)-13(2) -hydroxypheophorbide-a methyl ester (2 and 3), pheophorbide-b methyl ester (4), 13(2) -hydroxypheophorbide-b methyl ester (5), 15(2) -hydroxylactone pheophorbide-a methyl ester (6), 15(2) -methoxylactone pheophorbide-a methyl ester (7), 15(2) -methoxylactone pheophorbide-b methyl ester (8).  相似文献   

20.
Many reviews on PDT have been published. This field is now so large, and embraces so many sub-specialties, from laser technology and optical penetration through diffusing media to a number of medical fields including dermatology, gastroenterology, ophthalmology, blood sterilization and treatment of microbial-viral diseases, that it is impossible to cover all aspects in a single review. Here, we will concentrate on a few basic aspects, all important for the route of development leading PDT to its present state: early work on hematoporphyrin and hematoporphyrin derivative, second and third generation photosensitizers, 5-aminolevulinic acid and its derivatives, oxygen and singlet oxygen, PDT effects on cell organelles, mutagenic potential, the basis for tumour selectivity, cell cooperativity, photochemical internalization, light penetration into tissue and the significance of oxygen depletion, photobleaching of photosensitizers, optimal light sources, effects on the immune system, and, finally, future trends.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号