首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Because of the emerging intersections of HIV infection and Alzheimer's disease, we examined cerebrospinal fluid (CSF) biomarkers related of amyloid and tau metabolism in HIV-infected patients.

Methods

In this cross-sectional study we measured soluble amyloid precursor proteins alpha and beta (sAPPα and sAPPβ), amyloid beta fragment 1-42 (Aβ1-42), and total and hyperphosphorylated tau (t-tau and p-tau) in CSF of 86 HIV-infected (HIV+) subjects, including 21 with AIDS dementia complex (ADC), 25 with central nervous system (CNS) opportunistic infections and 40 without neurological symptoms and signs. We also measured these CSF biomarkers in 64 uninfected (HIV-) subjects, including 21 with Alzheimer's disease, and both younger and older controls without neurological disease.

Results

CSF sAPPα and sAPPβ concentrations were highly correlated and reduced in patients with ADC and opportunistic infections compared to the other groups. The opportunistic infection group but not the ADC patients had lower CSF Aβ1-42 in comparison to the other HIV+ subjects. CSF t-tau levels were high in some ADC patients, but did not differ significantly from the HIV+ neuroasymptomatic group, while CSF p-tau was not increased in any of the HIV+ groups. Together, CSF amyloid and tau markers segregated the ADC patients from both HIV+ and HIV- neuroasymptomatics and from Alzheimer's disease patients, but not from those with opportunistic infections.

Conclusions

Parallel reductions of CSF sAPPα and sAPPβ in ADC and CNS opportunistic infections suggest an effect of CNS immune activation or inflammation on neuronal amyloid synthesis or processing. Elevation of CSF t-tau in some ADC and CNS infection patients without concomitant increase in p-tau indicates neural injury without preferential accumulation of hyperphosphorylated tau as found in Alzheimer's disease. These biomarker changes define pathogenetic pathways to brain injury in ADC that differ from those of Alzheimer's disease.  相似文献   

2.
3.
The cell cycle of hypothesis of neural dysfunction in chronic neurodegenerative conditions such as Alzheimer's disease (AD) offers a unified approach to understanding both existing and novel strategies for drug development. At the present time, a ligand based approach is a pragmatic solution for identifying new chemical leads on which to base future discovery and optimisation. We have pursued a ligand based approach on the basis of public domain data to identify existing compounds capable of abrogating the cell cycle at the G0-G1 interface. Selected on this basis, irrespective of the tissue under study, we identified several classes of compounds as potential chemical leads. Of these compounds, at least ten have already been shown to be neuroprotective in animal models of acute neurodegeneration. Such compounds could form the basis of a screening exercise after development of suitable screening tools. Progressing of chemical leads through such an approach will be more efficient if future leads display relevant drug-like properties. Further, drug development in this arena should take account of the special concerns raised by targeting an elderly population. This will involve accounting for frequent polypharmacy in the aging population, and age-related alterations in physiology.  相似文献   

4.
刘丽  申景岭 《生命科学》2014,(7):739-744
核蛋白TAR DNA/RNA结合蛋43(TDP-43)目前被认为是肌萎缩侧索硬化症(amyotrophic lateral sclerosis,ALS)、额颞叶变性(frontotemporal lobar degeneration,FTLD)等神经退行性疾病的病理学标记蛋白。在中枢神经系统中,TDP-43作为必要的转录调控因子,参与mRNA前体的剪接,维持RNA稳态和运输。在突变和过表达TDP-43的转基因啮齿类动物模型中,受损伤的神经元呈现出胞核和胞质中TDP-43泛素化、磷酸化聚集,以及细胞周期进程的改变。在此,着重阐述基于TDP-43突变或过表达建立神经退行性疾病动物模型的研究进展,探讨其发病机制、病理学改变及治疗方法。  相似文献   

5.
《Autophagy》2013,9(8):1097-1100
Nanotechnology is the control and manipulation of materials in the size range of 1-100 nm. Coupled with increasing research into potential beneficial applications of nanotechnology, there is an urgent need for the study of possible health risks. Several researchers, including those in our laboratory, have demonstrated elevated levels of autophagic vacuoles upon exposure of cells to certain nanomaterials, including carbon- and metal-based nanoparticles. While this apparent increase in autophagic activity may be an appropriate cellular response toward nanomaterial clearance, often the interaction between nanomaterials and the autophagy pathway is disruptive, resulting in severe morphological changes and coincident cell death. Interestingly, epidemiological studies have identified an association between exposure to combustion-derived ambient particles (which are predominantly nanoscale) and neurological conditions with Alzheimer�s and Parkinson�s disease-like pathologies. As impaired autophagy may play an important role in the pathogenesis of these and other diseases, it is intriguing to speculate about the plausible involvement of nanoscale particulates in this process. The interaction of nanomaterials with the autophagy pathway, and the potential negative consequences of resulting autophagy dysfunction, should be explored further.

Addendum to: Stern ST, Zolnik BS, McLeland CB, Clogston J, Zheng J, McNeil SE. Induction of autophagy in porcine kidney cells by quantum dots: A common cellular response to nanomaterials? Toxicol Sci 2008; In press; DOI: 10.1093/toxsci/kfn137.  相似文献   

6.
Stern ST  Johnson DN 《Autophagy》2008,4(8):1097-1100
Nanotechnology is the control and manipulation of materials in the size range of 1-100 nm. Due to increasing research into the potential beneficial applications of nanotechnology, there is an urgent need for the study of possible health risks. Several researchers, including those in our laboratory, have demonstrated elevated levels of autophagic vacuoles upon exposure of cells to certain nanomaterials, including carbon- and metal-based nanoparticles. While this apparent increase in autophagic activity may be an appropriate cellular response toward nanomaterial clearance, often the interaction between nanomaterials and the autophagy pathway is disruptive, resulting in severe morphological changes and coincident cell death. Interestingly, epidemiological studies have identified an association between exposure to combustion-derived ambient particles (which are predominantly nanoscale) and neurological conditions with Alzheimer's and Parkinson's disease-like pathologies. Becuse impaired autophagy may play an important role in the pathogenesis of these and other diseases, it is intriguing to speculate about the plausible involvement of nanoscale particulates in this process. The interaction of nanomaterials with the autophagy pathway, and the potential negative consequences of resulting autophagy dysfunction, should be explored further.  相似文献   

7.
8.
Blennow K 《Nature medicine》2010,16(11):1218-1222
Biomarkers may be of great value in Alzheimer's disease drug development to select the most optimal drug candidates for large and expensive phase 3 clinical trials. Biomarkers will also be important to provide evidence that a drug affects the underlying pathophysiology of the disease, which, together with a beneficial effect on the clinical course, will be essential for labeling the drug as having a disease-modifying effect.  相似文献   

9.
10.
Studies of development of hematoliquorian barrier in man represent significant difficulties, as it is not possible to employ the experimental-physiological approaches. In these conditions, the morphological analysis based on application of modern immunocytochemistry methods acquires the key role in fundamental physiological studies of onthogenesis of barrier central neurology systems. The current article presents an analytical review of publications and results of own authors research of structural organization of the hematoliquorian barrier in man during the prenatal ontogenesis.  相似文献   

11.
The aggregation of a soluble protein into insoluble, β-sheet rich amyloid fibrils is a defining characteristic of many neurodegenerative diseases, including prion disorders. The prion protein has so far been considered unique because of its infectious nature. Recent investigations, however, suggest that other amyloidforming proteins associated with much more common diseases, such as tau, α-synuclein, amyloid β and polyglutamine proteins, while not infectious in the classical sense, share certain essential properties with prions that may explain phenotypic diversity, and patterns of spread within the nervous system. We suggest a common mechanism of pathogenesis of myriad sporadic and inherited neurodegenerative diseases based on templated conformational change.Key words: tau, prion, amyloid beta, α-synuclein, polyglutamine, neurodegeneration, fibril, propagation  相似文献   

12.
Introduction: Neuroinflammation is a common pathophysiological mechanism in neurodegenerative diseases (ND). Cerebrospinal fluid (CSF) YKL-40 has recently been candidated as a neuroinflammatory biomarker of ND.

Areas covered: We provide an update on the role of CSF YKL-40 as a pathophysiological biomarker of ND. YKL-40 may discriminate Alzheimer’s disease (AD) from controls and may predict the progression from the early preclinical to the late dementia stage. In genetic AD, YKL-40 increases decades before the clinical onset. It does not seem a specific biomarker of a certain ND although sporadic Creutzfeldt–Jacob disease shows the highest YKL-40 concentrations. YKL-40 may discriminate between amyotrophic lateral sclerosis (ALS) and ALS-mimics. YKL-40 is potentially associated with the rate of ALS progression. YKL-40 correlates with biomarkers of neuronal injury, large axonal damage and synaptic disruption in various ND. It is not associated with the presence of the APOE-ε4 allele whereas possibly linked to aging, female sex, Hispanic ethnicity and some genetic variants of the chitinase-3-like 1 locus.

Expert opinion: There is growing evidence expanding the relevance of CSF YKL-40 as a pathophysiological biomarker for ND. Patients showing high YKL-40 levels might benefit from targeted clinical trials that use compounds acting against neuroinflammatory mechanisms, independently of the initial clinical diagnosis of ND.  相似文献   


13.
Ubiquitin immunocytochemistry with an antiserum which reacts with ubiquitin-protein conjugates demonstrates the presence of ubiquitinated proteins in filamentous inclusions found in neurones in the major human neurodegenerative diseases, i.e. Alzheimer's disease, diffuse Lewy body disease, motor neurone disease. Ubiquitin immunohistochemistry has revolutionized the neuropathological diagnosis of dementia showing that diffuse Lewy body disease is not, as previously supposed, a rare cause of dementia. The filamentous inclusions in neurones in the human neurodegenerative diseases can be divided into at least two types based on recent immunocytochemical studies. We have shown that a ubiquitin-carboxyl terminal hydrolase is present in Lewy bodies but not in neurofibrillary tangles in Alzheimer's disease. This observation is significant since it indicates that molecular pathological mechanisms in neurones in diffuse Lewy body disease are fundamentally different to Alzheimer's disease. Ubiquitin-protein conjugates are also found in vacuoles in areas of granulovacuolar degeneration in hippocampal neurones in Alzheimer's disease and in granulovacuoles in neurones of scrapie infected mouse brain. These locations suggest that ubiquitinated protein are present in the lysosome-related system of neurones. We have recently shown that ubiquitin-protein conjugates are indeed enriched some 12-fold in the lysosomes of normal fibroblasts and lymphocytes.  相似文献   

14.
《朊病毒》2013,7(2):74-77
The aggregation of a soluble protein into insoluble, β-sheet rich amyloid fibrils is a defining characteristic of many neurodegenerative diseases, including prion disorders. The prion protein has so far been considered unique because of its infectious nature. Recent investigations, however, suggest that other amyloid-forming proteins associated with much more common diseases, such as tau, α-synuclein, amyloid β, and polyglutamine proteins, while not infectious in the classical sense, share certain essential properties with prions that may explain phenotypic diversity, and patterns of spread within the nervous system. We suggest a common mechanism of pathogenesis of myriad sporadic and inherited neurodegenerative diseases based on templated conformational change.  相似文献   

15.
神经退行性疾病的早期信号:线粒体功能障碍   总被引:7,自引:0,他引:7  
高欣  唐希灿 《生命科学》2006,18(2):138-144
线粒体是广泛存在于各种真核细胞中,可以进行独立复制的特殊的细胞器,它既能提供细胞内各种生命活动所需要的能源,也参与多种其他极为重要的生理活动。线粒体呼吸功能的障碍是许多神经退行性疾病发病早期共识的病理现象,探索线粒体在疾病发生过程中的变化,不仅对研究AD等神经退行性疾病的发病机理,对设计和开发创新药物也具有重要的指导意义。本文就线粒体的结构功能及其在神经退行性疾病发病过程中出现功能障碍的证据、诱因和可能的治疗方案作一简要综述。  相似文献   

16.
成熟的神经细胞属于终末分化细胞,具有不可再生性。神经退行性疾病以及其他脑损伤引起的神经元缺失,难以自发修复取代。如何修复大脑中受损的神经细胞、补充神经细胞已成为治疗各类神经系统疾病的关键。本综述将通过干细胞移植和诱导星形胶质细胞去分化两种途径来介绍针对神经退行性疾病和脑损伤的最新疗法。  相似文献   

17.
Microtubules (MTs), cytoskeletal elements found in all mammalian cells, play a significant role in cell structure and in cell division. They are especially critical in the proper functioning of post-mitotic central nervous system neurons, where MTs serve as the structures on which key cellular constituents are trafficked in axonal projections. MTs are stabilized in axons by the MT-associated protein tau, and in several neurodegenerative diseases, including Alzheimer’s disease, frontotemporal lobar degeneration, and Parkinson’s disease, tau function appears to be compromised due to the protein dissociating from MTs and depositing into insoluble inclusions referred to as neurofibrillary tangles. This loss of tau function is believed to result in alterations of MT structure and function, resulting in aberrant axonal transport that likely contributes to the neurodegenerative process. There is also evidence of axonal transport deficiencies in other neurodegenerative diseases, including amyotrophic lateral sclerosis and Huntington’s disease, which may result, at least in part, from MT alterations. Accordingly, a possible therapeutic strategy for such neurodegenerative conditions is to treat with MT-stabilizing agents, such as those that have been used in the treatment of cancer. Here, we review evidence of axonal transport and MT deficiencies in a number of neurodegenerative diseases, and summarize the various classes of known MT-stabilizing agents. Finally, we highlight the growing evidence that small molecule MT-stabilizing agents provide benefit in animal models of neurodegenerative disease and discuss the desired features of such molecules for the treatment of these central nervous system disorders.  相似文献   

18.
Sirtuins: novel targets for metabolic disease in drug development   总被引:1,自引:0,他引:1  
Calorie restriction extends lifespan and produces a metabolic profile desirable for treating diseases such as type 2 diabetes. SIRT1, an NAD+-dependent deacetylase, is a principal modulator of pathways downstream of calorie restriction that produces beneficial effects on glucose homeostasis and insulin sensitivity. Activation of SIRT1 leads to enhanced activity of multiple proteins, including peroxisome proliferator-activated receptor coactivator-1α (PGC-1α) and FOXO which helps to mediate some of the in vitro and in vivo effects of sirtuins. Resveratrol, a polyphenolic SIRT1 activator, mimics the effects of calorie restriction in lower organisms and in mice fed a high-fat diet ameliorates insulin resistance. In this review, we summarize recent research advances in unveiling the molecular mechanisms that underpin sirtuin as therapeutic candidates and discuss the possibility of using resveratrol as potential drug for treatment of diabetes.  相似文献   

19.
Animal models of human diseases that accurately recapitulate clinical pathology are indispensable for understanding molecular mechanisms and advancing preclinical studies. The Alzheimer's disease (AD) research community has historically used first‐generation transgenic (Tg) mouse models that overexpress proteins linked to familial AD (FAD), mutant amyloid precursor protein (APP), or APP and presenilin (PS). These mice exhibit AD pathology, but the overexpression paradigm may cause additional phenotypes unrelated to AD. Second‐generation mouse models contain humanized sequences and clinical mutations in the endogenous mouse App gene. These mice show Aβ accumulation without phenotypes related to overexpression but are not yet a clinical recapitulation of human AD. In this review, we evaluate different APP mouse models of AD, and review recent studies using the second‐generation mice. We advise AD researchers to consider the comparative strengths and limitations of each model against the scientific and therapeutic goal of a prospective preclinical study.  相似文献   

20.
The GSK3 beta signaling cascade and neurodegenerative disease   总被引:17,自引:0,他引:17  
Biochemical signaling pathways are known to have a critical role in neuronal development and function. A growing body of evidence is accumulating to suggest that signaling pathways also underlie neurodegeneration and neurodegenerative disease. One pathway with a prominent role in neurodegenerative disease is the signaling pathway in which the enzyme glycogen synthase kinase 3 (GSK3) is a key component. In vitro and in vivo evidence point to a key role for GSK3 in promoting neurodegeneration and in Alzheimer's disease plaque and neurofibrillary tangle formation. How GSK3 acts in this regard is still open to debate, but it may involve both extracellular and nuclear apoptotic activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号