首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We describe an altered membrane band 3 protein-mediated anion transport in erythrocytes exposed to peroxynitrite, and relate the loss of anion transport to cell damage and to band 3 oxidative modifications. We found that peroxynitrite down-regulate anion transport in a dose dependent relation (100–300 μmoles/l). Hemoglobin oxidation was found at all peroxynitrite concentrations studied. A dose-dependent band 3 protein crosslinking and tyrosine nitration were also observed. Band 3 protein modifications were concomitant with a decrease in transport activity. ( ? )-Epicatechin avoids band 3 protein nitration but barely affects its transport capacity, suggesting that both processes are unrelated. N-acetyl cysteine partially reverted the loss of band 3 transport capacity. It is concluded that peroxynitrite promotes a decrease in anion transport that is partially due to the reversible oxidation of band 3 cysteine residues. Additionally, band 3 tyrosine nitration seems not to be relevant for the loss of its anion transport capacity.  相似文献   

2.
We describe an altered membrane band 3 protein-mediated anion transport in erythrocytes exposed to peroxynitrite, and relate the loss of anion transport to cell damage and to band 3 oxidative modifications. We found that peroxynitrite down-regulate anion transport in a dose dependent relation (100-300 μmoles/l). Hemoglobin oxidation was found at all peroxynitrite concentrations studied. A dose-dependent band 3 protein crosslinking and tyrosine nitration were also observed. Band 3 protein modifications were concomitant with a decrease in transport activity. ( - )-Epicatechin avoids band 3 protein nitration but barely affects its transport capacity, suggesting that both processes are unrelated. N-acetyl cysteine partially reverted the loss of band 3 transport capacity. It is concluded that peroxynitrite promotes a decrease in anion transport that is partially due to the reversible oxidation of band 3 cysteine residues. Additionally, band 3 tyrosine nitration seems not to be relevant for the loss of its anion transport capacity.  相似文献   

3.
The anion influx was measured in order to study the interaction among organic phosphates, magnesium, haemoglobin and the N-terminal of the cytoplasmic domain of band 3 protein in human, chicken and trout erythrocytes. The rate constant for SO(4)(2-) influx in human and trout erythrocytes increased significantly when it was measured with an increased concentration of intracellular Mg(2+). The SO(4)(2-) influx was also measured in human erythrocyte ghosts in the presence and absence of Mg(2+). The smaller activation provoked by Mg(2+) in ghosts could be caused by the presence of a small quantity of haemoglobin which remained inside. The SO(4)(2-) uptake in chicken erythrocytes in the presence and in absence of Mg(2+) was characterized by very similar rate constants. The results suggest that the small increase in intracellular Mg(2+) in the erythrocytes involves an increase in the formation of Mg(2+)-ATP and Mg(2+)-2,3 BPG complexes reducing the affinity of the organic phosphates for Hb. This new situation may influence the functions of the anion transporter with consequent variations of SO(4)(2-) influx throughout the erythrocyte membrane in human and in trout erythrocytes, whereas in chicken RBCs this function cannot occur and, in fact, no increase in sulphate influx was noticeable. The measurement of Hb/O(2) affinity by the use of alternating fixed and variable concentrations of organic phosphates and Mg(2+), confirms the interactions between these elements and their effect on the mechanism of the affinity. When we measured the sulphate influx in the presence of DIDS we found some differences in the three types of cells.  相似文献   

4.
Summary Chloride equilibrium exchange was measured in the presence of intracellular and extracellular urea, several different alkylureas and thiourea. Urea half-inhibited Cl exchange at about 2.5m, but the other, less polar analogs had significantly higher potencies; e.g., butylurea half-inhibited at about 60mm. Onset and reversal of inhibition occurred within less than 2 sec. The inhibition exhibited no obvious sigmoidal dependence on urea concentration, and at low concentrations dimethylurea was a noncompetitive inhibitor of Cl exchange. However, at higher concentrations the Dixon plots were curved upward and a Hill analysis of the dimethylurea data yielded a Hill coefficient of at least 1.5. When present on only one side of the membrane, the slowly penetrating thiourea inhibited Cl exchange with a higher potency from the outside of the cell. Cl/Br exchange was inhibited less under conditions of self-inhibition of anion exchange than in the absence of self-inhibition. These data indicate that the ureas inactivate the anion transporter by a reversible denaturation process, and that the function of the anion transport mechanism may be more sensitive to small perturbations of protein structure than are spectroscopically derived structural parameters.  相似文献   

5.
Band 3 is the predominant polypetide and the purported mediator of anion transport in the human erythrocyte membrane. Against a background of minor and apparently unrelated polypeptides of similar electrophoretic mobility, and despite apparent heterogeneity in its glycosylation, the bulk of band 3 exhibits uniform and characteristic behavior. This integral glycoprotein appears to exist as a noncovalent dimer of two ~ 93,000-dalton chains which span the membrane asymmetrically. The protein is hydrophobic in its composition and in its behaviour in aqueous solution and is best solubilized and purified in detergent. It can be cleaved while membrane-bound into large, topographically defined segments. An integral, outer-surface, 38,000-dalton fragment bears most of the band 3 carbohydrate. A 17,000-dalton, hydrophobic glycopeptide fragment spans the membrane. A ~ 40,000-dalton hydrophilic segment represents the cytoplasmic domain. In vitro, glyceraldehyde 3-P dehydrogenase and aldolase bind reversibly, in a metabolite-sensitive fashion, to this cytoplasmic segment. The cytoplasmic domain also bears the amino terminus of this polypetide, in contrast to other integral membrane proteins. Recent electron microscopic analysis suggests that the poles of the band 3 molecule can be seen by freezeetching at the two original membrane surfaces, while freeze-fracture reveals the transmembrane disposition of band 3 dimer particles. There is strong evidence that band 3 mediates 1:1 anion exchange across the membrane through a conformational cycle while remaining fixed and asymmetrical. Its cytoplasmic pole can be variously perturbed and even excised without a significant alteration of transport function. However, digestion of the outer-surface region leads to inhibition of transport, so that both this segment and the membrane-spanning piece (which is slectively labeled by covalent inhibitors of transport) may be presumed to be involved in transport. Genetic polymorphism has been observed in the structure and immunogenicity of the band 3 polypeptide but this feature has not been related to variation in anion transport or other band 3 activities.  相似文献   

6.
Amino acid analyses of the band 3 protein purified from erythrocyte membranes of control and epileptic children showed that no major structural abnormalities of this protein could be linked with the red blood cell membrane alterations previously described in child epilepsy and, consequently, the molecular basis of these alterations should be looked for elsewhere.  相似文献   

7.
Summary Human erythrocytes were treated with various hydrophobic arylisothiocyanates under conditions which favor modification of distinct proteinaceous nucleophiles. The morphological appearance of phenylisothiocyanate-treated cells was discoid and membrane-bound hydrolases (human acetylcholinesterase, sheep phospholipase A2) were fully active following membrane modification. Noncharged hydrophobic arylisothiocyanates, including phenylisothiocyanate, -naphthylisothiocyanate and heterobifunctional azidoarylisothiocyanates inhibited [35S]-sulfate efflux irreversibly. Protection against modification-induced inhibition of sulfate transport was attained by the simultaneous presence of the specific reversible anion transport inhibitor 4,4-dinitrostilbene-2,2-disulfonate. Selective protection of a functionally relevant domain of band 3 is concluded to occur based on the above-derived information.  相似文献   

8.
Conclusions Evidence from many laboratories using several different techniques strongly suggests that, in the intact red cell, band 3 exists as dimers which can associate with other dimers to form tetramers. The kinetics of anion transport inhibition by stilbenedisulfonates indicate that irreversible inhibition of one subunit does not detectably affect anion transport by the other subunit. This does not imply that monomeric band 3 could necessarily transport anions; the native conformation of each subunit may require stabilizing interactions with another subunit, as indicated by the recent work of Boodhoo and Reithmeier [10]. A more detailed understanding of the structure of the band 3 dimer/tetramer will require information on which specific segments of the primary structure are involved in subunit-subunit contact. The combination of chemical cross-linking with proteolysis [136] is a promising approach to this problem.  相似文献   

9.
The precise nature of band 3 protein and its involvement in oxalate exchange in the red blood cells (RBCs) of renal failure patients has not been studied in detail. Therefore, here we studied the oxalate exchange and binding by band 3 protein in RBCs of humans with conditions of acute and chronic renal failure (ARF and CRF). The RBCs of ARF and CRF patients exhibited abnormal red cell morphology and an increased resistance to osmotic hemolysis. Further, an increase in the cholesterol content and decrease in the activities of Na+-K+-, Ca2+-, and Mg2+-ATPases of membranes were observed in the RBCs of ARF and CRF patients. A decrease in the oxalate flux was observed in the RBCs of ARF and CRF patients. The oxalate-binding activities of the RBC membranes were significantly lower in ARF (20 pmoles/mg protein) and CRF (5.3 pmoles/mg protein) patients as compared to that in the normal subjects (36 pmoles/mg protein). DEAE-cellulose and Sephadex G-200 column chromatography purification profiles revealed a distinctive shift in oxalate-binding activity of band 3 protein of RBCs of ARF and CRF patients as compared to that of the normal subjects. It was also observed from the binding studies with a fluorescent dye, eosin-5-maleimide, which specifically binds to band 3 protein, that the RBCs of ARF and CRF patients exhibited only 53 and 32% of abundance of band 3 protein, respectively, as compared to that in the RBCs of the normal subjects, thus revealing a decrease in the band 3 protein content in ARF and CRF patients. These results for the first time showed a decrease in the oxalate exchange in RBCs of patients with ARF and CRF, which was also concomitant with the low levels of abundance of band 3 protein.  相似文献   

10.
Summary The anion transport protein of the human erythrocyte membrane, band 3, was solubilized and purified in solutions of the non-ionic detergent Triton X-100. It was incorporated into spherical lipid bilayers by the following procedure: (1) Dry phosphatidylcholine was suspended in the protein solution. Octylglucopyranoside was added until the milky suspension became clear. (2) The sample was dialyzed overnight against detergentfree buffer. (3) Residual Triton X-100 was removed from the opalescent vesicle suspension by sucrose density gradient centrifugation and subsequent dialysis. Sulfate efflux from the vesicles was studied, under exchange conditions, using a filtration method. Three vesicle subpopulations could be distinguished by analyzing the time course of the efflux. One was nearly impermeable to sulfate, and efflux from another was due to leaks. The largest subpopulation, however, showed transport characteristics very similar to those of the anion transport system of the intact erythrocyte membrane: transport numbers (at 30°C) close to 20 sulfate molecules per band 3 and min, an activation energy of approx. 140 kJ/mol, a pH maximum at pH 6.2, saturation of the sulfate flux at sulfate concentrations around 100mm, inhibition of the flux by H2DIDS and flufenamate (approx.K l-values at 30°C: 0.1 and 0.7 m, respectively), and right-side-out orientation of the transport protein (as judged from the inhibition of sulfate efflux by up to 98% by externally added H2DIDS). Thus, the system represents, for the first time, a reconstitution of all the major properties of the sulfate transport across the erythrocyte membrane.  相似文献   

11.
Summary The effect of chloride on 4,4-dibenzamido-2,2-disulfonic stilbene (DBDS) binding to band 3 in unsealed red cell ghost membranes was studied in buffer [NaCl (0 to 500mm) + Na citrate] at constant ionic strength (160 or 600mm). pH 7.4, 25°C. In the presence of chloride, DBDS binds to a single class of sites on band 3. At 160mm ionic strength, the dissociation constant of DBDS increases linearly with chloride concentration in the range [Cl]=450mm. The observed rate of DBDS binding to ghost membranes, as measured by fluorescence stopped-flow kinetic experiments, increases with chloride concentration at both 160 and 600mm ionic strength. The equilibrium and kinetic results have been incorporated into the following model of the DBDS-band 3 interaction: The equilibrium and rate constants of the model at 600mm ionic strength areK 1=0.67±0.16 m,k 2=1.6±0.7 sec–1,k –2=0.17±0.09 sec–1,K 1=6.3±1.7 m,k 2=9±4 sec–1 andk –2=7±3 sec–1. The apparent dissociation constants of chloride from band 3,K Cl, are 40±4mm (160mm ionic strength) and 11±3mm (600mm ionic strength). Our results indicate that chloride and DBDS have distinct, interacting binding sites on band 3.  相似文献   

12.
In previous studies it has been shown that protoporphyrin-induced photodynamic effects on red blood cells are caused by photooxidation of amino acid residues in membrane proteins and by the subsequent covalent cross-linking of these proteins. Band 3, the anion transport protein of the red blood cell membrane, has a relatively low sensitivity to photodynamic cross-linking. This cannot be attributed to sterical factors inherent in the specific localization of band 3 in the membrane structure. Solubilized band 3, for instance, showed a similar low sensitivity to cross-linking. By extracellular chymotrypsin cleavage of band 3 into fragments of 60 000 and 35 000 daltons it could be shown that both fragments were about equally sensitive to photodynamic cross-linking. The 17 000 dalton transmembrane segment, on the other hand, was completely insensitive. Inhibition of band 3-mediated sulfate transport proceeded much faster than band 3 interpeptide cross-linking, presumably indicating that the inhibition of transport is caused by photooxidation of essential amino acid residues or intrapeptide cross-linking. A close parallel was observed between photodynamic inhibition of anion transport and decreased binding of 4,4′-diisothiocyanodihydrostilbene-2,2′-disulfonate (H2DIDS), suggesting that a photooxidation in the immediate vicinity of the H2DIDS binding site may be responsible for transport inhibition.  相似文献   

13.
Summary A membrane protein that is immunochemically similar to the red cell anion exchange protein, band 3, has been identified on the basolateral face of the outer medullary collecting duct (MCD) cells in rabbit kidney. In freshly prepared separated rabbit MCD cells, M.L. Zeidel, P. Silva and J.L. Seifter (J. Clin. Invest. 77:1682–1688, 1986) found that Cl/HCO 3 - exchange was inhibited by the stilbene anion exchange inhibitor, DIDS (4,4-diisothiocyano-2,2-disulfonic stilbene), with aK 1 similar to that for the red cell. We have measured the binding affinities of a fluorescent stilbene inhibitor, DBDS (4,4-dibenzamido-2,2-disulfonic stilbene), to MCD cells in 28.5 mM citrate and have characterized both a high-affinity site (K 1 s =93±24 mM) and a lower affinity site (K 2 s =430±260 nM), which are closely similar to values for the red cell of 110±51 nM for the high-affinity site and 980±200 nM for the lower affinity site (A.S. Verkman, J.A. Dix & A.K. Solomon,J. Gen. Physiol. 81:421–449, 1983). When Cl replaces citrate in the buffer, the two sites collapse into a single one withK 1 s =1500±400 nM, similar to the singleK 1 s =1200±200 nM in the red cell (J.A. Dix, A.S. Verkman & A.K. Solomon,J. Membrane Biol. 89:211–223, 1986). The kinetics of DBDS binding to MCD cells at 0.25 M–1 are characterized by a fast process, =0.14±0.03 sec, similar to =0.12±0.03 sec in the red cell. These similarities show that the physical chemical characteristics of stilbene inhibitor binding to MCD cell band 3 closely resemble those for red cell band 3, which suggests that the molecular structure is highly conserved.  相似文献   

14.
This report presents an analysis of the phosphorylation of human and rabbit erythrocyte membrane proteins which migrate in NaDodSO4-polyacrylamide gels in the area of the Coomassie Blue-stained proteins generally known as band 3. The phosphorylation of these proteins is of interest as band 3 has been implicated in transport processes. This study shows that there are at least three distinct phosphoproteins associated with the band 3 region of human erythrocyte membranes. These are band 2.9, the major band 3, and PAS-1. The phosphorylation of these proteins is differentially catalyzed by solubilized membrane and cytoplasmic cyclic AMP-dependent and -independent erythrocyte protein kinases. Band 2.9 is present and phosphorylated in unfractionated human and rabbit erythrocyte ghosts but not in NaI- or dimethylmaleic anhydride (DMMA)-extracted membranes. These latter membrane preparations are enriched in band 3 and in sialoglycoproteins. The NaI-extracted ghosts contain residual protein kinase activity which can catalyze the autophosphorylation of band 3 whereas the DMMA-extracted ghosts are usually devoid of any kinase activity. However, both NaI- and DMMA-extracted ghosts, as well as Triton X-100 extracts of the DMMA-extracted ghosts, can be phosphorylated by various erythrocyte protein kinases. The kinases which preferentially phosphorylate the major band 3 protein are inactive towards PAS-1 while the kinases active towards PAS-1 are less active towards band 3. The band 3 protein in the DMMA-extracted ghosts can be cross-linked with the Cu2+ -σ-phenanthroline complex. The cross-linking of band 3 does not affect its capacity to serve as a phosphoryl acceptor nor does phosphorylation affect the capacity of band 3 to form cross-links. In addition to band 2.9, the major band 3 and PAS-1, another minor protein component appears to be present in the band 3 region in human erythrocyte membranes. This protein is specifically phosphorylated by the cyclic AMP-dependent protein kinases isolated from the cytoplasm of rabbit erythrocytes. The rabbit erythrocyte membranes lack PAS-1 and the cyclic AMP-dependent protein kinase substrate.  相似文献   

15.
This study is designed to examine the participation of the major red cell membrane protein, band 3 protein, in the chain which transmits information from the cardiac glycoside site on the external face of the cell (Na+ + K+)-ATPase to the megadalton glycolytic enzyme complex within the cell. The experiments show that the anion transport inhibitor, 4,4′-diisothiocyano-2,2′-stilbenedisulfonic acid, affects the resonance of 2,3-diphosphoglycerate, as does the cardiac glycoside cation transport inhibitor, ouabain. Resonance shifts induced by the cardiac glycoside alone are modulated by addition of the anion transport inhibitor which indicates that there is coupling in the red cell between the (Na+ + K+)-ATPase and band 3 protein. Band 3 protein was separated from the membrane and partially purified following the technique of Yu and Steck ((1975) J. Biol. Chem. 250, 9170–9175). When glyceraldehyde-3-phosphate dehydrogenase was added to the separated band 3 protein preparation, addition of cardiac glycosides caused shifts in the 31P resonance of glyceraldehyde 3-phosphate. These experiments indicate that there is coupling between the (Na+ + K+)-ATPase and band 3 protein in the separated preparation and suggest that the anion and cation transport systems may be closely related spatially and functionally in the intact red cell.  相似文献   

16.
Glycosylphosphatidylinositol-anchored micronemal antigen (GAMA) is an erythrocyte binding protein known to be involved in malarial parasite invasion. Although anti-GAMA antibodies have been shown to block GAMA attachment to the erythrocyte surface and subsequently inhibit parasite invasion, little is known about the molecular mechanisms by which GAMA promotes the invasion process. In this study, LC-MS analysis was performed on the erythrocyte membrane to identify the specific receptor that interacts with GAMA. We found that ankyrin 1 and the band 3 membrane protein showed affinity for GAMA, and characterization of their binding specificity indicated that both Plasmodium falciparum and Plasmodium vivax GAMA bound to the same extracellular loop of band 3 (loop 5). In addition, we show the interaction between GAMA and band 3 was sensitive to chymotrypsin. Furthermore, antibodies against band 3 loop 5 were able to reduce the binding activity of GAMA to erythrocytes and inhibit the invasion of P. falciparum merozoites into human erythrocytes, whereas antibodies against P. falciparum GAMA (PfGAMA)-Tr3 only slightly reduced P. falciparum invasion. The identification and characterization of the erythrocyte GAMA receptor is a novel finding that identifies an essential mechanism of parasite invasion of host erythrocytes.  相似文献   

17.
目的 :探讨运动对红细胞变形性和红细胞膜蛋白的影响及其相互关系。方法 :设计不同强度的训练方案 ,用激光衍射法测定红细胞变形能力 ,用SDS PAGE方法测定一定体积大鼠红细胞膜中的重要蛋白带 3蛋白 (band 3)和肌动蛋白 (actin)的含量 ,研究运动即刻和恢复后红细胞变形性及膜蛋白的变化。结果 :长期的运动训练会促进大鼠红细胞变形能力的改善和红细胞膜band 3蛋白和actin的良好发展 ,一次大强度训练会引起红细胞膜band 3蛋白和actin含量的减少 ,大鼠红细胞变形能力降低 ,一周和二周的大强度训练会提高恢复期大鼠红细胞的变形能力和红细胞膜band 3蛋白和actin含量。结论 :运动训练造成的红细胞膜蛋白含量的变化 ,导致了红细胞膜结构的改变 ,从而影响红细胞变形能力 ,可能是训练对红细胞变形能力的作用机制之一。  相似文献   

18.
The erythrocyte is a cell highly exposed to oxygen pressure that, in turn, provokes oxidative stress involving loss of SH-groups, cell shrinkage by activation of K(+)-Cl(-) cotransport (KCC) and membrane destabilization which plays an important role in the premature haemolysis of red blood cells (RBCs). Oxidative stress provoked by chemicals frequently occurs in human erythrocytes. The aim of this study was to test whether the antibiotics alter the redox state and investigate their influences on band 3 protein that is involved in the facilitated electro neutral exchange of Cl(-) for HCO(3)(-) across the membrane of mammalian erythrocytes. Normal erythrocytes were treated with some antibiotics and thiol oxidizing agent N-ethylmaleimide (NEM) and tested for sulphate uptake, K(+) efflux and for glutathione (GSH) concentration as an index of oxidative stress. The rate constant of SO(4)(=) uptake measured in erythrocytes treated with antibiotics as well as NEM was decreased with respect to control cells as a result of band 3 SH-groups oxidation or the stress-induced K(+)-Cl(-) symport-mediated cell shrinkage. In fact, this hypothesis was verified by increased K(+) efflux and decreased GSH values measured in treated erythrocytes compared to controls.  相似文献   

19.
The cytoplasmic domain of the human erythrocyte membrane protein, band 3 (cdb3), contains binding sites for hemoglobin, several glycolytic enzymes, band 4.1, band 4.2, and ankyrin, and constitutes the major linkage between the membrane skeleton and the membrane. Although erythrocyte cdb3 has been partially purified from proteolyzed red blood cells, further separation of the water-soluble 43-kDa and 41-kDa proteolytic fragments has never been achieved. In order to obtain pure cdb3 for crystallization and site-directed mutagenesis studies, we constructed an expression plasmid that has a tandemly linked T7 promoter placed upstream of the N-terminal 379 amino acids of the erythrocyte band 3 gene. Comparison of several Escherichia coli strains led to the selection of the BL21 (DE3) strain containing the pLysS plasmid as the best host for efficient production of cdb3. About 10 mg of recombinant cdb3 can be easily purified from 4 L of E. coli culture in two simple steps. Comparison of cdb3 released from the red blood cell by proteolysis with recombinant cdb3 reveals that both have the same N-terminal sequence, secondary structure, and pH-dependent conformational change. The purified recombinant cdb3 is also a soluble stable dimer with the same Stokes radius as erythrocyte cdb3. The affinities of the two forms of cdb3 for ankyrin are essentially identical; however, recombinant cdb3 with its unblocked N-terminus exhibits a slightly lower affinity for aldolase.  相似文献   

20.
Iron deficiency leads to abnormal expression and function of band 3 protein in erythrocytes, but the underlying mechanisms remain elusive. The mRNA of erythroid‐specific 5‐aminolevulinate synthase (eALAS) contains an iron response element and the eALAS protein is an important mediator of iron utilization by erythrocytes. In this study, we investigated the effect of short hairpin RNA (shRNA) mediated silencing of eALAS on the expression of band 3 protein induced by iron. By real‐time RT‐PCR and Western blot we showed that at mRNA and protein level iron‐induced expression of band 3 protein was lower in eALAS‐shRNA transfected K562 cells than in control cells. Of note, the lowest expression was detected in K562 cells cultured in iron deficiency condition (p < 0.01). Thus either iron deficiency or depletion of eALAS could suppress the expression of erythroid band 3 protein. These results demonstrated for the first time that iron and the iron‐regulatory system regulate the expression of the erythrocyte membrane proteins. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号