首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The n‐alkane composition and the nonacosan‐10‐ol content in the needle cuticular waxes of Serbian spruce (Picea omorika), Bosnian pine (Pinus heldreichii), and Macedonian pine (Pinus peuce) were compared. The amount of nonacosan‐10‐ol in the needle waxes of P. omorika was higher than those in P. heldreichii and P. peuce. The range of n‐alkanes was also wider in P. omorika (C18–C35) than in P. heldreichii and P. peuce (C18–C33). The dominant n‐alkanes were C29 in the needle waxes of P. omorika, C23, C27, and C25 in those of P. heldreichii, and C29, C25, C27, and C23 in those of P. peuce. The waxes of P. omorika contained higher amounts of n‐alkanes C29, C31, and C33, while those of P. heldreichii and P. peuce had higher contents of n‐alkanes C21, C22, C23, C24, and C26. The principal component analysis of the contents of nine n‐alkanes showed a clear separation of the Serbian spruce populations from those of the two investigated pine species, which partially overlapped. The separation of the species was due to high contents of the n‐alkanes C29 and C31 (P. omorika), C19, C20, C21, C22, C23, and C24 (P. heldreichii), and C28 (P. peuce). Cluster analysis also showed a clear separation between the P. omorika populations on one side and the P. heldreichii and P. peuce populations on the other side. The n‐alkane and terpene compositions are discussed in the light of their usefulness in chemotaxonomy as well as with regard to the biogeography and phylogeny of these rare and endemic conifers.  相似文献   

2.
This is the first report on population variability of nonacosan‐10‐ol and n‐alkanes in needle epicuticular waxes of Macedonian pine (Pinus peuce Griseb .) Hexane extracts of needle samples, originating from two natural populations in Montenegro (Zeletin and Sjekirica) and from one population in Serbia (Mokra Gora) were analyzed by gas chromatography (GC) and gas chromatography/mass spectrometry (GC/MS). The amount of nonacosan‐10‐ol varied individually from 41.3 to 72.31% (average 55.9%), with the Sjekirica population being statistically divergent (64.4% on average). The results showed n‐alkanes in epicuticular waxes ranging from C18 to C33. The most abundant alkanes were C29, C25, C27, and C23 (15.5, 11.1, 10.6, and 10.5% on average, resp.). The carbon preference index of Pinus peuce ranged from 1.0 to 4.3 (1.9 on average). Average chain length ranged from 18.4 to 27.7 (average 25.7). A high level of inidividual quantitative variation in all of these hydrocarbon parameters was also detected. These results were compared with published data on other species from the Pinus genus.  相似文献   

3.
This is the first report of individual variability and population diversity of the contents of nonacosan‐10‐ol and n‐alkanes in the needle cuticular waxes of Bosnian pines originated from Montenegro, regarded as Pinus heldreichii var. leucodermis, and from Serbia, regarded as P. heldreichii var. pan?i?i. The amount of nonacosan‐10‐ol varied individually from 27.4 to 73.2% (55.5% in average), but differences between the four investigated populations were not statistically confirmed. The size of the n‐alkanes ranged from C18 to C33. The most abundant n‐alkanes were C23, C27, and C25 (12.2, 11.2, and 10.8% in average, resp.). The carbon preference index (CPI) of the n‐alkanes ranged from 0.8 to 3.1 (1.6 in average), while the average chain length (ACL) ranged from 20.9 to 26.5 (24.4 in average). Long‐chain and mid‐chain n‐alkanes prevailed (49.6 and 37.9% in average, resp.). It was also found that the populations of P. heldreichii var. leucodermis had predominantly a narrower range of n‐alkanes (C18? C31) than the trees of the variety pan?i?i (C18? C33). Differences between the varieties were also significant for most of the other characteristics of the n‐alkane pattern (e.g., most abundant n‐alkanes, CPI, ACL, and relative proportion of short‐, mid‐, and long‐chain n‐alkanes). The principle component and cluster analyses of eleven n‐alkanes confirmed the significant diversity of these two varieties.  相似文献   

4.
The composition of the epicuticular leaf n‐alkanes of eight populations of three Satureja montana subspecies (S. montana L. subsp. pisidica (Wettst.) ?ili? , S. montana L. subsp. montana, and S. montana L. subsp. variegata (Host ) P. W. Ball ), from central and western areas of the Balkan Peninsula was characterized by GC‐FID and GC/MS analyses. In the leaf waxes, 15 n‐alkane homologs with chain‐lengths ranging from C21 to C35 were identified. The main n‐alkane in almost all samples was n‐nonacosane (C29), but differences in the contents of three other dominant n‐alkanes allowed separating the coastal from the continental populations. The diversity and variability of the epicuticular‐leaf‐n‐alkane patterns and their relation to different geographic and bioclimatic parameters were analyzed by several statistical methods (principal component, discriminant, and cluster analyses as well as the Mantel test). All tests showed a high correlation between the leaf n‐alkane pattern and the geographical distribution of the investigated populations, confirming the differentiation between S. montana subsp. pisidica and the other two subspecies. The S. montana subsp. variegata and S. montana subsp. montana populations are geographically closer and their differentiation according to the leaf‐n‐alkane patterns was not clear, even though there was some indication of discrimination between them. Moreover, most of the bioclimatic parameters related to temperature were highly correlated with the differentiation of the coastal and the continental populations.  相似文献   

5.
The composition of the epicuticular n‐alkanes isolated from the leaves of ten populations of Juniperus communis L. var. saxatilis Pallas from central (continental) and western (coastal) areas of the Balkan Peninsula was characterized by GC‐FID and GC/MS analyses. In the leaf waxes, 14 n‐alkane homologues with chain‐lengths ranging from C22 to C35 were identified. All samples were dominated by n‐tritriacontane (C33), but differences in two other dominant n‐alkanes allowed separating the coastal from the continental populations. Several statistical methods (ANOVA, principal component, discriminant, and cluster analyses as well as the Mantel test) were deployed to analyze the diversity and variability of the epicuticular‐leaf‐n‐alkane patterns of the ten natural populations of J. communis var. saxatilis and their relation to different geographic and bioclimatic parameters. Cluster analysis showed a high correlation of the leaf‐n‐alkane patterns with the geographical distribution of the investigated samples, differentiating the coastal from the continental populations of this taxon. Several bioclimatic parameters related to aridity were highly correlated with this differentiation.  相似文献   

6.
For the first time, the n‐alkane distribution and variability of the epicuticular waxes within 22 Sedum taxa was reported with focus on the chemotaxonomy of native Sedum representatives from the central Balkan Peninsula, compared to their relations with four other species of the Crassulaceae family. By GC/MS and GC‐FID identification and quantification, it was established that n‐alkanes C27, C29, C31, C33, and C35 were the dominant constituents of the examined epicuticular wax samples. Applying multivariate statistical analyses including agglomerative hierarchical clustering (AHC) and principal component analysis (PCA), the relation according to the n‐alkane composition between the examined samples was established. It was shown that the n‐alkane variability of the central Balkan Sedum species was considerable and that n‐alkanes might not be very reliable taxonomic markers for these species.  相似文献   

7.
The composition of the cuticular n‐alkanes isolated from the leaves of nine populations of Juniperus deltoides R.P.Adams from continental and coastal areas of the Balkan Peninsula was characterized by GC‐FID and GC/MS analyses. In the leaf waxes, 14 n‐alkane homologues with chain‐lengths ranging from C22 to C35 were identified. n‐Tritriacontane (C33) was dominant in the waxes of all populations, but variations between the populations in the contents of all n‐alkanes were observed. Several statistical methods (ANOVA, principal component, discriminant, and cluster analyses) were used to investigate the diversity and variability of the cuticular‐leaf‐n‐alkane patterns of the nine J. deltoides populations. This is the first report on the n‐alkane composition for this species. The multivariate statistical analyses evidenced a high correlation of the leaf‐n‐alkane pattern with the geographical distribution of the investigated samples, differentiating the coastal from the continental populations of this taxon.  相似文献   

8.
This is the first report on the composition and variability of the needle‐wax n‐alkanes in natural populations of Pinus nigra in Serbia. Samples of 195 trees from seven populations belonging to several infraspecific taxa (ssp. nigra, var. gocensis, ssp. pallasiana, and var. banatica) were analyzed. In general, the size of the n‐alkanes ranged from C16 to C33, with the exception of ssp. nigra, for which it ranged from C18 to C33. The most abundant were C23‐, C25‐, C27‐, and C29‐alkanes. The needle waxes of Populations IIII and V were characterized by a higher content of C23‐, C25‐, and C27‐alkanes and a lower content of C24‐, C26‐, C28‐, and C30‐alkanes, compared to the other populations, and the trees of these populations could be assigned to ssp. nigra. The samples of Population VI were characterized by higher amounts of C22‐, C24‐, C30‐, and C32‐alkanes and lower amounts of C25‐ and C27‐alkanes, and the trees could be considered as ssp. pallasiana. The samples of Population VII, consisting of trees belonging to var. banatica, were richer in C29‐, C31‐, and C33‐alkanes. The wax compositions of Populations IV and V, both composed of trees previously determined as P. nigra var. gocensis, showed a tendency of splitting. Indeed, the alkane composition of Population IV was closer to that of ssp. pallasiana pines, while that of Population V was more similar to that of ssp. nigra pines. From the results presented here, it is obvious that in the central part of the Balkan Peninsula, significant diversification and differentiation of the populations of black pine exists, and these populations could be defined as different intraspecific taxa. Our results also indicate the validity of n‐alkanes as chemotaxonomic characters within this aggregate.  相似文献   

9.
The chemical composition of epicuticular waxes of nine populations from three Pinus nigra J. F. Arnold subspecies (namely subsp. nigra, subsp. banatica (Borbás ) Novák , and subsp. pallasiana (Lamb .) Holmboe ) from Southern Carpathians and central Balkan Peninsula were analyzed using GC/MS and GC/FID chromatography, and multivariate statistical techniques with respect to biogeography and taxonomy. In the needle waxes, four primary alcohols and 14 n‐alkanes ranging from C21 to C33 were identified, and the most abundant compounds were the four odd‐numbered n‐alkanes C27, C25, C23, and C29. Multivariate statistical analyses (CDA and CA) have shown existence of three P. nigra groups and suggested clinal differentiation as a mechanism of genetic variation across a geographic area: the first group consisted of the southernmost populations of subsp. pallasiana from Macedonia, the second consisted of the northernmost subsp. banatica populations from Romania, while all populations in Serbia described as three different subspecies (nigra, banatica, and pallasiana) formed the third group together with subsp. nigra population from Bosnia and Herzegovina. According to simple linear regression, geographic latitude and four bioclimatic parameters were moderately correlated with the contents of epicuticular wax compounds that are important in population discrimination, while stepwise multiple regression showed that latitude participated in most of the regression models for predicting the composition of the epicuticular waxes. These results agree with CDA and CA analysis, and confirmed the possibility of recognition of fine geographic differentiation of the analyzed P. nigra populations.  相似文献   

10.
This study is the first report on the composition and variability of essential oil in the relic, endemic, and vulnerable tree species Serbian spruce, Picea omorika, in its natural populations. In the needles of 108 trees of four natural populations, 49 components of essential oils were identified. The main compounds were bornyl acetate (29.2%), camphene (18.7%), and α‐pinene (12.9%). Fourteen additional components had the contents of up to 0.5%: α‐cadinol (6.1%), limonene (5.8%), santene (3.5%), (E)hex‐2‐enal (2.9%), T‐cadinol (2.9%), δ‐cadinene (2.3%), tricyclene (2.1%), myrcene (1.6%), β‐pinene (1.2%), borneol (0.9%), germacrene D (0.9%), α‐muurolene (0.6%), and two unidentified compounds. Population IV from Mile?evka Canyon had a much higher content of bornyl acetate (42.9%). Populations I–III from Mt. Tara were more abundant in sesquiterpenes (up to 18.2%). The content of bornyl acetate, the multi‐variation analyses according to seven selected components, especially the cluster analysis and genetic analysis of α‐cadinol, which suggested the monogenic type of heredity, showed a clear differentiation of the two geographic areas, the similarity of populations I–III from the area of Mt. Tara, and the separation of the population IV from Mile?evka Canyon.  相似文献   

11.
Morphological characters and the composition of epicuticular leaf n ‐alkanes of two Satureja subspicata Bartl . ex Vis . subspecies (subsp. liburnica ?ili? and subsp. subspicata ) from nine natural populations along Dinaric Alps range were studied. Morphological characters were chosen based on ?ili? ?s subspecies separation. Seventeen n ‐alkane homologues (C19 – C35) were identified using gas chromatography/mass spectrometry (GC/MS) and GC/flame ionisation detector (FID). The most abundant n ‐alkane in all populations was n ‐nonacosane (C29), followed by n ‐hentriacontane (C31), with the exception of Diva?a population where these two alkanes were co‐dominant. Diversity and variability of n ‐alkane patterns and morphological characters and their relation to different geographic and bioclimatic parameters, including exposure, were analysed by several statistical multivariate methods (PCA, HCA, Discriminant Analysis, Mantel test). These tests showed clear separation of subsp. liburnica from subsp. subspicata , even though population Velebit showed separation from other subsp. liburnica populations based on phytochemical characters. Mantel test showed high correlation with geographical distribution in both investigated data sets. High correlation between morphological and phytochemical characters was also established. However, exposure can influence n ‐alkane profile, suggesting precaution while taking samples from natural habitats.  相似文献   

12.
Plantago major L. grows in a very wide range of regions in China and exhibits great variations among populations. The analysis of the cuticular‐wax composition provides a potential approach to classify populations of P. major confronting different environmental conditions. Twelve populations of P. major and five populations of P. depressa Willd ., distributed over regions with average annual temperatures ranging from ?2.0 to 18.4°, were sampled, the variation of the composition of their cuticular waxes was analyzed, and their values of average chain length (ACL) and carbon preference index (CPI) were calculated. Great intra‐ and interspecies variations were observed for the total wax contents. The average annual temperature of the habitats was significantly correlated with the relative contents of the dominant n‐alkanes with an odd number of C‐atoms, but not with the wax contents. With an increasing average annual temperature, the relative contents of n‐alkanes C29 and C31 decreased, whereas those of C33 and C35 as well as the values of ACLtotal and ACL27–33 increased. Cluster analysis based on the pattern of the n‐alkane distribution allowed to clearly separate the populations of P. major according to the average annual temperature of their habitats, but not to separate the populations of the two species. Hence, the pattern of the n‐alkane distribution might be a good taxonomic marker for P. major at the intraspecies level, but not at the interspecies level. Nevertheless, a small difference between the populations of the two species was observed concerning the values of ACLtotal and CPItotal, implying the potential use of these indices for the classification of the populations of the two species at the interspecies level.  相似文献   

13.
The n‐alkane composition in the leaf cuticular waxes of natural populations of Bosnian pine (Pinus heldreichii), Austrian pine (P. nigra), and Macedonian pine (P. peuce) was compared for the first time. The range of n‐alkanes was wider in P. nigra (C16 – C33) than in P. heldreichii and P. peuce (C18 – C33). Species also diverged in abundance and range of dominant n‐alkanes (P. heldreichii: C23, C27, and C25; P. nigra: C25, C27, C29, and C23; P. peuce: C29, C25, C27, and C23). Multivariate statistical analyses (PCA, DA, and CA) generally pointed out separation of populations of P. nigra from populations of P. heldreichii and P. peuce (which were, to a greater or lesser extent, separated too). However, position of these species on the basis of n‐alkane composition was in accordance neither with infrageneric classification nor with recent molecular and terpene investigations.  相似文献   

14.
It remains poorly understood how the composition of leaf wax n‐alkanes reflects the local environment. This knowledge gap inhibits the interpretation of plant responses to the environment at the community level and, by extension, inhibits the applicability of n‐alkane patterns as a proxy for past environments. Here, we studied the n‐alkane patterns of five Miconia species and one Guarea species, in the Ecuadorian Andes (653–3,507 m a.s.l.). We tested for species‐specific responses in the average chain length (ACL), the C31/(C31 + C29) ratio (ratio), and individual odd n‐alkane chain lengths across an altitudinally driven environmental gradient (mean annual temperature, mean annual relative air humidity, and mean annual precipitation). We found significant correlations between the environmental gradients and species‐specific ACL and ratio, but with varying magnitude and direction. We found that the n‐alkane patterns are species‐specific at the individual chain length level, which could explain the high variance in metrics like ACL and ratio. Although we find species‐specific sensitivity and responses in leaf n‐alkanes, we also find a general decrease in “shorter” (<C29) and an increase in “longer” (>C31) chain lengths with the environmental gradients, most strongly with temperature, suggesting n‐alkanes are useful for reconstructing past environments.  相似文献   

15.
The aliphatic waxes sealing plant surfaces against environmental stress are generated by fatty acid elongase complexes, each containing a β‐ketoacyl‐CoA synthase (KCS) enzyme that catalyses a crucial condensation forming a new C─C bond to extend the carbon backbone. The relatively high abundance of C35 and C37 alkanes derived from C36 and C38 acyl‐CoAs in Arabidopsis leaf trichomes (relative to other epidermis cells) suggests differences in the elongation machineries of different epidermis cell types, possibly involving KCS16, a condensing enzyme expressed preferentially in trichomes. Here, KCS16 was found expressed primarily in Arabidopsis rosette leaves, flowers and siliques, and the corresponding protein was localized to the endoplasmic reticulum. The cuticular waxes on young leaves and isolated leaf trichomes of ksc16 loss‐of‐function mutants were depleted of C35 and C37 alkanes and alkenes, whereas expression of Arabidopsis KCS16 in yeast and ectopic overexpression in Arabidopsis resulted in accumulation of C36 and C38 fatty acid products. Taken together, our results show that KCS16 is the sole enzyme catalysing the elongation of C34 to C38 acyl‐CoAs in Arabidopsis leaf trichomes and that it contributes to the formation of extra‐long compounds in adjacent pavement cells.  相似文献   

16.
The needle‐terpene profiles of two natural Pinus heldreichii populations from Mts. O?ljak and Gali?ica (Scardo‐Pindic mountain system) were analyzed. Among the 68 detected compounds, 66 were identified. The dominant constituents were germacrene D (28.7%), limonene (27.1%), and α‐pinene (16.2%). β‐Caryophyllene (6.9%), β‐pinene (5.2%), β‐myrcene (2.3%), pimaric acid (2.0%), α‐humulene (1.2%), and seven additional components were found to be present in medium‐to‐high amounts (0.5–10%). Although the general needle‐terpene profile of the population from Gali?ica was similar to those of the populations from Lov?en, Zeletin, Bjelasica, and Zlatibor‐Pe?ter (belonging to the Dinaric Alps), the principle‐component analysis (PCA) of seven terpenes (β‐myrcene, limonene, β‐elemene, β‐caryophyllene, α‐humulene, δ‐cadinene, and germacrene D‐4‐ol) in 121 tree samples suggested a partial divergence in the needle‐terpene profiles between the populations from the Scardo‐Pindic mountain system and the Dinaric Alps. According to previously reported data, the P. heldreichii samples from the Balkan‐Rhodope mountains lack β‐caryophyllene and germacrene D, but contain γ‐muurolene in their terpene profile. Differences in the terpene composition between populations growing in the three above‐mentioned mountain systems were compared and discussed.  相似文献   

17.
Glaucousness is described as the scattering effect of visible light from wax deposited on the cuticle of plant aerial organs. In wheat, two dominant genes lead to non‐glaucous phenotypes: Inhibitor of wax 1 (Iw1) and Iw2. The molecular mechanisms and the exact extent (beyond visual assessment) by which these genes affect the composition and quantity of cuticular wax is unclear. To describe the Iw1 locus we used a genetic approach with detailed biochemical characterization of wax compounds. Using synteny and a large number of F2 gametes, Iw1 was fine‐mapped to a sub‐cM genetic interval on wheat chromosome arm 2BS, which includes a single collinear gene from the corresponding Brachypodium and rice physical maps. The major components of flag leaf and peduncle cuticular waxes included primary alcohols, β‐diketones and n‐alkanes. Small amounts of C19–C27 alkyl and methylalkylresorcinols that have not previously been described in wheat waxes were identified. Using six pairs of BC2F3 near‐isogenic lines, we show that Iw1 inhibits the formation of β‐ and hydroxy‐β‐diketones in the peduncle and flag leaf blade cuticles. This inhibitory effect is independent of genetic background or tissue, and is accompanied by minor but consistent increases in n‐alkanes and C24 primary alcohols. No differences were found in cuticle thickness and carbon isotope discrimination in near‐isogenic lines differing at Iw1.  相似文献   

18.
Lipophilic extractive metabolites from needles and defoliated twigs of Pinus armandii and P. kwangtungensis were studied by GC/MS. Needles of P. armandii contained predominantly 15‐O‐functionalized labdane type acids (anticopalic acid), fatty acids, nonacosan‐10‐ol, sterols, nonacosan‐10‐ol and sterol saponifiable esters, and acylglycerols, while P. kwangtungensis needles contained no anticopalic acid, but more trinorlabdane (14,15,16‐trinor‐8(17)‐labdene‐13,19‐dioic acid) and other labdane type acids, nonacosan‐10‐ol and its saponifiable esters. The major compounds in the P. armandii defoliated twig extract were abietane and isopimarane type acids, fatty acids, sterols, labdanoids (cis‐abienol), cembranoids (isocembrol and 4‐epi‐isocembrol), saponifiable sterol esters, and acylglycerols. The same extract of P. kwangtungensis contained larger quantities of fatty acids, caryophyllene oxide, serratanoids, sterols, saponifiable sterol esters, and acylglycerols, but lesser amounts of abietane and isopimarane type acids, cis‐abienol, and lacked cembranoids. Both twig and needle extracts of P. armandii and P. kwangtungensis, as well as the extracts’ fractions, significantly inhibited the growth of Gram‐negative bacteria Serratia marcescens with MIC of 0.1 mg ml?1, while in most cases they slightly stimulated the growth of Gram‐positive bacteria Bacillus subtilis at the same concentrations. Thus, lipophilic extractive compounds from the needles and defoliated twigs of both pines are prospective for the development of antiseptics against Gram‐negative bacteria.  相似文献   

19.
Plant surface characteristics were repeatedly shown to play a pivotal role in plant–pathogen interactions. The abaxial leaf surface of perennial ryegrass (Lolium perenne) is extremely glossy and wettable compared to the glaucous and more hydrophobic adaxial surface. Earlier investigations have demonstrated that the abaxial leaf surface was rarely infected by powdery mildew (Blumeria graminis), even when the adaxial surface was densely colonized. This led to the assumption that components of the abaxial epicuticular leaf wax might contribute to the observed impairment of growth and development of B. graminis conidia on abaxial surfaces of L. perenne. To re-assess this hypothesis, we analyzed abundance and chemical composition of L. perenne ab- and adaxial epicuticular wax fractions. While the adaxial epicuticular waxes were dominated by primary alcohols and esters, the abaxial fraction was mainly composed of n-alkanes and aldehydes. However, the major germination and differentiation inducing compound, the C26-aldehyde n-hexacosanal, was not present in the abaxial epicuticular waxes. Spiking of isolated abaxial epicuticular Lolium waxes with synthetically produced n-hexacosanal allowed reconstituting germination and differentiation rates of B. graminis in an in vitro germination assay using wax-coated glass slides. Hence, the absence of the C26-aldehyde from the abaxial surface in combination with a distinctly reduced surface hydrophobicity appears to be primarily responsible for the failure of normal germling development of B. graminis on the abaxial leaf surfaces of L. perenne.  相似文献   

20.
This is the first report on population variability of nonacosan-10-ol and n-alkanes in needle epicuticular waxes of Macedonian pine (Pinus peuce GRISEB.) Hexane extracts of needle samples, originating from two natural populations in Montenegro (Zeletin and Sjekirica) and from one population in Serbia (Mokra Gora) were analyzed by gas chromatography (GC) and gas chromatography/mass spectrometry (GC/MS). The amount of nonacosan-10-ol varied individually from 41.3 to 72.31% (average 55.9%), with the Sjekirica population being statistically divergent (64.4% on average). The results showed n-alkanes in epicuticular waxes ranging from C?? to C??. The most abundant alkanes were C??, C??, C??, and C?? (15.5, 11.1, 10.6, and 10.5% on average, resp.). The carbon preference index of Pinus peuce ranged from 1.0 to 4.3 (1.9 on average). Average chain length ranged from 18.4 to 27.7 (average 25.7). A high level of inidividual quantitative variation in all of these hydrocarbon parameters was also detected. These results were compared with published data on other species from the Pinus genus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号