首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Thrombin and trypsin induce serotonin release and aggregation in human platelets. Both proteases induce activation of phospholipase C as reflected by formation of inositol phosphates and phosphorylation of the resultant 1,2-diacylglycerol to phosphatidic acid. Also, thrombin and trypsin activate protein kinase C and myosin light chain kinase as indicated, respectively, by phosphorylation of the 40,000 and 20,000 dalton proteins. Leupeptin, a known inhibitor of serine proteases, blocks all the observed responses of human platelets to trypsin and thrombin. Leupeptin does not inhibit serotonin release and aggregation induced by other platelet stimuli such as collagen, platelet-activating factor, ionophore A23187, and arachidonic acid. The implication of a proteolytic-mediated pathway in the transmembrane signalling involved in platelet activation is discussed.  相似文献   

2.
Membrane microenvironmental changes associated with thrombin-induced platelet activation were followed by fluorescence intensity and polarization studies of 1,6-diphenyl-1,3,5-hexatriene (DPH)-labeled human platelets. The labeling of washed platelets with DPH did not alter platelet intactness and morphology. In response to thrombin, DPH-labeled platelets exhibited reduced serotonin release, yet aggregation was barely inhibited. Shape change induced by thrombin or ADP was indistinguishable in control and in DPH-labeled platelets. During platelet aggregation induced by thrombin, fluorescence intensity increased by about 14%, which may indicate a more hydrophobic exposure of the probe. However, no change in fluorescence was detected during platelet shape change, induced either by thrombin in presence of EDTA or by ADP. Thrombin-activated platelets exhibited an increase in values of fluorescence polarization (P) during the stages of shape change and secretion, which further increased during aggregation. A similar pattern of increase in P values characterized platelet shape changes, caused either by thrombin in the presence of EDTA or by ADP. Changes in individual platelets are discernible from the alterations of the aggregating cells. These results may indicate that platelet activation is accompanied by an increase in rigidity of the membrane lipids. Functionally, the elevated "microviscosity" may reflect a primary role of membrane lipids in modulating the process of platelet activation or secondary transitions in lipids due to membrane events mediated by proteins.  相似文献   

3.
Ionized lanthanum caused clumping of washed platelets. This clumping response could be reversed by chelating agents but was not impaired by known inhibitors of platelets aggregation. Aggregation by lanthanum was not restricted to the unique clumping properties of platelets but occurred in fixed platelets and red cells and was most likely based on an electrostatic interaction.Lanthanum was able to stimulate as well as to inhibit serotonin release from platelets.At a concentration of 1 mM, lanthanum evoked a release of serotonin from washed platelets at 37°C. This release reaction was inhibited at 18°C or by prior treatment of platelets with neuraminidase or NEM.At a high concentration (10 mM), lanthanum did not stimulate the platelet release reaction but inhibited that induced by all stimuli investigated, presumably due to a fixation of membrane molecules.The release reaction promoted by thrombin or A 23187, but not that by collagen, was inhibited by a low concentration of lanthanum (0.1 mM). This inhibition is based on an interaction of lanthanum with the stimuli rather than with the platelet surface.  相似文献   

4.
An attempt was made to demonstrate wheat-germ agglutinin (WGA) binding sites on platelet surfaces after thrombin stimulation, by means of a post-embedding cytochemical technique using colloidal gold as marker at an ultrastructural level. In unstimulated platelets washed with EDTA, an intense uniform labeling of WGA-gold complexes was found on the surface membrane. When washed platelets were stimulated by thrombin in the absence of Ca2+, only a release reaction was induced. WGA labeling on the surface membranes of these platelets decreased dramatically. However, the labeling intensity of WGA-gold complexes on the surface membrane of aggregated platelets induced by thrombin in the presence of Ca2+ increased significantly compared to that of thrombin-stimulated platelets in the absence of Ca2+. In contrast to the uniform labeling on the surface membranes of unstimulated platelets, clusters of gold label were often found on the surface membrane of the aggregated platelets, although there was no significant quantitative difference in the labeling intensity between these two groups. Thus, we present direct morphological evidence demonstrating qualitative and quantitative alterations of WGA labeling on the surface membrane of platelets after thrombin stimulation. The possibility is considered that WGA-binding glycoproteins in the surface membrane are involved in the aggregation response after thrombin stimulation.  相似文献   

5.
A nonagglutinating derivative of wheat germ agglutinin has been prepared and used as a probe to explore the initial events in platelet activation. The lectin derivative had no effect on platelet aggregation by adenosine diphosphate, collagen, ristocetin, wheat germ agglutinin or trypsin but aggregation induced by epinephrine or thrombin was inhibited. Unlike thrombin, the inhibition of aggregation by the derivative could not be overcome by increasing the concentration of epinephrine. The derivative did not affect the binding of [3H]dihydroergocryptine to platelets. A 74,000 dalton protein isolated from platelet membranes by lectin affinity chromatography strongly inhibited platelet activation by thrombin but not by epinephrine. The receptors for thrombin and for epinephrine on platelets are different but they are closely linked.  相似文献   

6.
In human platelets, the amounts of triphosphoinositides (TPI) and diphosphoinositides (DPI) increase after 30 sec and level off after 120 sec of thrombin stimulation. After 180 sec of thrombin challenge, TPI and DPI increase accounts for 66 and 80%, respectively. Polyphosphoinositide changes roughly parallel the release of N-acetyl-beta-D-glucosaminidase and appear as a later event compared to aggregation and serotonin secretion. It is concluded that an increased phosphorylation of polyphosphoinositides might participate in platelets to the process of stimulus-activation coupling and might be linked to thrombin receptor occupancy. A role of DPI in platelet activation is suggested by the observation that DPI promote platelet aggregation, the mechanism of which is discussed.  相似文献   

7.
Summary An attempt was made to demonstrate wheatgerm agglutinin (WGA) binding sites on platelet surfaces after thrombin stimulation, by means of a post-embedding cytochemical technique using colloidal gold as marker at an ultrastructural level. In unstimulated platelets washed with EDTA, an intense uniform labeling of WGA-gold complexes was found on the surface membrane. When washed platelets were stimulated by thrombin in the absence of Ca2+, only a release reaction was induced. WGA labeling on the surface membranes of these platelets decreased dramatically. However, the labeling intensity of WGA-gold complexes on the surface membrane of aggregated platelets induced by thrombin in the presence of Ca2+ increased significantly compared to that of thrombin-stimulated platelets in the absence of Ca2+. In contrast to the uniform labeling on the surface membranes of unstimulated platelets, clusters of gold label were often found on the surface membrane of the aggregated platelets, although there was no significant quantitative difference in the labeling intensity between these two groups. Thus, we present direct morphological evidence demonstrating qualitative and quantitative alterations of WGA labeling on the surface membrane of platelets after thrombin stimulation. The possibility is considered that WGA-binding glycoproteins in the surface membrane are involved in the aggregation response after thrombin stimulation.  相似文献   

8.
Wheat germ agglutinin induced aggregation and secretion of fresh platelets. Aggregation, but not secretion of serotonin by platelets in plasma, by the lectin was inhibited by 5 mM EDTA. Further, the lectin-induced stimulation of fresh platelets was blocked by prostaglandin E1. Thus, this lectin stimulates platelets by a mechanism which closely mimics thrombin activation and is independent of intercellular crosslinking. Lentil lectin did not stimulate platelets. Each platelet contained about 6 . 10(-5) binding sites for the lectins with an apparent dissociation constant of 3.0 . 10(-7) M. Wheat germ agglutinin, which binds mainly to glycoprotein I (Mr 150 000), increased the subsequent binding of thrombin to fixed platelets while lentil lectin was without effect. It appears that thrombin and wheat germ agglutinin bind to independent but interacting sites. Wheat germ agglutinin, but neither thrombin nor lentil lectin, inhibited the agglutination of platelets by ristocetin. Further, rat platelets were not aggregated by either ristocetin or wheat germ agglutinin. It appears that the interaction sites of ristocetin and wheat germ agglutinin on platelets are overlapping.  相似文献   

9.
Human Clq, isolated in pure state after affinity chromatography on IgG-Sepharose, inhibited collagen-induced aggregation and release of 14C-Serotonin from prelabeled human platelets. Platelet aggregation induced by ADP or thrombin was not inhibited by Clq. Also, the adherence of platelets to glass surfaces was significantly diminished by Clq. In contrast, aggregated Clq mimicked the effect of collagen in causing platelet aggregation and release of serotonin. It appears that monomeric Clq, which has structural similarities to collagen competes with collagen for specific sites on the platelet surface.  相似文献   

10.
Highly purified alpha-thrombin has been chemically modified in an attempt to determine which features of the molecule are important for normal platelet-thrombin interactions. Modifying agents included diisopropylphosphorofluoridate and 1-chloro-3-tosylamido-7-amino-L-2-heptanone, which modify serine and histidine, respectively, at the catalytic site, as well as N-bromosuccinimide and 2-hydroxy-5-nitrobenzyl bromide, which modify a single tryptophan at or near the fibrinogen-binding site. Active site-directed modification did not appreciably affect the binding characteristics, but prevented platelet activation. In contrast, modification of tryptophan at the macromolecular substrate-binding site resulted in the loss of high affinity binding of thrombin to platelets, while low affinity binding was apparently unaffected. This modification altered but did not abolish the ability of thrombin to effect platelet aggregation and release of [14C]serotonin. These results suggest that residues at the catalytic site are not involved in binding and that the macromolecular substrate-binding site of alpha-thrombin participates in high affinity binding to platelets. These data are also consistent with the existence of at least two types of binding sites for thrombin on the platelet surface as well as more than one platelet-binding region on the thrombin molecule.  相似文献   

11.
Degradation of inositides induced by phospholipase C in activated platelets leads to the formation of 1,2-diacylglycerol (1,2-DG) and its phosphorylated product, phosphatidic acid (PA). We have studied the relationship between activation of phospholipase C and the appearance of specific platelet responses, such as phosphorylation of proteins, shape change, release reaction and aggregation induced by different stimuli such as thrombin, platelet-activating factor, collagen, arachidonic acid (AA) and dihomogamma linolenic acid. A low degree of platelet activation induces only shape change which is associated with partial activation of phospholipase C (formation of phosphatidic acid), and phosphorylation of both a 40K molecular weight protein (protein kinase C activation) and a 20K molecular weight protein (myosin light chain). A higher degree of platelet activation induces aggregation, release of serotonin and a higher level of phospholipase C and protein kinase C activities. Metabolism of AA occurs concomitantly to aggregation and serotonin release, but AA metabolites are not related to the shape change of human platelets. Platelet shape change and the initial activation of phospholipase C induced by thrombin or platelet-activating factor is independent of the metabolites derived from cyclo-oxygenase activity. Further activation of phospholipase C which occurs during platelet aggregation and release reaction is, however, partly dependent on cyclo-oxygenase metabolites.  相似文献   

12.
We have previously demonstrated that lentil phytohemagglutinin (lentil-PHA) binds to human platelet membranes without causing either aggregation or the release reaction. When platelets are treated with thrombin, there is an increase in lentil-PHA binding suggesting the appearance of new receptor sites on the cell surface. We prepared a lentil-PHA-ferritin conjugate using affinity chromatography which was used to saturate cell surface receptor sites. Studies using this conjugate suggest that thrombin causes a complex change in the platelet surface involving a decrease in the number of lentil-PHA receptor sites on the external platelet surface with a marked increase in sites within the center of the canalicular system. These increased sites may result from fusion of granule membranes with the canalicular membranes during the secretion process. There is no obvious relationship between lentil-PHA receptor sites and intramembranous particles.  相似文献   

13.
Polycationic derivatives of ferritin containing primary amino groups (CFah) or tertiary amino groups (CFdmp) were potent platelet agonists inducing shape change, aggregation and secretion, but also agglutination in the presence of EDTA. Pretreatment of platelets with neuraminidase, PGE1, indomethacin, or creatine kinase/creatine phosphate inhibited CF-induced activation. In contrast, neuraminidase and PGE1 increased the agglutination by CF, indicating an inverse relationship between activation and CF-induced agglutination. At pH 7.4, the cationic charges of CFdmp exceeded those of CFah by a factor of 1.5 and the platelets bound approximately 1.5 times more CFah than CFdmp, suggesting the same number of anionic surface sites for both CF preparations. The capacity of the platelets to bind CF was diminished by 55% at 0 degree C or by 62% after aldehyde fixation and by 13% with PGE1. This suggests that the binding capacity depends on the mobility of the binding sites in the plane of the membrane but is only slightly increased by platelet activation. Binding to fixed or cold platelets approached equilibrium within a few seconds whereas saturation required several minutes at 37 degrees C. Neuraminidase preferentially reduced the slow binding and much less the rapid binding. Since activation by CF developed during seconds, suppressible by a brief treatment with neuraminidase 25 mU/ml, a small portion of neuraminidase-sensitive sites appears to be necessary for CF-induced platelet activation. Full activation and agglutination occurred at CF concentrations far below saturating concentrations. The results show that neither CF-induced activation nor agglutination depend on a simple neutralization of the negative surface charge.  相似文献   

14.
The effects of the antimicrotubular drugs colchicine and vinblastine on the blood platelet release reaction were studied by measuring release of 14C-5-hydroxytryptamine (14C-5-HT, release I) and β-glucuronidase (release II) from gel-filtered human platelets. β-glucuronidase release induced by thrombin was significantly inhibited by colchicine (0.01-1 mM) or vinblastine (0.05–0.1 mM). Release of 14C-5-HT, however, was unaffected at low concentrations of colchicine and only slightly inhibited at higher concentrations. Inhibition of β-glucuronidase release depended on colchicine or vinblastine concentrations and decreased with longer time intervals (1′, 5′, 20′) after thrombin stimulation. Levels of the cytoplasmic enzyme, lactic acid dehydrogenase, in supernatants of colchicine treated platelets were not significantly different from controls. Colchicine also inhibited β-glucuronidse release, but not 14C-5-HT release, induced by trypsin and sodium arachidonate. Binding of 14C-colchicine by platelets was measured and it was found that platelet aggregation and release of 5-HT induced by adenosine diphosphate, epinephrine and collagen proceeded without any alteration in colchicine binding. However, significant increases in the rate and degree of colchicine binding were observed when platelets were stimulated by thrombin, trypsin and arachidonic acid which induced aggregation, release of both 5-HT and β-glucuronidase. The results suggest that an alteration in platelet microtubules is correlated with the physiologic response resulting in release II and that the cellular mechanisms effecting release I and II by platelets differ qualitatively in that the microtubules may facilitate release II.  相似文献   

15.
Characterization of the normal bovine platelet aggregation response   总被引:4,自引:0,他引:4  
1. Bovine platelets are more sensitive to stimulation by platelet activating factor (PAF) than adenosine-di-phosphate (ADP) or thrombin. 2. While epinephrine, arachidonic acid and serotonin are ineffective by themselves as aggregatory stimulants of bovine platelets they enhance the aggregation response of other platelet agonists. 3. There is no correlation between thromboxane A2 production and release and the extent of platelet aggregation in bovine platelets. 4. The dependence of bovine platelet aggregation on a phospholipid pathway and calcium mobilization is indicated.  相似文献   

16.
Platelet aggregation by group B streptococci   总被引:1,自引:0,他引:1  
Forty-six strains of group B streptococci (GBS), including various serotypes and non-serotypable strains, were tested for their ability to induce platelet aggregation in human platelet-rich plasma; four strains, all belonging to type III, showed a positive reaction. The characteristics of the reaction were investigated in these four positive strains. Aggregation was dependent on the ratio of bacteria to platelets, being maximal at a ratio of 4.3. Platelet aggregation was inhibited by EDTA (100% inhibition at 3.1 mM), indomethacin (100% inhibition at 10 mM), acetylsalicylic acid (93-100% inhibition at 5.0 mM) and quinacrine (100% inhibition at 0.25 mM). Thus the reaction was cation-dependent and required cyclooxygenase activity. Assays for cytosolic lactate dehydrogenase did not indicate platelet lysis. GBS induced the release of [3H]serotonin, which was maximal (68-78%) at 10 min after the reaction was started. Experiments with gel-filtered platelets suggested that GBS-induced platelet aggregation required both fibrinogen and heat-resistant (56 degrees C, 30 min) serum factors. Type-specific antisera prevented the platelet aggregation activity of heat-killed bacteria, but not of live bacteria. Trypsin digestion of the bacterial cells caused an almost complete loss of the platelet aggregation activity.  相似文献   

17.
Blood platelets play a critical role in the onset of myocardial infarction, which has been shown to have a circadian rhythmicity with a peak incidence in the morning. In an attempt to correlate platelet parameters with the outcome of cardiovascular diseases, we studied the daily (24-h) variation of the following platelet parameters: distribution pattern of functional heterogeneous platelet subpopulations; serotonin uptake; ketanserin binding; aggregation upon thrombin, serotonin, and ADP stimulation; and platelet count. Furthermore, we analyzed the tryptophan and serotonin concentrations in the blood samples. The percentage of less dense platelets, which represent the subpopulation with the highest preactivation, showed a rhythmicity period of 24 h and an acrophase at 21:18 h. The time course of intermediate and high density platelets was inverse to that of low density platelets. The serotonin uptake exhibited also a rhythmicity with a 24-h period. The acrophase was at 13:50 h. The aggregation curves were inverse to the ketanserin binding curves. The serotonin concentration exhibited a 12-h rhythmicity. The results obtained suggest that (a) changes in platelet activity are reflected by several parameters of platelet function that underlie daily variations; (b) the aggregation curves show a peak in the morning, with an additional peak in the afternoon; and (c) changes in the distribution pattern occur independently from variations in platelet functions like aggregation and serotonin binding.  相似文献   

18.
Platelets play a key role not only in physiological haemostasis, but also under pathological conditions such as thrombosis. Platelet activation may be initiated by a variety of agonists including thrombin, collagen, thromboxane or adenosine diphosphate (ADP). Although ADP is regarded as a weak agonist of blood platelets, it remains an important mediator of platelet activation evoked by other agonists, which induce massive ADP release from dense granules, where it occurs in molar concentrations. Thus, ADP action underlies a positive feedback that facilitates further platelet aggregation and leads to platelet plug formation. Additionally, ADP acts synergistically to other, even weak, agonists such as serotonin, adrenaline or chemokines. Blood platelets express two types of P2Y ADP receptors: P2Y(1) and P2Y(12). ADP-dependent platelet aggregation is initiated by the P2Y1 receptor, whereas P2Y(12) receptor augments the activating signal and promotes platelet release reaction. Stimulation of P2Y(12) is also essential for ADP-mediated complete activation of GPIIb-IIIa and GPIa-IIa, and further stabilization of platelet aggregates. The crucial role in blood platelet biology makes P2(Y12) an ideal candidate for pharmacological approaches for anti-platelet therapy.  相似文献   

19.
Low concentrations of a polyoxyethylene detergent, Brij 58, inhibited the secondary phase of platelet aggregation induced by ADP in human citrated platelet-rich plasma but had no effect on primary aggregation. Thrombin-induced aggregation of washed human platelets suspended in Tyrode's buffer was inhibited after incubation of cells with 4.10(-6) M detergent. Efflux of [14C]serotonin, 45Ca2+ and labile aorta contracting substance (thromboxane A2) and development of prothrombin-converting activity (platelet factor 3) were abolished concomitantly. Aggregation of washed platelets either by sodium arachidonate or by collagen was also inhibited by the same concentration of Brij 58 which inhibited thrombin aggregation. This concentration did not itself produce any release of a cytoplasmic marker, lactate dehydrogenase, from platelets. Higher concentrations of Brij 58, exceeding 4.10(-5) M, lysed the cells liberating lactate dehydrogenase, serotonin and Ca2+. When albumin was included as a platelet stabilizer in the suspending medium the concentration of detergent required for the inhibitory effects was increased ten-fold. This could be attributed to competitive binding of the detergent to albumin, demonstrated with [14C]acetylated Brij 58. A variety of other polyoxyethylene detergents, at concentrations from 8.10(-4) to 5.10(-3) M, also inhibited platelet aggregation induced by thrombin. It is concluded that low concentrations of Brij 58 stabilize the platelets against the action of aggregating agents, while higher concentrations produce membrane destabilization and cell lysis.  相似文献   

20.
It was found that human platelets possess a high sensitivity towards alpha-thrombin (Km = 2 nM). Modified thrombin forms (beta/gamma-thrombin) with an impaired recognition site of high molecular weight substrates and DIP-alpha-thrombin and trypsin are incapable of inducing platelet aggregation when taken at concentrations corresponding to effective concentrations of alpha-thrombin. Beta/gamma-Thrombin and trypsin, unlike DIP-alpha-thrombin, cause platelet aggregation at concentrations of 100-200 nM. Studies on the modulating effects of modified thrombin forms, alpha-thrombin and trypsin, on platelet aggregation induced by alpha-thrombin revealed that beta/gamma-thrombin, alpha-thrombin and trypsin at concentrations causing no cell aggregation potentiate the platelet response after 2 min incubation and inhibit platelet aggregation upon prolonged (15 min) incubation. However, DIP-alpha-thrombin, irrespective of the incubation time (up to 30 min) increased the sensitivity of platelets to alpha-thrombin-induced aggregation. The activating effect of DIP-alpha-thrombin is characterized by an equilibrium constant (KA) of 17 nM. The experimental data confirm the hypothesis that the necessary prerequisite for an adequate physiological response of platelets to alpha-thrombin is the maintenance in the thrombin molecule of an intact active center and a recognition site for high molecular weight substrates. The specificity of thrombin as a potent platelet aggregation inducer is determined by the recognition site for high molecular weight substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号