首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The number of neuropeptides and their corresponding receptors has increased steadily over the last fourty years: initially, peptides were isolated from gut or brain (e.g., Substance P, somatostatin), then by targeted mining in specific regions (e.g., cortistatin, orexin in the brain), or by deorphanization of G‐protein‐coupled receptors (GPCRs; orexin, ghrelin receptors) and through the completion the Human Genome Project. Neuropeptides (and their receptors) have regionally restricted distributions in the central and peripheral nervous system. The neuropeptide signaling is somewhat more distinct spatially than signaling with classical, low‐molecular‐weight neurotransmitters that are more widely expressed, and, therefore, one assumes that drugs acting at neuropeptide receptors may have more selective pharmacological actions with possibly fewer side effects than drugs acting on glutamatergic, GABAergic, monoaminergic, or cholinergic systems. Neuropeptide receptors, which may have a few or multiple subtypes and splice variants, belong almost exclusively to the GPCR family also known as seven‐transmembrane receptors (7TM), a favorite class of drug targets in the pharmaceutical industry. Most neuropeptides are co‐stored and co‐released with classic neurotransmitters, albeit often only at higher frequencies of stimulation or at bursting activity, thus restricting the neuropeptide signaling to specific circumstances, another reason to assume that neuropeptide drug mimics may have less side effects. Neuropeptides possess a wide spectrum of functions from neurohormone, neurotransmitter to growth factor, but also as key inflammatory mediators. Neuropeptides become ‘active’ when the nervous system is challenged, e.g., by stress, injury, drug abuse, or neuropsychiatric disorders with genetic, epigenetic, and/or environmental components. The unsuspected number of true neuropeptides and their cognate receptors provides opportunities to identify novel targets for the treatment of both central and peripheral nervous system disorders. Both, receptor subtype‐selective antagonists and agonists are being developed, as illustrated by the success of somatostatin agonists, angiotensin, and endothelin antagonists, and the expected clinical applications of NK‐1/2/3 (substance P) receptor antagonists, CRF, vasopressin, NPY, neurotensin, orexin antagonists, or neuropeptide receptor modulators; such ligands have efficacy in preclinical or clinical models of pain and neuropsychiatric diseases, such as migraine, chronic/neuropathic pain, anxiety, sleep disorders, depression, and schizophrenia. In addition, both positive and negative allosteric modulators have been described with interesting in vivo activities (e.g., at galanin receptors). The field has become more complex now that an increasing number of heteromeric neuropeptide receptors are described, e.g., ghrelin receptors with 5‐HT2C or dopamine D1, D2 receptors. At long last, structure‐based drug discovery can now be envisaged with confidence, since crystal or solution structure of GPCRs and GPCR? ligand complexes, including peptide receptors, are published almost on a monthly basis. Finally, although most compounds acting at peptide receptors are still peptidomimetics, the last decade has seen the emergence of low‐molecular‐weight nonpeptide ligands (e.g., for orexin, ghrelin, or neurokinin receptors), and surprising progress has been made with β‐ and γ‐peptides as very stable and potent mimetics of, e.g., somatostatin (SRIF), where the native SRIF has a half‐life limited to 2–3 min. This last point will be illustrated more specifically, as we have had a long‐standing collaboration with Prof. D. Seebach to whom this review is dedicated at the occasion of his 75th birthday.  相似文献   

2.
Selective NPY analogues are potent tools for tumour targeting. Their Y1‐receptors are significantly over‐expressed in human breast tumours, whereas normal breast tissue only expresses Y2‐receptors. The endogenous peptide consists of 36 amino acids, whereas smaller peptides are preferred because of better labelling efficiencies. As Y1‐receptor agonists enhance the tumour to background ratio compared to Y1‐receptor antagonists, we were interested in the development of Y1‐receptor selective agonists. We designed 19 peptides containing the C‐terminus of NPY (28–36) with several modifications. By using competition receptor binding affinity assays, we identified three NPY analogues with high Y1‐receptor affinity and selectivity. Metabolic stability studies in human blood plasma of the N‐terminally 5(6)‐carboxyfluorescein (CF) labelled peptides resulted in half‐lives of several hours. Furthermore, the degradation pattern revealed proteolytic degradation of the peptides by amino peptidases. The most promising peptide was further investigated in receptor activation and internalization studies. Signal transduction assays revealed clear agonistic properties, which could be confirmed by microscopy studies that showed clear Y1‐receptor internalization. For the first time, here we show the design and characterization of a small Y1‐receptor selective agonist. This agonist might be a useful novel ligand for NPY‐mediated tumour diagnostics and therapeutics. Copyright © 2009 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

3.
The availability of fully sequenced genomes allows the in silico analysis of whole gene families in a given genome. A particularly large and interesting gene family is the G-protein-coupled receptor family. These receptors detect a variety of extracellular signals and transduce them, generally via heterotrimeric G-proteins, to effector proteins inside the cell and thus elicit a physiological response. G-protein-coupled receptors are found in all eukaryotes and constitute in vertebrates 3–5% of all genes. They are also very important drug targets and approximately 25 of the top 100 selling drugs are directed against these receptors. The Dictyostelium discoideum genome contains a surprisingly high number of 55 such receptors, approximately 0.5% of the encoded genes. Besides the four well-studied cAMP receptors the genome encodes eight additional cAMP receptor-like proteins and one of these is distinguished by a novel domain structure, one secretin-like receptor, 17 GABAB-like and 25 Frizzled-like receptors. The existence of the latter three types of receptors in D. discoideum was surprising because they had not been observed outside the animal kingdom before. Their presence suggests unprecedentedly complex and so far unknown signaling activities in this lower eukaryote.  相似文献   

4.
The Y1 and Y5 receptors for neuropeptide Y have overlapping functions in regulating anxiety. We previously demonstrated that conditional removal of the Y1 receptor in the Y5 receptor expressing neurons in juvenile Npy1rY5R?/? mice leads to higher anxiety but no changes in hypothalamus‐pituitary‐adrenocortical axis activity, under basal conditions or after acute restraint stress. In the present study, we used the same conditional system to analyze the specific contribution of limbic neurons coexpressing Y1 and Y5 receptors on the emotional and neuroendocrine responses to social chronic stress, using different housing conditions (isolation vs. group‐housing) as a model. We demonstrated that control Npy1r2lox male mice housed in groups show increased anxiety and hypothalamus‐pituitary‐adrenocortical axis activity compared with Npy1r2lox mice isolated for six weeks immediately after weaning. Conversely, Npy1rY5R?/? conditional mutants display an anxious‐like behavior but no changes in hypothalamus‐pituitary‐adrenocortical axis activity as compared with their control littermates, independently of housing conditions. These results suggest that group housing constitutes a mild social stress for our B6129S mouse strain and they confirm that the conditional inactivation of Y1 receptors specifically in Y5 receptor containing neurons increases stress‐related anxiety without affecting endocrine stress responses.  相似文献   

5.
Facile synthesis of biaryl pyrazole sulfonamide derivative of 5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxylic acid piperidin-1-ylamide (SR141716, 1) and an investigation of the effect of replacement of the –CO group in the compound 1 by the –SO2 group in the aminopiperidine region is reported. Primary ex-vivo pharmacological testing and in vitro screening of sulfonamide derivative 2 showed the loss of CB1 receptor antagonism.  相似文献   

6.
Seven‐transmembrane receptors (7TMRs) are involved in nearly all aspects of chemical communications and represent major drug targets. 7TMRs transmit their signals not only via heterotrimeric G proteins but also through β‐arrestins, whose recruitment to the activated receptor is regulated by G protein‐coupled receptor kinases (GRKs). In this paper, we combined experimental approaches with computational modeling to decipher the molecular mechanisms as well as the hidden dynamics governing extracellular signal‐regulated kinase (ERK) activation by the angiotensin II type 1A receptor (AT1AR) in human embryonic kidney (HEK)293 cells. We built an abstracted ordinary differential equations (ODE)‐based model that captured the available knowledge and experimental data. We inferred the unknown parameters by simultaneously fitting experimental data generated in both control and perturbed conditions. We demonstrate that, in addition to its well‐established function in the desensitization of G‐protein activation, GRK2 exerts a strong negative effect on β‐arrestin‐dependent signaling through its competition with GRK5 and 6 for receptor phosphorylation. Importantly, we experimentally confirmed the validity of this novel GRK2‐dependent mechanism in both primary vascular smooth muscle cells naturally expressing the AT1AR, and HEK293 cells expressing other 7TMRs.  相似文献   

7.
G‐protein coupled receptors (GPCRs), a major gatekeeper of extracellular signals on plasma membrane, are unarguably one of the most important therapeutic targets. Given the recent discoveries of allosteric modulations, an allosteric wiring diagram of intramolecular signal transductions would be of great use to glean the mechanism of receptor regulation. Here, by evaluating betweenness centrality (CB) of each residue, we calculate maps of information flow in GPCRs and identify key residues for signal transductions and their pathways. Compared with preexisting approaches, the allosteric hotspots that our CB‐based analysis detects for A2A adenosine receptor (A2AAR) and bovine rhodopsin are better correlated with biochemical data. In particular, our analysis outperforms other methods in locating the rotameric microswitches, which are generally deemed critical for mediating orthosteric signaling in class A GPCRs. For A2AAR, the inter‐residue cross‐correlation map, calculated using equilibrium structural ensemble from molecular dynamics simulations, reveals that strong signals of long‐range transmembrane communications exist only in the agonist‐bound state. A seemingly subtle variation in structure, found in different GPCR subtypes or imparted by agonist bindings or a point mutation at an allosteric site, can lead to a drastic difference in the map of signaling pathways and protein activity. The signaling map of GPCRs provides valuable insights into allosteric modulations as well as reliable identifications of orthosteric signaling pathways. Proteins 2014; 82:727–743. © 2013 Wiley Periodicals, Inc.  相似文献   

8.
When vertebrates face acute stressors, their bodies rapidly undergo a repertoire of physiological and behavioral adaptations, which is termed the stress response. Rapid changes in heart rate and blood glucose levels occur via the interaction of glucocorticoids and their cognate receptors following hypothalamic‐pituitary‐adrenal axis activation. These physiological changes are observed within minutes of encountering a stressor and the rapid time domain rules out genomic responses that require gene expression changes. Although behavioral changes corresponding to physiological changes are commonly observed, it is not clearly understood to what extent hypothalamic‐pituitary‐adrenal axis activation dictates adaptive behavior. We hypothesized that rapid locomotor response to acute stressors in zebrafish requires hypothalamic‐pituitary‐interrenal (HPI) axis activation. In teleost fish, interrenal cells are functionally homologous to the adrenocortical layer. We derived eight frameshift mutants in genes involved in HPI axis function: two mutants in exon 2 of mc2r (adrenocorticotropic hormone receptor), five in exon 2 or 5 of nr3c1 (glucocorticoid receptor [GR]) and two in exon 2 of nr3c2 (mineralocorticoid receptor [MR]). Exposing larval zebrafish to mild environmental stressors, acute changes in salinity or light illumination, results in a rapid locomotor response. We show that this locomotor response requires a functioning HPI axis via the action of mc2r and the canonical GR encoded by nr3c1 gene, but not MR (nr3c2). Our rapid behavioral assay paradigm based on HPI axis biology can be used to screen for genetic and environmental modifiers of the hypothalamic‐pituitary‐adrenal axis and to investigate the effects of corticosteroids and their cognate receptor interactions on behavior.  相似文献   

9.
The P2Y11 nucleotide receptor detects high extracellular ATP concentrations. Mutations of the human P2RY11 gene can play a role in brain autoimmune responses, and the P2Y11 receptor alanine‐87‐threonine (A87T) polymorphism has been suggested to affect immune‐system functions. We investigated receptor functionality of the P2Y11A87T mutant using HEK293 and 1321N1 astrocytoma cells. In HEK293 cells, the P2Y11 receptor agonist 3′‐O‐(4‐benzoylbenzoyl)adenosine 5′‐triphosphate (BzATP) was completely inactive in evoking intracellular calcium release while the potency of ATP was reduced. ATP was also less potent in triggering cAMP generation. However, 1321N1 astrocytoma cells, which lack any endogenous P2Y1 receptors, did not display a reduction. Only when 1321N1 cells were co‐transfected with P2Y11A87T and P2Y1 receptors, the calcium responses to the P2Y11 receptor‐specific agonist BzATP were reduced. It is already known that P2Y1 and P2Y11 receptors interact. We thus conclude that the physiological impact of A87T mutation of the P2Y11 receptor derives from detrimental effects on P2Y1–P2Y11 receptor interaction. We additionally investigated alanine‐87‐serine and alanine‐87‐tyrosine P2Y11 receptor mutants. Both mutations rescue the response to BzATP in HEK293 cells, thus ruling out polarity of amino acid‐87 to be the molecular basis for altered receptor characteristics. We further found that the P2Y11A87T receptor shows complete loss of nucleotide‐induced internalization in HEK293 cells. Thus, we demonstrate impaired signaling of the P2Y11 A87T‐mutated receptors when co‐operating with P2Y1 receptors.

  相似文献   


10.
11.
The synthetic peptide octarphin (TPLVTLFK) corresponding to the sequence 12–19 of β‐endorphin, a selective agonist of non‐opioid β‐endorphin receptor, was labeled with tritium to specific activity of 29 Ci/mmol. The analysis of [3H]octarphin binding to human T and B lymphocytes separated from normal human blood revealed the existence of one type of high‐affinity binding sites (receptors): Kd 3.0 and 3.2 nM, respectively. Besides unlabeled octarphin, unlabeled β‐endorphin possessed the ability to inhibit the specific binding of [3H]octarphin to Т and B lymphocytes (Ki 1.9 and 2.2 nМ, respectively). Tests of the specificity of the receptors revealed that they are not sensitive to naloxone, α‐endorphin, γ‐endorphin, [Met5]enkephalin, and [Leu5]enkephalin. Thus, both T and B lymphocytes from normal human blood express non‐opioid receptor for β‐endorphin. Binding of the hormone to the receptor provides a fragment 12–19. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

12.
A series of bridled chiroporphyrins (BCP) and their metal complexes were prepared, in which two n‐methylene straps connect adjacent meso substituents by ester linkages. These compounds can exist as four atropisomers (αααα, αβαβ, αααβ, or ααββ) depending on the position of the meso groups relative to the macrocycle (α when above and β when below). We characterized the conformation of these chiral porphyrins and their metal (Zn, Ni, Mn) complexes by vibrational circular dichroism (VCD) associated with ab initio calculations. VCD spectra of the three metalloporphyrins were recorded in CDCl3 and benzene solutions and ab initio calculations of their four atropoisomers were performed at the Density Functional Theory (DFT) level. The bridled chiroporphyrin with the longer straps (9 CH2) and its nickel(II) complex can be isolated as the αβαβ atropisomer in the solid state and were found with the same conformation in CDCl3 and benzene solutions. The bridled chiroporphyrin with the shortest straps (8 CH2) and its zinc(II) complex can be isolated as the αααα atropisomer in the solid state, but in solution they are subject to atropisomeric equilibria, resulting in atropisomer distributions that are strongly solvent‐dependent. Comparison of the experimental VCD spectra with the predicted spectra of the four atropisomers allowed the quantification of these distributions. Finally, the manganese(III) complex also exhibits an atropisomeric equilibria in solution which is slightly solvent‐dependent. Chirality 25:480–486, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

13.
Cannabinoid CB1 receptors are highly expressed in the striatum where they are known to be co‐localized with dopamine D2 receptors. There is now strong evidence that cannabinoids modulate dopamine release in the brain. Using fast cyclic voltammetry, single pulse stimulation (0.1 ms; 10 V) was applied every 5 min and peak dopamine release was measured with a carbon fibre microelectrode. Application of the D2 receptor agonist, quinpirole, inhibited single pulse dopamine overflow in a concentration‐dependent manner (IC50: 3.25 × 10?8 M). The CB1 receptor agonist WIN55212‐2 (WIN; 1 μM) had no effect on single pulse dopamine release (93.9 ± 6.6% at 60 min, n = 5) but attenuated the inhibitory effect of quinpirole (30 nM; quinpirole 39.0 ± 4.2% vs. quinpirole + WIN, 48.2 ± 3.7%, n = 5, p < 0.05). This affect was antagonized by the CB1 receptor anatgonist [N‐(Piperidin‐1‐yl)‐5‐(4‐iodophenyl)‐1‐(2,4‐dichlorophenyl)‐4‐methyl‐1H‐pyrazole‐3‐carboxamide] (AM‐251, 1 μM). Dopamine release evoked by four pulses delivered at 1 Hz (4P1Hz) and 10 pulses delivered at 5 Hz (10P5Hz) was significantly inhibited by WIN [72.3 ± 7.9% control (peak 4 to 1 ratio measurement) and 66.9 ± 3.8% control (area under the curve measurement), respectively, p < 0.05; n = 6 for both]. Prior perfusion of WIN significantly attenuated the effects of quinpirole on multiple pulse‐evoked dopamine release (4P1Hz: quinpirole, 28.4 ± 4.8% vs. WIN + quinpirole, 52.3 ± 1.2%; 10P5Hz: quinpirole, 29.5 ± 1.3% vs. WIN + quinpirole, 59.4 ±7.1%; p < 0.05 for both; n = 6). These effects were also antagonized by AM‐251 (1 μM). This is the first report demonstrating a functional, antagonistic interaction between CB1 receptors and D2 autoreceptors in regulating rat striatal dopamine release.  相似文献   

14.
Background information. The idea that GPCRs (G‐protein‐coupled receptors) may exist as homo‐ or hetero‐oligomers, although still controversial, is now widely accepted. Nevertheless, the functional roles of oligomerization are still unclear and gaining greater insight into the mechanisms underlying the dynamics of GPCR assembly and, in particular, assessing the effect of ligands on this process seems important. We chose to focus our present study on the effect of MT7 (muscarinic toxin 7), a highly selective allosteric peptide ligand, on the oligomerization state of the hM1 (human M1 muscarinic acetylcholine receptor subtype). Results. We analysed the hM1 oligomerization state in membrane preparations or in live cells and observed the effect of MT7 via four complementary techniques: native‐PAGE electrophoresis analysed by both Western blotting and autoradiography on solubilized membrane preparations of CHO‐M1 cells (Chinese‐hamster ovary cells expressing muscarinic M1 receptors); FRET (fluorescence resonance energy transfer) experiments on cells expressing differently tagged M1 receptors using either an acceptor photobleaching approach or a novel fluorescence emission anisotropy technique; and, finally, by BRET (bioluminescence resonance energy transfer) assays. Our results reveal that MT7 seems to protect the M1 receptor from the dissociating effect of the detergent and induces an increase in the FRET and BRET signals, highlighting its ability to affect the dimeric form of the receptor. Conclusions. Our results suggest that MT7 binds to a dimeric form of hM1 receptor, favouring the stability of this receptor state at the cellular level, probably by inducing some conformational rearrangements of the pre‐existing muscarinic receptor homodimers.  相似文献   

15.
Dimerization of G protein‐coupled receptors (GPCRs) is crucial for receptor function including agonist affinity, efficacy, trafficking and specificity of signal transduction, including G protein coupling. Emerging data suggest that the cardiovascular system is the main target of apelin, which exerts an overall neuroprotective role, and is a positive regulator of angiotensin‐converting enzyme 2 (ACE2) in heart failure. Moreover, ACE2 cleaves off C‐terminal residues of vasoactive peptides including apelin‐13, and neurotensin that activate the apelin receptor (APJ) and neurotensin receptor 1 (NTSR1) respectively, that belong to the A class of GPCRs. Therefore, based on the similar mode of modification by ACE2 at peptide level, the homology at amino acid level and the capability of forming dimers with other GPCRs, we have been suggested that APJ and NTSR1 can form a functional heterodimer. Using co‐immunoprecipitation, BRET and FRET, we provided conclusive evidence of heterodimerization between APJ and NTSR1 in a constitutive and induced form. Upon agonist stimulation, hetrodimerization enhanced ERK1/2 activation and increased proliferation via activation of Gq α‐subunits. These novel data provide evidence for a physiological role of APJ/NTSR1 heterodimers in terms of ERK1/2 activation and increased intracellular calcium and induced cell proliferation and provide potential new pharmaceutical targets for cardiovascular disease.  相似文献   

16.
The proliferation and differentiation of neural progenitor (NP) cells can be regulated by neurotransmitters including GABA and dopamine. The present study aimed to examine how these two neurotransmitter systems interact to affect post‐natal hippocampal NP cell proliferation in vitro. Mouse hippocampal NP cells express functional GABAA receptors, which upon activation led to an increase in intracellular calcium levels via the opening of L‐type calcium channels. Activation of these GABAA receptors also caused a significant decrease in proliferation; an effect that required the entry of calcium through L‐type calcium channels. Furthermore, while activation of D1‐like dopamine receptors had no effect on proliferation, it abrogated the suppressive effects of GABAA receptor activation on proliferation. The effects of D1‐like dopamine receptors are associated with a decrease in the ability of GABAA receptors to increase intracellular calcium levels, and a reduction in the surface expression of GABAA receptors. In this way, D1‐like dopamine receptor activation can increase the proliferation of NP cells by preventing GABAA receptor‐mediated inhibition of proliferation. These results suggest that, in conditions where NP cell proliferation is under the tonic suppression of GABA, agonists which act through D1‐like dopamine receptors may increase the proliferation of neural progenitors.  相似文献   

17.
18.
Reviewed here are some recent examples of medically important protein targets for which stereoselective drugs have been identified. These include heat shock protein 90 (Hsp90) inhibitors as anticancer agents; transient receptor potential vanilloid type 1 antagonists as new analgesics; stereospecific inhibition of human mutT homolog MTH1 for cancer treatment; the stereoselective binding of R‐ and S‐propranolol by the α1–acid glycoprotein transporter; metallohelical complexes that are nonpeptide α‐helical mimetics that enantioselectively target Aβ amyloid for the treatment of Alzheimer's disease; metallohelical assemblies with promising antimicrobial activity that enantioselectively target DNA of resistant bacteria; nonpeptide α‐helical metallohelices that target the DNA of cisplatin‐resistant cancer cells; diastereomeric selectivity of phenanthriplatin‐guanine adducts; and phenazine biosynthetic enzyme active sites that can host both enantiomers of a racemic ligand simultaneously. Chirality 27:589597, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

19.
G protein-coupled receptors constitute a large family of homologous transmembrane proteins that represents one of the most important classes of confirmed drug targets. For novel drug discovery, the 3D structure of target protein is indispensable. To construct hypothetical 3D structures of G protein-coupled receptors, several prediction methods have been proposed. But none of the them has confirmed a correct ligand binding site. In this study we constructed the 3D structure of bovine rhodopsin using the prediction method proposed by Donnelly et al., with some modification. We found that our 3D model showed a good agreement with the reported retinal binding site. Using the similar method, we constructed the 3D structure of the P2Y1 receptor; one of the G protein-coupled receptors, and showed a binding site of an endogenous ligand, ADP, on the basis of the 3D model and in vitro experimental data. These results should be valuable for design of a specific antagonist for P2Y1 receptor.  相似文献   

20.
The ρ subunits that constitute the γ‐aminobutyric acid (GABA)C receptors of retinal neurons form a unique subclass of ligand‐gated chloride channels that give rise to sustained GABA‐evoked currents that exhibit slow offset (deactivation) kinetics. We exploited this property to examine the molecular mechanisms that govern the disparate response kinetics and pharmacology of perch GABA ρ1B and ρ2A subunits expressed in Xenopus oocytes. Using a combination of domain swapping and site‐directed mutagenesis, we identified the residues at amino acid position 320 in the second transmembrane domain as an important determinant of the receptor kinetics of GABAC receptors. When the site contains a proline residue, as in wild‐type ρ1 subunits, the receptor deactivates slowly; when serine occupies the site, as in wild‐type ρ2 subunits, the time course of deactivation is more rapid. In addition, we found that the same site also altered the pharmacology of GABA ρ receptors, e.g., when the serine residue of the ρ2A receptor was changed to proline, the response of the mutant receptor to imidazole‐4‐acetic acid (I4AA) mimicked that of the ρ1B receptor. However, despite gross changes in receptor pharmacology, the apparent binding affinity for the drug was not significantly altered. These findings provide further evidence that the second transmembrane domain is involved in the gating mechanism that governs the response properties of the various ρ receptor subunits. It is noteworthy that the proline residue in native ρ1 subunits and the serine residue of ρ2 subunits are well conserved in all species, a good indication that the presence of multiple GABA ρ subunits serves to generate GABAC receptors that display the wide range of response kinetics observed on various types of retinal neurons. © 1999 John Wiley & Sons, Inc. J Neurobiol 40: 67–76, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号