首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The incorporation of [1-14C]glucosamine into rat serum phosphorylcholine-binding protein in an isolated rat hepatocyte system was used to demonstrate the synthesis and secretion of this protein by the liver. The hepatocytes after incubating with colchicine resulted in an increased intracellular accumulation of phosphorylcholine-binding protein and less of the synthesized phosphorylcholine-binding protein was secreted into the medium. The synthesis of phosphorylcholine-binding protein was found to be significantly impaired when the hepatocytes were incubated with tunicamycin. The radiolabelled phosphorylcholine-binding protein co-eluted with exogenous phosphorylcholine-binding protein as a homogeneous peak by affinity chromatography. The identity of the radiolabelled phosphorylcholine-binding protein was further established by quantitative immunoprecipitation, polyacrylamide gel electrophoresis and isoelectric focusing.  相似文献   

2.
3.
4.
Colchicine inhibition of plasma protein release from rat hepatocytes   总被引:23,自引:26,他引:23       下载免费PDF全文
Colchicine, both in vitro and in vivo, inhibits secretion of albumin and other plasma proteins. In vitro, secretion by rat liver slices is inhibited at 10-minus 6 M with maximal effect at 10-minus 5 M. Inhibition of secretion is accompanied by a concomitant retention of nonsecreted proteins within the slices. Colchicine does not inhibit protein synthesis at these concentrations. Vinblastine also inhibits plasma protein secretion but lumicolchicine, griseofulvin, and cytochalasin B do not. Colchicine also acts in vivo at 10-25 mumol/100 g body weight. Inhibition of secretion is not due to changes in the intracellular nucleotide phosphate levels. Colchicine, administered intravenously, acts within 2 min and its inhibitory effect lasts for at least 3 h. Colchicine has no effect on transport of secretory proteins in the rough or smooth endoplasmic reticulum but it causes these proteins to accumulate in Golgi-derived secretory vesicles.  相似文献   

5.
Hepatocytes isolated by perfusion of adult rat liver and cultured on substrata consisting of one or more of the major components of the liver biomatrix (fibronectin, laminin, type IV collagen) have been examined for the synthesis of defined proteins. Under these conditions, tyrosine amino transferase, a marker of hepatocyte function, is maintained at similar levels in response to dexamethasone over 5 days in culture on each substratum, and total cellular protein synthesis remains constant. By contrast, there is a rapid decrease in synthesis and secretion of albumin and a 3-7-fold increase in synthesis and secretion of alpha-fetoprotein which are most marked on a laminin substratum, but least evident on type IV collagen, and an increased synthesis of fibronectin and type IV collagen. The newly synthesized matrix proteins are present in the cell layer as well as in cell secretions. The enhanced synthesis of fibronectin is less in cells seeded onto a fibronectin substratum than on laminin or type IV collagen substrata, and its synthesis by hepatocytes seeded onto a mixed substratum of laminin and fibronectin is down-regulated by fibronectin in a dose-related manner. Similarly, type IV collagen synthesis is less when the cells are seeded on the homologous matrix protein substratum than on heterologous substrata. These results indicate that hepatocytes cultured in serum-free medium on substrata composed of components of the liver biomatrix maintain certain functions of the differentiated state (tyrosine amino transferase), lose others (albumin secretion) and switch to increased synthesis of matrix components as well as fetal markers such as alpha-fetoprotein. The magnitude of these effects depends on the substratum on which the hepatocytes are cultured.  相似文献   

6.
The modulation of apolipoprotein B synthesis and secretion by fatty acids in rat hepatocytes was studied. Maximum apolipoprotein B production was obtained in the case of oleic acid followed by linoleic, stearic and palmitic/linolenic acid when compared to control which was not supplemented with any fatty acids. Oleic acid was found to exert a concentration dependent increase in the secretion of [3H] apolipoprotein B into the medium while that associated with the cell layer was not affected. Pulse chase experiments in the presence of oleic acid showed that it caused an increase in the secretion of apolipoprotein B into the medium.14C-acetate incorporation into cholesterol and cholesteryl ester associated with the cell layer and secreted very low density lipoproteins also showed an increase in the presence of oleic acid indicating an increase in cholesterogenesis. The effect of oleic acid on [3H] apolipoprotein B and very low density lipoproteins secretion appeared to be mediated through cholesterol as (i) ketoconazole, an inhibitor of cholesterol synthesis caused significant reduction in the stimulatory effect of oleic acid on apolipoprotein secretion and (ii) mevinolin, another inhibitor of cholesterol synthesis also reversed the stimulatory effect of oleic acid on apolipoprotein B secretion. These results indicated that oleic acid may influence apolipoprotein B synthesis and secretion in hepatocytes probably by affecting cholesterol/cholesteryl ester formation which may be a critical component in the secretion of apolipoprotein B as lipoproteins  相似文献   

7.
Cultured rat hepatocytes were used to measure hepatic synthesis of rat plasma glycoproteins. [3H]Glucosamine was progressively incorporated into the protein of hepatocyte culture media very-low-density lipoprotein, low-density lipoprotein, high-density lipoprotein and the p greater than 1.21 g/ml fraction after 3.5 and 6.5 h incubation. Apolipoproteins B, E and C, as well as transferrin, were identified as glycoproteins. The association of radioactivity with apolipoprotein C of hepatocyte very-low-density and high-density lipoproteins suggests that apolipoprotein C-III-3, the only C apoglycoprotein in the rat, is synthesized de novo by the hepatocytes. Treatment of hepatocytes with tunicamycin, a specific inhibitor of protein glycosylation, resulted in a substantial decrease in [3H]glucosamine incorporation into hepatocyte very-low-density, low-density and high-density lipoproteins and p greater than 1.21 g/ml protein, but had little or no effect on secretion. In the rat, hepatic secretion of lipoproteins and transferrin does not appear to be dependent on prior protein glycosylation.  相似文献   

8.
9.
Diploid and tetraploid rat hepatocyte subpopulations were isolated by elutriation and cultured for 24 h. Albumin secretion and protein synthesis rates were two-fold lower in 2n than in 4n hepatocytes. [35S]methionine-labelled proteins analysed by acrylamide gel electrophoresis showed a strikingly similar pattern in the two cell subpopulations. No differences in cellular proteins or in the intensity of labelling were observed. These results show (1) that viable diploid and tetraploid hepatocyte subpopulations can be separated by elutriation under sterile conditions and then cultured; and (2) strongly suggest that the same genes are transcribed and further translated at the same rate in both hepatocyte subpopulations.  相似文献   

10.
The experiments reported in this paper were designed to study some aspects of protein metabolism in isolated rat liver cells treated with methyl glyoxal. Concentrations of this drug not inducing cell damage were able to decrease hepatocyte protein synthesis and secretion. The results obtained using liver cells whose protein was prelabelled suggest that the alpha-ketoaldehyde acts not only through an impairment of protein synthesis but also affecting the secretion pathway itself.  相似文献   

11.
The synthesis and secretion of ceruloplasmin (Cp) by isolated rat hepatocytes were investigated. Cp released by liver cells appeared to have properties similar to those of the blood-circulating protein, i. e. Mr, oxidase activity, immunological specificity and the peptide set of tryptic fingerprints. The polypeptides with Mr of 130,000, 65,000, 48,000 and 18,000 were revealed in Cp isolated from the incubation medium. These results suggest the susceptibility of the single-chain protein molecule (Mr 130,000) to limited proteolysis which is accomplished by the proteases released from the cells. When fresh serum was added to the incubation medium, the proteolytic degradation of Cp proceeded at a much slower rate, which led to an increase in the content of excreted polypeptides with Mr 130,000. The secretion was strongly diminished by the addition of colchicine to the medium. The time of Cp molecule synthesis on membrane-bound polyribosomes (3.5 min) was determined.  相似文献   

12.
Uncoupling effects of local anesthetics on rat liver mitochondria   总被引:10,自引:0,他引:10  
We demonstrate in this paper that bupivacaine, a local anesthetic, can act alone as an uncoupler of rat liver mitochondria. It stimulates state 4 respiration, induces a swelling in potassium acetate (in the presence of valinomycin), and collapses the transmembrane potential. Lidocaine, another local anesthetic, requires the presence of a lipophilic anion such as TPB- to produce the same effects. TPB- can also reinforce the action of bupivacaine. These differences in action of the two local anesthetics can be explained by the difference in the liposolubility.  相似文献   

13.
The effect of different conditions of blood withdrawal and use of different anesthetics on immunoreactive atrial natriuretic factor (IR-ANF) concentrations in plasma was studied in rats. The concentration of IR-ANF in plasma from jugular vein of non-anesthetized conscious rats, cannulated either 24 hr before blood withdrawal was 93.9 +/- 17.1 pg/ml (n = 30); and 48 hr: 81.9 +/- 11.5 pg/ml (n = 29). Immobilization stress (4 hr) increased IR-ANF concentration: 248.0 +/- 80.2 pg/ml (n = 5). Anesthesia by morphine, diethyl-ether, chloral hydrate and ketamine chlorhydrate increased IR-ANF concentrations to 2,443.0 +/- 281.2 pg/ml (n = 24), 806.1 +/- 74.6 pg/ml (n = 64), 224.0 +/- 81.4 pg/ml (n = 20), and 195.0 +/- 20.3 pg/ml (n = 51), respectively. IR-ANF in plasma of sodium-pentobarbital and urethane anesthetized rats was 59.2 +/- 6.7 pg/ml (n = 10) and 42.6 +/- 8.1 pg/ml (n = 8), respectively. These changes in IR-ANF evoked by different types of anesthetics and different conditions of blood withdrawal have to be taken into consideration during studies on the physiopathological role of atrial natriuretic factor.  相似文献   

14.
Short-term pure cultures and long-term cocultures of adult rat hepatocytes with rat liver epithelial cells, presumably derived from primitive biliary cells, were used to define in vitro models of iron overloaded hepatocytes in order to understand the molecular mechanism responsible for liver damage occurring in patients with hemochromatosis. In vitro iron overload was obtained by daily addition of ferric nitrilotriacetate to the culture medium. A concentration of 20 microM ferric salt induced hepatocyte iron overload with minimal cytotoxicity as evaluated by cell viability, morphological changes of treated cells and cytosolic enzyme leakage into the culture medium. The effects of iron overload on protein biosynthesis and secretion were studied in both short-term pure cultures and long-term cocultures of hepatocytes. The amounts of intracellular and newly synthesized proteins were never modified by the iron treatment. Furthermore, neither the relative amounts of transferrin and albumin mRNAs nor their translational products were altered by iron overload. Moreover, no change in the transferrin isomeric forms were observed in treated cells. In contrast, a prolonged exposure of cocultured hepatocytes to 20 microM ferric salt led to a significant decrease in the amount of proteins secreted in the medium. This decrease included the two major secreted proteins, namely albumin and transferrin, and probably all other secreted proteins. These results demonstrate that iron loading alters neither the total nor the liver specific protein synthesis activity of cultured hepatocytes. They suggest that chronic overload may impede the protein secretion process.  相似文献   

15.
The transfer of phospholipid molecules between biological and synthetic membranes is facilitated by the presence of soluble catalytic proteins, such as those isolated from bovine brain which interacts with phosphatidylinositol and phosphatidylcholine and from bovine liver which is specific for phosphatidylcholine. A series of tertiary amine local anesthetics decreases the rates of protein-catalyzed phospholipid transfer. The potency of inhibition is dibucaine>tetracaine>lidocaine>procaine, an order which is compared with and identical to those for a wide variety of anesthetic-dependent membrane phenomena. Half-maximal inhibition of phosphatidylinositol transfer by dibucaine occurs at a concentration of 0.18 mM, significantly lower than the concentration of 1.9 mM required for half-maximal inhibition of phosphatidylcholine transfer activity of the brain protein. Comparable inhibition of liver protein phosphatidylcholine transfer activity is observed at 1.6 mM dibucaine. For activity measurements performed at different pH, dibucaine is more potent at the lower pH values which favor the equilibrium toward the charged molecular species. With membranes containing increasing molar proportions of phosphatidate, dibucaine is increasingly more potent. No effect of Ca2+ on the control transfer activity or the inhibitory action of dibucaine is noted. These results are discussed in terms of the formation of specific phosphatidylinositol or phosphatidylcholine complexes with the amphiphilic anesthetics in the membrane bilayer.  相似文献   

16.
17.
Rat hepatocytes isolated by collagenase perfusion were cultured for 48-72 h and examined for synthesis and secretion of hepatic triacylglycerol lipase activity. Low levels of enzyme activity found in the culture medium increased with time of incubation, and a 3-10-fold rise was encountered in the presence of optimal concentrations of heparin (5 U/ml). After interruption of enzyme synthesis by cycloheximide, plateauing of enzyme activity in the medium occurred, indicating that addition of heparin may not only stabilize but also enhance hepatic triacylglycerol lipase secretion. Synthesis and secretion of hepatic triacylglycerol lipase was not related to cell density, and enzyme secretion was encountered in subconfluent cultures. Release of enzyme activity into the medium was not sensitive to chlorpromazine, a lysosomal enzyme inhibitor, but was completely inhibited by treatment with tunicamycin, an inhibitor of glycosylation. As release of enzyme activity could be maintained for 12 h in the absence of serum, possible hormonal regulation was sought. Under the present experimental conditions, no modulation of hepatic triacylglycerol lipase was encountered by either gonadal or thyroid hormones. Addition of cyclic AMP to the culture medium resulted in a 30% decrease in enzyme activity. The dependence of hepatic triacylglycerol lipase secretion on the intactness of the Golgi apparatus and on vesicular transport was demonstrated by the treatment with monensin. The present results show that cultured rat hepatocytes provide a good model system by which the regulation of synthesis and secretion of hepatic triacylglycerol lipase can be studied.  相似文献   

18.
The effect of epinephrine on triglyceride synthesis and secretion was examined in isolated rat hepatocytes. Epinephrine potently inhibited triglyceride secretion but did not affect cellular triglyceride content or the rate of incorporation of radiolabelled glycerol into cell triglyceride. The inhibitory effect of epinephrine was abolished by inclusion of the alpha-adrenergic antagonist prazosin but not the beta-antagonist propranolol.  相似文献   

19.
Hepatic lipase is involved in cholesterol uptake by the liver. Although it is known that catecholamines are responsible for the daily variation of enzyme activity, the mechanisms involved are poorly understood. Rat hepatocytes incubated with adrenaline or other Ca(2+)-mobilizing hormones were used as an experimental model. Adrenaline reduced in a similar proportion the secretion of both hepatic lipase and albumin. The effect of adrenaline disappeared completely in cells exposed to cycloheximide. Adrenaline decreased incorporation of [35S]Met into cellular and secreted proteins, but it affected neither degradation of [35S]Met-prelabeled proteins nor the abundance of total and specific (albumin, hepatic lipase, beta-actin) mRNA. Other Ca(2+)-mobilizing agents had the opposite effect on hepatic lipase secretion: it was decreased by vasopressin but was increased by epidermal growth factor. Vasopressin and epidermal growth factor had the opposite effect on [35S]Met incorporation into cellular and secreted proteins, but neither affected hepatic lipase mRNA. The acute effect of adrenaline, vasopressin, and epidermal growth factor on hepatic lipase secretion is the consequence of the effect of these hormones on protein synthesis and is therefore nonspecific.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号