首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, the combined use of the selectivity of metal chelate affinity chromatography with the capacity of epoxy supports to immobilize poly‐His‐tagged recombinant benzoylformate decarboxylase from Pseudomonas putida (BFD, E.C. 4.1.1.7) via covalent attachment is shown. This was achieved by designing tailor‐made magnetic chelate–epoxy supports. In order to selectively adsorb and then covalently immobilize the poly‐His‐tagged BFD, the epoxy groups (300 µmol epoxy groups/g support) and a very small density of Co2+‐chelate groups (38 µmol Co2+/g support) was introduced onto magnetic supports. That is, it was possible to accomplish, in a simple manner, the purification and covalent immobilization of a histidine‐tagged recombinant BFD. The magnetically responsive biocatalyst was tested to catalyze the carboligation reactions. The benzoin condensation reactions were performed with this simple and convenient heterogeneous biocatalyst and were comparable to that of a free‐enzyme‐catalyzed reaction. The enantiomeric excess (ee) of (R)‐benzoin was obtained at 99 ± 2% for the free enzyme and 96 ± 3% for the immobilized enzyme. To test the stability of the covalently immobilized enzyme, the immobilized enzyme was reused in five reaction cycles for the formation of chiral 2‐hydroxypropiophenone (2‐HPP) from benzaldehyde and acetaldehyde, and it retained 96% of its original activity after five reaction cycles. Chirality 27:635–642, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

2.
Benzaldehyde lyase (BAL, EC 4.1.2.38) from Pseudomonas fluorescens and benzoylformate decarboxylase (BFD, EC 4.1.1.7) from Pseudomonas putida are thiamine diphosphate‐dependent enzymes. These enzymes share a common tetrameric structure and catalyze various C? C‐bond forming and breaking reactions. Here we describe a detailed study of the asymmetric synthesis of propioin from propanal catalyzed by BAL or BFD in aqueous solution in a batch reactor. Both enzymes are deactivated in the presence of high concentration of propanal. Compared to BAL, BFD is more stable under reaction conditions as well as during storage. The kinetic studies showed a typical Michaelis‐Menten kinetic for BAL with a maximal specific reaction rate of 26.2 U/mg and an unusually high KM of 415 mM, whereas the v/[S]‐plot for BFD is almost linear in the concentration range (100–1500 mM) investigated. Both enzymes produce propioin with opposite enantiomeric excess: BAL produced the (S)‐propioin (ee of 35%), whereas BFD yielded the (R)‐enantiomer (ee of 67%). © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

3.
Every method used to quantify biomolecular interactions has its own strengths and limitations. To quantify protein‐DNA binding affinities, nitrocellulose filter binding assays with 32P‐labeled DNA quantify Kd values from 10?12 to 10?8 M but have several technical limitations. Here, we considered the suitability of biolayer interferometry (BLI), which monitors association and dissociation of a soluble macromolecule to an immobilized species; the ratio koff/kon determines Kd. However, for lactose repressor protein (LacI) and an engineered repressor protein (“LLhF”) binding immobilized DNA, complicated kinetic curves precluded this analysis. Thus, we determined whether the amplitude of the BLI signal at equilibrium related linearly to the fraction of protein bound to DNA. A key question was the effective concentration of immobilized DNA. Equilibrium titration experiments with DNA concentrations below Kd (equilibrium binding regime) must be analyzed differently than those with DNA near or above Kd (stoichiometric binding regime). For ForteBio streptavidin tips, the most frequent effective DNA concentration was ~2 × 10?9 M. Although variation occurred among different lots of sensor tips, binding events with Kd ≥ 10?8 M should reliably be in the equilibrium binding regime. We also observed effects from multi‐valent interactions: Tetrameric LacI bound two immobilized DNAs whereas dimeric LLhF did not. We next used BLI to quantify the amount of inducer sugars required to allosterically diminish protein‐DNA binding and to assess the affinity of fructose‐1‐kinase for the DNA‐LLhF complex. Overall, when experimental design corresponded with appropriate data interpretation, BLI was convenient and reliable for monitoring equilibrium titrations and thereby quantifying a variety of binding interactions.  相似文献   

4.
The development of new approaches to study the affinity between ligands and G‐protein‐coupled receptors proves to be of growing interest for pharmacologists, chemists, and biologists. The aim of this work was to determine the binding of seven drugs to β2‐adrenoceptors by frontal analysis using immobilized receptor stationary phase. The dissociation constants (Kd) were determined to be (3.16 ± 0.09) × 10?4 M for salbutamol, (4.29 ± 0.12) × 10?4 M for terbutaline, (6.19 ± 0.16) × 10?4 M for methoxyphenamine, (2.11 ± 0.07) × 10?4 M for tulobuterol, (1.82 ± 0.11) × 10?4 M for fenoterol, (9.75 ± 0.24) × 10?6 M formoterol, and (9.84 ± 0.26) × 10?5 M for clenbuterol. These results showed a good correlation with the data determined by radioligand binding assay. Further investigations revealed that the dissociation constant mainly attributed to the number of hydrogen bonds in the structures of ligands. This study indicates that affinity chromatography using immobilized receptor stationary phase can be used for the direct determination of drug‐receptor binding interactions and has the potential to become a reliable alternative for quantitative studies of ligand–receptor interactions. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
Since immobilized metal ion affinity chromatography (IMAC) was first reported, several modifications have been developed. Among them, Ni2+ immobilized by chelation with nitrilotriacetic acid (NTA) bound to a solid support has become the most common method for the purification of proteins carrying either a C‐ or N‐terminal histidine (His) tag. Despite its broad application in protein purification, only little is known about the binding properties of the His‐tag, and therefore almost no thermodynamic and kinetic data are available. In this study, we investigated the binding mechanism of His‐tags to Ni2+‐NTA. Different series of oligohistidines and mixed oligohistidines/oligoalanines were synthesized using automated solid‐phase peptide synthesis (SPPS). Binding to Ni2+‐NTA was analyzed both qualitatively and quantitatively with surface plasmon resonance (SPR) using commercially available NTA sensor chips from Biacore. The hexahistidine tag shows an apparent equilibrium dissociation constant (KD) of 14 ± 1 nM and thus the highest affinity of the peptides synthesized in this study. Furthermore, we could demonstrate that two His separated by either one or four residues are the preferred binding motifs within hexahis tag. Finally, elongation of these referred motifs decreased affinity, probably due to increased entropy costs upon binding. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
The bioactive ingredients in Semen sinapis were rapidly screened by immobilized β2‐adrenoceptor (β2‐AR) and target‐directed molecular docking. The methods involved the attachment of β2‐AR using any amino group in the receptor, the simultaneous separation and identification of the retention compounds by high‐performance affinity chromatography; the binding mechanism of the interesting compound to the receptor was investigated by zonal elution and molecular docking. Sinapine in Semen sinapis was proved to be the bioactive compound that specifically binds to the immobilized receptor. The association constant of sinapine to β2‐AR was determined to be 1.36 × 105 M?1 with a value of 1.27 × 10?6 M for the number of binding sites. Ionic bond was believed to be the driving force during the interaction between sinapine and β2‐AR. It is possible to become a powerful alternative for rapid screening of bioactive compounds from a complex matrix such as traditional Chinese medicine and further investigation on the drug–receptor interaction. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
Drug‐protein interaction analysis is pregnant in designing new leads during drug discovery. We prepared the stationary phase containing immobilized β2‐adrenoceptor (β 2AR) by linkage of the receptor on macroporous silica gel surface through N ,N ′‐carbonyldiimidazole method. The stationary phase was applied in identifying antiasthmatic target of protopine guided by the prediction of site‐directed molecular docking. Subsequent application of immobilized β 2AR in exploring the binding of protopine to the receptor was realized by frontal analysis and injection amount–dependent method. The association constants of protopine to β 2AR by the 2 methods were (1.00 ± 0.06) × 105M−1 and (1.52 ± 0.14) × 104M−1. The numbers of binding sites were (1.23 ± 0.07) × 10−7M and (9.09 ± 0.06) × 10−7M, respectively. These results indicated that β 2AR is the specific target for therapeutic action of protopine in vivo. The target‐drug binding occurred on Ser169 in crystal structure of the receptor. Compared with frontal analysis, injection amount–dependent method is advantageous to drug saving, improvement of sampling efficiency, and performing speed. It has grave potential in high‐throughput drug‐receptor interaction analysis.  相似文献   

8.
The capabilities of a new class of immobilized (im) metal ion chelate complexes (IMCCs), derived from 1,4,7‐triazacyclononane (tacn), bis(1,4,7‐triazacyclononyl) ethane (dtne) and bis(1,4,7‐triazacyclononyl)propane (dtnp) complexed with the borderline metal ions Cu2+, Ni2+, Zn2+, Mn2+, Co2+, and Cr3+, for the purification of proteins have been investigated. In particular, the binding behavior of a model protein, the C‐terminal hexahistidine tagged recombinant fusion protein Schistosoma japonicum glutathione S‐transferase‐Saccharomyces cerevisiae mitochondrial ATP synthase δ‐subunit (GST‐δATPase‐His6), with these new immobilized metal ion affinity chromatographic (IMAC) sorbents was compared to the properties of a conventional sorbent, derived from immobilized Ni(II)‐nitrilotriacetic acid (im‐Ni2+‐NTA). Investigations using the recombinant GST‐δATPase‐His6 and recombinant S. japonicum glutathione S‐transferase (GST) lacking a hexahistidine tag have confirmed that the C‐terminal tag hexahistidine residues were required for the binding process to occur with these IMAC systems. The results also confirm that recombinant fusion proteins such as GST‐δATPase‐His6 can be isolated in high purity with these IMAC systems. Moreover, these new macrocyclic systems manifest different selectivity features as a function of pH or ionic strength when compared to the conventional, unconstrained iminodiacetic acid (IDA) or NTA chelating ligands, complexed with borderline metal ions such as Cu2+ or Ni2+, as IMAC systems. Biotechnol. Bioeng. 2009;103: 747–756. © 2009 Wiley Periodicals, Inc.  相似文献   

9.
Novozyme 435, which is a commercial immobilized lipase B from Candida antarctica (CALB), has been proven to be inadequate for the kinetic resolution of rac‐indanyl acetate. As it has been previously described that different immobilization protocols may greatly alter lipase features, in this work, CALB was covalently immobilized on epoxy Immobead‐350 (IB‐350) and on glyoxyl‐agarose to ascertain if better kinetic resolution would result. Afterwards, all CALB biocatalysts were utilized in the hydrolytic resolution of rac‐indanyl acetate and rac‐(chloromethyl)‐2‐(o‐methoxyphenoxy) ethyl acetate. After optimization of the immobilization protocol on IB‐350, its loading capacity was 150 mg protein/g dried support. Furthermore, the CALB‐IB‐350 thermal and solvent stabilities were higher than that of the soluble enzyme (e.g., by a 14‐fold factor at pH 5–70°C and by a 11‐fold factor in dioxane 30%–65°C) and that of the glyoxyl‐agarose‐CALB (e.g., by a 12‐fold factor at pH 10–50°C and by a 21‐fold factor in dioxane 30%–65°C). The CALB‐IB‐350 preparation (with 98% immobilization yield and activity versus p‐nitrophenyl butyrate of 6.26 ± 0.2 U/g) was used in the hydrolysis of rac‐indanyl acetate using a biocatalyst/substrate ratio of 2:1 and a pH value of 7.0 at 30°C for 24 h. The conversion obtained was 48% and the enantiomeric excess of the product (e.e.p) was 97%. These values were much higher than the ones obtained with Novozyme 435, 13% and 26% of conversion and e.e.p, respectively. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:878–889, 2018  相似文献   

10.
The use of ionic liquids (ILs) as reaction media for enzymatic reactions has increased their potential because they can improve enzyme activity and stability. Kinetic and stability properties of immobilized commercial laccase from Myceliophthora thermophila in the water‐soluble IL 1‐ethyl‐3‐methylimidazolium ethylsulfate ([emim][EtSO4]) have been studied and compared with free laccase. Laccase immobilization was carried out by covalent binding on glyoxyl–agarose beads. The immobilization yield was 100%, and the activity was totally recovered. The Michaelis‐Menten model fitted well to the kinetic data of enzymatic oxidation of a model substrate in the presence of the IL [emim][EtSO4]. When concentration of the IL was augmented, the values of Vmax for free and immobilized laccases showed an increase and slight decrease, respectively. The laccase–glyoxyl–agarose derivative improved the laccase stability in comparison with the free laccase regarding the enzymatic inactivation in [emim][EtSO4]. The stability of both free and immobilized laccase was slightly affected by small amounts of IL (<50%). A high concentration of the IL (75%) produced a large inactivation of free laccase. However, immobilization prevented deactivation beyond 50%. Free and immobilized laccase showed a first‐order thermal inactivation profile between 55 and 70°C in the presence of the IL [emim][EtSO4]. Finally, thermal stability was scarcely affected by the presence of the IL. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:790–796, 2014  相似文献   

11.
Immobilization of a thermostable D ‐xylose isomerase (EC 5.3.1.5) from Thermotoga neapolitana 5068 (TNXI) on chitin beads was accomplished via a N‐terminal fusion with a chitin‐binding domain (CBD) from a hyperthermophilic chitinase produced by Pyrococcus furiosus (PF1233) to create a fusion protein (CBD‐TNXI). The turnover numbers for glucose to fructose conversion for both unbound and immobilized CBD‐TNXI were greater than the wild‐type enzyme: kcat (min?1) was ~1,000, 3,800, and 5,800 at 80°C compared to 1,140, 10,350, and 7,000 at 90°C, for the wild‐type, unbound, and immobilized enzymes, respectively. These kcat values for the glucose to fructose isomerization measured are the highest reported to date for any XI at any temperature. Enzyme kinetic inactivation at 100°C, as determined from a bi‐phasic inactivation model, showed that the CBD‐TNXI bound to chitin had a half‐life approximately three times longer than the soluble wild‐type TNXI (19.9 hours vs. 6.8 hours, respectively). Surprisingly, the unbound soluble CBD‐TNXI had a significantly longer half‐life (56.5 hours) than the immobilized enzyme. Molecular modeling results suggest that the N‐terminal fusion impacted subunit interactions, thereby contributing to the enhanced thermostability of both the unbound and immobilized CBD‐TNXI. These interactions likely also played a role in modifying active site structure, thereby diminishing substrate‐binding affinities and generating higher turnover rates in the unbound fusion protein. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

12.
Chemical shift perturbations (CSPs) in NMR spectra provide useful information about the interaction of a protein with its ligands. However, in a multiple‐ligand‐binding system, determining quantitative parameters such as a dissociation constant (Kd) is difficult. Here, we used a method we named CS‐PCA, a principal component analysis (PCA) of chemical shift (CS) data, to analyze the interaction between bovine β‐lactoglobulin (βLG) and 1‐anilinonaphthalene‐8‐sulfonate (ANS), which is a multiple‐ligand‐binding system. The CSP on the binding of ANS involved contributions from two distinct binding sites. PCA of the titration data successfully separated the CSP pattern into contributions from each site. Docking simulations based on the separated CSP patterns provided the structures of βLG–ANS complexes for each binding site. In addition, we determined the Kd values as 3.42 × 10−4M2 and 2.51 × 10−3M for Sites 1 and 2, respectively. In contrast, it was difficult to obtain reliable Kd values for respective sites from the isothermal titration calorimetry experiments. Two ANS molecules were found to bind at Site 1 simultaneously, suggesting that the binding occurs cooperatively with a partial unfolding of the βLG structure. On the other hand, the binding of ANS to Site 2 was a simple attachment without a significant conformational change. From the present results, CS‐PCA was confirmed to provide not only the positions and the Kd values of binding sites but also information about the binding mechanism. Thus, it is anticipated to be a general method to investigate protein–ligand interactions. Proteins 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

13.
The growing demand of pharmaceutical‐grade plasmid DNA (pDNA) suitable for biotherapeutic applications fostered the development of new purification strategies. The surface plasmon resonance technique was employed for a fast binding screening of l ‐histidine and its derivatives, 1‐benzyl‐l ‐histidine and 1‐methyl‐l ‐histidine, as potential ligands for the biorecognition of three plasmids with different sizes (6.05, 8.70, and 14 kbp). The binding analysis was performed with different isoforms of each plasmid (supercoiled, open circular, and linear) separately. The results revealed that the overall affinity of plasmids to l ‐histidine and its derivatives was high (KD > 10−8 M), and the highest affinity was found for human papillomavirus 16 E6/E7 (KD = 1.1 × 10−10 M and KD = 3.34 × 10−10 M for open circular and linear plasmid isoforms, respectively). l ‐Histidine and 1‐benzyl‐l ‐histidine were immobilized on monolithic matrices. Chromatographic studies of l ‐histidine and 1‐benzyl‐l ‐histidine monoliths were also performed with the aforementioned samples. In general, the supercoiled isoform had strong interactions with both supports. The separation of plasmid isoforms was achieved by decreasing the ammonium sulfate concentration in the eluent, in both supports, but a lower salt concentration was required in the 1‐benzyl‐l ‐histidine monolith because of stronger interactions promoted with pDNA. The efficiency of plasmid isoforms separation remained unchanged with flow rate variations. The binding capacity for pDNA achieved with the l ‐histidine monolith was 29‐fold higher than that obtained with conventional l ‐histidine agarose. Overall, the combination of either l ‐histidine or its derivatives with monolithic supports can be a promising strategy to purify the supercoiled isoform from different plasmids with suitable purity degree for pharmaceutical applications. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
The characterization of the hydrogel was performed using Fourier‐transform infrared spectroscopy, X‐ray diffraction, and scanning electron microscopy. Purified Bacillus pumilus Y7‐derived alkaline protease was immobilized in Poly (vinylimidazole)/clay (PVI/SEP) hydrogel with 95% yield of immobilization. Immobilization decreased the pH optimum from 9 to 6 for free and immobilized enzyme, respectively. Temperature optimum 3°C decreased for immobilized enzyme. The Km, Vm, and kcat of immobilized enzyme were 4.4, 1.7, and 7.5‐fold increased over its free counterpart. Immobilized protease retained about 65% residual activity for 16th reuse. The immobilized protease endured its 35% residual activity in the material after six cycle's batch applications. The results of thermodynamic analysis for casein hydrolysis showed that the ΔG (activation free energy) and ΔGE‐T (activation free energy of transition state formation) obtained for the immobilized enzyme decreased in comparison to those obtained for the free enzyme. On the other hand, the value of ΔGES (free energy of substrate binding) was observed to have increased. These results indicate an increase in the spontaneity of the biochemical reaction post immobilization. Enthalpy value of immobilized enzyme that was 2.2‐fold increased over the free enzyme indicated lower energy for the formation of the transition state, and increased ΔS value implied that the immobilized form of the enzyme was more ordered than its free form.  相似文献   

15.
Five trimeric xylanosomes were successfully assembled on the cell surface of Saccharomyces cerevisiae. Three dockerin‐tagged fungal enzymes, an endoxylanase (XynAc) from Thermomyces lanuginosus, a β‐xylosidase (XlnDt) from Aspergillus niger and an acetylxylan esterase (AwAXEf) from Aspergillus awamori, were displayed for the synergistic saccharification of birchwood xylan. The surface‐expression scaffoldins were modular constructs with or without carbohydrate binding modules from Thermotoga maritima (family 22) or Clostridium thermocellum (family 3). The synergy due to enzyme–enzyme and enzyme–substrate proximity, and the effects of binding domain choice and position on xylan hydrolysis were determined. The scaffoldin‐based enzymes (with no binding domain) showed a 1.6‐fold increase in hydrolytic activity over free enzymes; this can be attributed to enzyme–enzyme proximity within the scaffoldin. The addition of a xylan binding domain from T. maritima improved hydrolysis by 2.1‐fold relative to the scaffoldin without a binding domain (signifying enzyme–substrate synergy), and 3.3‐fold over free enzymes, with a xylose productivity of 105 mg g?1 substrate after 72 h hydrolysis. This system was also superior to the xylanosome carrying the cellulose binding module from C. thermocellum by 1.4‐fold. Furthermore, swapping the xylan binding module position within the scaffoldin resulted in 1.5‐fold more hydrolysis when the binding domain was adjacent to the endoxylanase. These results demonstrate the applicability of designer xylanosomes toward hemicellulose saccharification in yeast, and the importance of the choice and position of the carbohydrate binding module for enhanced synergy. Biotechnol. Bioeng. 2013; 110: 275–285. © 2012 Wiley Periodicals, Inc.  相似文献   

16.
In this work, we describe the design of an immobilized enzyme microreactor (IEMR) for use in transketolase (TK) bioconversion process characterization. The prototype microreactor is based on a 200‐μm ID fused silica capillary for quantitative kinetic analysis. The concept is based on the reversible immobilization of His6‐tagged enzymes via Ni‐NTA linkage to surface derivatized silica. For the initial microreactor design, the mode of operation is a stop‐flow analysis which promotes higher degrees of conversion. Kinetics for the immobilized TK‐catalysed synthesis of L ‐erythrulose from substrates glycolaldehyde (GA) and hydroxypyruvate (HPA) were evaluated based on a Michaelis–Menten model. Results show that the TK kinetic parameters in the IEMR (Vmax(app) = 0.1 ± 0.02 mmol min–1, Km(app) = 26 ± 4 mM) are comparable with those measured in free solution. Furthermore, the kcat for the microreactor of 4.1 × 105 s?1 was close to the value for the bioconversion in free solution. This is attributed to the controlled orientation and monolayer surface coverage of the His6‐immobilized TK. Furthermore, we show quantitative elution of the immobilized TK and the regeneration and reuse of the derivatized capillary over five cycles. The ability to quantify kinetic parameters of engineered enzymes at this scale has benefits for the rapid and parallel evaluation of evolved enzyme libraries for synthetic biology applications and for the generation of kinetic models to aid bioconversion process design and bioreactor selection as a more efficient alternative to previously established microwell‐based systems for TK bioprocess characterization. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

17.
In this work, cephalosporin C acylase (CA), a heterodimeric enzyme of industrial potential in direct hydrolysis of cephalosporin C (CPC) to 7‐aminocephalosporanic acid (7‐ACA), was covalently immobilized on the aminated support LX1000‐HA (HA) with two different protocols. The stability of CA adsorbed onto the HA support followed by crosslinking with glutaraldehyde (HA–CA–glut) was better than that of the CA covalently immobilized on the glutaraldehyde preactivated HA support (HA–glut–CA). The thermostabilization factors (compared with the free enzyme) of these two immobilized enzymes were 11.2‐fold and 2.2‐fold, respectively. In order to improve the stability of HA–CA–glut, a novel strategy based on postimmobilization modifying with aminated molecules was developed to take advantage of the glutaraldehyde moieties left on the enzyme and support. The macromolecules, such as polyethyleneimine (PEI) and chitosan, had larger effects than small molecules on the thermal stability of the immobilized enzyme perhaps due to crosslinking of the enzymes and support with each other. The quaternary structure of the CA could be much stabilized by this novel approach including physical adsorption on aminated support, glutaraldehyde treatment, and macromolecule modification. The HA–CA–glut–PEI20000 (the HA–CA–glut postmodified with PEI Mw = 20,000) had a thermostabilization factor of 20‐fold, and its substrate affinity (Km = 14.3 mM) was better than that of HA–CA–glut (Km = 33.4 mM). The half‐life of the immobilized enzymes HA–CA–glut–PEI20000 under the CPC‐catalyzing conditions could reach 28 cycles, a higher value than that of HA–CA–glut (21 cycles). © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:387–395, 2015  相似文献   

18.
TRAIL is a member of the tumor necrosis factor family of cytokines, which induces apoptosis of cancer cells, thanks to its binding to its cognate receptors DR5 and DR4. We have recently demonstrated that nanovectorization of TRAIL with single‐walled carbon nanotubes enhanced TRAIL affinity to DR5. In this paper, 1‐pyrenebutyric acid N‐hydroxysuccinimide ester functionalized boron nitride nanotubes (BNNTs) were used to anchor the TRAIL protein. The resulting BNNT/1‐pyrenebutyric acid N‐hydroxysuccinimide ester nanotubes were mixed with methoxy‐poly(ethylene glycol)‐1,2‐distearoyl‐sn‐glycero‐3‐phosphoethanolamine‐N‐conjugates so as to allow a good dispersion of these nanoparticle TRAIL (NPT) in aqueous solution. The difference of binding between NPT and soluble TRAIL to DR4 and DR5 receptors was then studied by the use of affinity chromatography. DR4 and DR5 receptors were thus immobilized on a chromatographic support, and the binding of the 2 ligands TRAIL and NPT to DR4 and DR5 was studied in the temperature range 30°C to 50°C. Negative enthalpy (ΔH ) values indicated that van der Waals interactions and hydrogen bonding are engaged favorably at the ligand‐receptor interface. It was shown that their rank‐ordered affinities were strongly different in the sequence TRAILDR4 < NPTDR4 < TRAILDR5 < NPTDR5, and the highest affinity for NPT to DR4 and DR5 receptors observed at low pHs was due to the less accessibility of the His molecular switch to be protonated when TRAIL was immobilized on BNNTs. Taken together, our results demonstrated that nanovectorization of TRAIL with BNNTs enhanced its binding to both DR4 and DR5 receptors at 37°C. Our novel nanovector could potentially be used for delivering TRAIL to cells for cancer treatment.  相似文献   

19.
A novel method was developed for studying the interaction between epirubicin hydrochloride (EPI) and bovine serum albumin (BSA) by fluorescence spectrometry. Fe3O4 magnetic nanoparticles (MNPs) synthesized and functionalized with thiol group were employed for the immobilization and separation of target BSA in reaction solutions. The concentrations of the non‐immobilized BSA and unbound EPI were obtained separately by fluorescence spectrometry. The binding constants (K a ) and number of binding sites (n ) of EPI with BSA were calculated. In this study, the K a value was 5.05 × 105 L mol?1, suggesting a strong binding of EPI to BSA, and the n value was 1.15. The effects of common metal ions on K a of EPI with BSA were also investigated, and the results showed there was clearly bindings between the metal ions and BSA. The precise binding sites of EPI on BSA were determined as being in site I from the competitive displacement experiments. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
This work reports the development of a synthetic affinity adsorbent for immunoglobulins based on the Fab‐binding domain of Streptococcal Protein G (SpG‐domain III). The ligand (A2C7I1) was synthesized by the four‐component Ugi reaction to generate a substituted peptoidal scaffold mimicking key amino acid residues of SpG. Computer‐aided analysis suggests a putative binding site on the CH1 domain of the Fab molecule. In silico studies, supported by affinity chromatography in comparison with immobilized SpG, as well as analytical characterization by liquid chromatography/electrospray ionization–mass spectrometry and 1H nuclear magnetic resonance of the ligand synthesized in solution, indicated the authenticity and suitability of the designed ligand for the purification of immunoglobulins. The immobilized ligand displayed an apparent static binding capacity of ~17 mg IgG ml?1 and a dissociation constant of 5.34 × 10?5 M. Preparative chromatography demonstrated the ability of the immobilized ligand to purify IgG and Fab fragments from crude mammalian and yeast cell cultures, under near physiological ionic strength and pH, to yield proteins of 99% and 93% purity, respectively. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号