首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Human transferrin was labeled with 59Fe at one of its two metal-binding sites (designated A) at pH 6.0. 55Fe was then added to site B at pH 7.5. Both isotopes of iron were taken up in equal proportions by human reticulocytes. These experiments do not support the hypothesis that each binding site of transferrin has a different physiologic function.  相似文献   

2.
Human diferric transferrin was partially labeled with 59Fe at low or neutral pH (chemically labeled) and by replacement of diferric iron previously donated to rabbit reticulocytes (biologically labeled). Reticulocyte 59 uptake experiments with chemically labeled preparations indicated that iron bound at near neutral ph was more readily incorporated by reticulocytes than iron bound at low pH. The pH-dependent iron dissociation studies of biologically labeled transferrin solutions indicated that Fe3+, bound at the site from which the metal was initially utilized by the cells, dissociated between pH 5.8 and 7.4. In contrast, lower pH (5.2–5.8) was required to effect dissociation of iron that had remained bound to the protein after incubation with reticulocytes. These findings suggest that each human transferrin iron-binding site has different acid-base iron-binding properties which could be related to the observed heterogenic rabbit reticulocyte iron-binding properties of human transferrin and identifies that the near neutral iron-donating site initially surrenders its iron to these cells.  相似文献   

3.
Light-induced interaction of Fe(II) cations with the donor side of Mn-depleted photosystem II (PS II(–Mn)) results in the binding of iron cations and blocking of the high-affinity (HAZ) Mn-binding site. The pH dependence of the blocking was measured using the diphenylcarbazide/2,6-dichlorophenolindophenol test. The curve of the pH dependence is bell-shaped with pK 1 = 5.8 and pK 2 = 8.0. The pH dependence of the O2-evolution mediated by PS II membranes is also bellshaped (pK 2 = 7.6). The pH dependence of the process of electron donation from exogenous donors in PS II(–Mn) was studied to determine the location of the alkaline pH sensitive site of the electron transport chain. The data of the study showed that the decrease in the iron cation binding efficiency at pH > 7.0 during blocking was determined by the donor side of the PS II(–Mn). Mössbauer spectroscopy revealed that incubation of PS II(–Mn) membranes in a buffer solution containing 57Fe(II) + 57Fe(III) was accompanied by binding only Fe(III) cations. The pH dependence of the nonspecific Fe(III) cation binding is also described by the same bell-shaped curve with pK 2 = 8.1. The treatment of the PS II(–Mn) membranes with the histidine modifier diethylpyrocarbonate resulted in an increase in the iron binding strength at alkaline pH. It is suggested that blocking efficiency at alkaline pH is determined by competition between OH and histidine ligand for Fe(III). Because the high-affinity Mn-binding site contains no histidine residue, this fact can be regarded as evidence that histidine is located at another (other than high-affinity) Fe(III) binding site. In other words, this means that the blockage of the high-affinity Mn-binding site is determined by at least two iron cations. We assume that inactivation of oxygen-evolving complex and inhibition of photoactivation in the alkaline pH region are also determined by competition between OH and a histidine residue involved in coordination of manganese cation outside the high-affinity site.  相似文献   

4.
14C-bicarbonate-labelled transferrin was prepared in order to study the role of bicarbonate in the cell-mediated release of iron from transferrin. 14C-bicarbonate bound to transferrin only in the presence of iron and with a ratio of bound bicarbonate to bound iron of one. The transferrin-14C-bicarbonate complex was very stable in Tris-HCl buffered at pH 7.5–9.0 even in the presence of excess non-radioactive bicarbonate. However, oxalate, citrate, and phosphate promoted a rapid exchange of transferrin-bound 14C-bicarbonate with bicarbonate present in the medium.Rabbit reticulocytes effected a temperature-dependent release of 14C-bicarbonate from transferrin at the same rate at which they incorporated 59Fe from transferrin — suggesting the existence of a coordinated mechanism in the cells for the release of both iron and bicarbonate from transferrin.  相似文献   

5.
The dependence on pH of the absorption and circular dichroic spectra of iron(III), cobalt(III) and copper(II) transferrins has been (re)investigated. In the alkaline region, the CD profiles of iron(III) and cobalt(III) transferrin are essentially pH independent up to pH 11; only for very high pH values (pH > 11) is breakdown of the cobalt(III) and iron(III) transferrin derivatives observed, without evidence of conformational rearrangements. By contrast, the CD profiles of copper transferrin show drastic changes in shape around pH 10; these spectral changes, which are fitted to a pKa of ~10.4, are interpreted in terms of a substantial rearrangement of the local environment of the copper ions at high pH. Although the CD spectra of copper transferrin at alkaline pH strictly resemble those observed upon addition of modifier anions, the mechanism of site destabilization in the two cases is different; at variance with the case of modifier anions, our results suggest that the high pH form of copper transferrin still contains the synergistic anion. A13C NMR experiment has confirmed this view. In the acidic region, iron(III) and cobalt(III) transferrins are stable down to pH ~6. For lower pH values progressive metal detachment is observed without evidence of conformational changes; around pH 4.5 most bound metals are released. In the case of the less stable copper-transferrin, metal removal from the specific binding sites is already complete around pH 6.0; in concomitance with release from the primary sites, binding of copper ions to secondary sites is observed. Additional information has been gained from CD experiments in the far UV. The pH dependent properties of iron(III), cobalt(III) and copper(II) transferrin are discussed in the frame of the present knowledge of transferrin chemistry, particular emphasis being attributed to the comparison between tripositive and bipositive metal derivatives.  相似文献   

6.
Summary Electrophoretically purified57Fe-enriched monoferric and diferric human transferrins and selectively labeled complexes ([C-56Fe,N-57Fe]transferrin and [C-57Fe,N-56Fe]transferrin) were studied by Mössbauer spectroscopy. The data were recorded at 4.2 K over a wide range of applied magnetic fields (0.05–6 T) and were analyzed by a spin-Hamiltonian formalism. Characteristic hyperfine parameters were found and the obtained zero-field splitting parameters (D=0.25±0.05 cm–1 andE/D = 0.30 ± 0.02) agree with previous electron paramagnetic resonance (EPR) findings. The weak-field spectra of the [N-57Fe]transferrin are slightly broader than those of the [C-57Fe]transferrin, indicating that the N-terminal iron site may be more heterogeneous. However, the absorption line positions and the relative intensities of the subspectra originating from the three Kramers doublets of each Fe3+ site are identical. Thus the electronic structures of the two iron sites can be described by the same set of spin- Hamiltonian parameters, indicating that the ligand environments for the two sites are the same, as suggested by the recent X-ray crystallographic studies. This suggestion is further supported by the observation that the strong-field spectra of the two monoferric transferrins are indistinguishable. The selectively labeled mixed-isotope transferrins exhibit spectra that are identical to those of the corresponding monoferric57Fe-enriched transferrins, implying that the occupation of one iron site has little or no effect on the immediate envirnoment of the other site, a finding that is not surprising since the two sites are separated by approximately 4.2 nm.  相似文献   

7.
The effect of acid pH and citrate on the exchange of iron between binding sites of rat transferrin has been studied. In the absence of citrate, diferric transferrin shows stepwise loss of iron atoms with the first atom of iron released at approximately pH 5.2. Citrate at physiologic concentrations (1 · 10?3 M) or greater allows random iron removal at pH 6.5 or less. Iron dissociation from monoferric transferrin at acid pH, with or without citrate, is a random process. At pH 7.4, randomization of iron on transferrin takes from 3 to 6 h in the presence of millimolar concentrations of citrate. We conclude that at acid pH and in the presence of citrate concentrations likely to occur in vivo in the rat there is little scrambling of iron bound to transferrin.  相似文献   

8.
The ability of superoxide anion (O2-) from stimulated human neutrophils (PMNs) to release ferrous iron (Fe2+) from transferrin was assessed. At pH 7.4, unstimulated PMNs released minimal amounts of O2- and failed to facilitate the release of Fe2+ from holosaturated transferrin. In contrast, incubation of phorbol myristate acetate (PMA)-stimulated PMNs with holosaturated transferrin at pH 7.4 enhanced the release of Fe2+ from transferrin eightfold in association with marked generation of O2-. The release of Fe2+ was inhibited by addition of superoxide dismutase (SOD), indicating that the release of Fe2+ was dependent on PMN-derived extracellular O2-. In contrast, at physiologic pH (7.4), incubation of transferrin at physiological levels of iron saturation (e.g. 32%) with unstimulated or PMA stimulated PMNs failed to facilitate the release of Fe2+. The effect of decreasing the pH on the release of Fe2+ from transferrin by PMN-derived O2- was determined. Decreasing the pH greatly facilitated the release of Fe2+ from both holosaturated transferrin and from transferrin at physiological levels of iron saturation by PMN-derived O2-. Release of Fe2+ occurred despite a decrease in the amount of extracellular O2- generated by PMNs in an acidic environment. These results suggest that transferrin at physiologic levels of iron saturation may serve as a source of Fe2+ for biological reactions in disease states where activated phagocytes are present and there is a decrease in tissue pH. The unbound iron could participate in biological reactions including promoting propagation of lipid peroxidation reactions or hydroxyl radical formation following reaction with phagocytic cell-derived hydrogen peroxide.  相似文献   

9.
The mechanism of transferrin uptake by reticulocytes was investigated using rabbit transferrin labelled with 125I and 59Fe and rabbit reticulocytes which had been treated with trypsin, Pronase or neuraminidase. Low concentrations of the proteolytic enzymes produced a small increase in transferrin and iron uptake by the cells. However, higher concentrations or incubation of the cells with the enzymes for longer periods caused a marked fall in transferrin and iron uptake. This fall was associated with a reduction in the proportion of cellular transferrin which was bound to a cell membrane component solubilized with the non-ionic detergent, Teric 12A9. The effect of trypsin and Pronase on transferrin release from the cells was investigated in the absence and in the presence of N-ethylmaleimide which inhibits the normal process of transferrin release. It was found that only a small proportion of transferrin which had been taken up by reticulocytes at 37°C but nearly all that taken up 4°C was released when the cells were subsequently incubated with trypsin plus N-ethylmaleimide, despite the fact that about 80% of the 59Fe in the cells was released in both instances. Neuraminidase produced no change in transferrin and iron uptake by the cells.These experiments provide evidence that transferrin uptake by reticulocytes requires interaction with a receptor which is protein in nature and that following uptake at 37°C, most of the transferrin is located at a site unavailable to the action of proteolytic enzymes. The results support the hypothesis that transferrin enters reticulocytes by endocytosis.  相似文献   

10.
Human diferric transferrin was partially labeled with 59Fe at low or neutral pH (chemically labeled) and by replacement of diferric iron previously donated to rabbit reticulocytes (biologically labeled). Reticulocyte 59Fe uptake experiments with chemically labeled preparations indicated that iron bound at near neutral pH was more readily incorporated by reticulocytes than iron bound at low pH. The pH-dependent iron dissociation studies of biologically labeled transferrin solutions indicated that Fe3+, bound at the site from which the metal was initially utilized by the cells, dissociated between pH 5.8 and 7.4. In contrast, lower pH (5.2--5.8) was required to effect dissociation of iron that has remained bound to the protein after incubation with reticulocytes. These findings suggest that each human transferrin iron-binding site has different acid-base iron-binding properties which could be related to the observed heterogenic rabbit reticulocyte iron-donating properties of human transferrin and identifies that the near neutral iron-binding site initially surrenders its iron to these cells.  相似文献   

11.
12.
A previous study of nitrite reduction by Paracoccus pantotrophus cytochrome cd1 at pH 7.0 identified early reaction intermediates. The c-heme rapidly oxidised and nitrite was reduced to NO at the d1-heme. A slower equilibration of electrons followed, forming a stable complex assigned as 55% cFe(III)d1Fe(II)-NO and 45% cFe(II)d1Fe(II)-NO+. No catalytically competent NO release was observed. Here we show that at pH 6.0, a significant proportion of the enzyme undergoes turnover and releases NO. An early intermediate, which was previously overlooked, is also identified; enzyme immediately following product release is a candidate. However, even at pH 6.0 a considerable fraction of the enzyme remains bound to NO so another component is required for full product release. The kinetically stable product formed at the end of the reaction differs significantly at pH 6.0 and 7.0, as does its rate of formation; thus the reaction is critically dependent on pH.  相似文献   

13.
The effects of endotoxin or testosterone on the amount of transferrin 59Fe (or like protein) in the murine macrophages was investigated. The mouse peritoneal macrophages were laden with 59Fe tagged red cells following the injection of mice with either agent. After harvesting the cells, they were lysed and the transferrin iron was released with 40% trichloroacetic acid. The supernatant (extract transferrin iron) and the pellet (other iron proteins iron) were separated by centrifugation and their radioactivities counted. The results were expressed in percentage. The endotoxin group had a geometric mean of transferrin 59Fe of 0.14% compared to 0.28% for the control, p < 0.001. The geometric mean for transferrin 59Fe of the testosterone treated group was 0.51% compared to 0.35% for the control, p < 0.05. Therefore, the endotoxin seems to contract the transferrin pool whereas testosterone seems to expand it.  相似文献   

14.
We have examined whether reticulocytes depleted of transferrin might incorporate 59Fe from 59Fe-labelled pyridoxan isonicotinoyl hydrazone (PIH). Transferrin-depleted reticulocytes showed a time-, temperature- and concentration-dependent incorporation of 59Fe when incubated with 20–200 μM 59Fe-PIH. The amount of 59Fe incorporated with 200 μM 59Fe-PIH is equal to or higher than that taken up from transferrin at 20 μM 59Fe concentration. After 60 min about 60% of the 59Fe taken up by the cells is recovered in heme while the remainder is probably still bound to PIH. 1 mM succinyl acetone (a specific inhibitor of heme synthesis) inhibits PIH-mediated incorporation of 59Fe into heme by about 79% indicating that 59Fe from 59Fe-PIH is incorporated into de novo synthesized protoporphyrin. As is the case with transferrin, erythrocytes do not incorporate 59Fe from 59Fe-PIH. Pretreatment of reticulocytes with pronase does not inhibit their ability to incorporate 59Fe from 59Fe-PIH, suggesting that, unlike the uptake of Fe from transferrin, membrane receptors are not involved in the uptake of Fe-PIH by the cells.  相似文献   

15.
Lakes formed because of coal mining are characterized by low pH and high concentrations of Fe(II) and sulfate. The anoxic sediment is often separated into an upper acidic zone (pH 3; zone I) with large amounts of reactive iron and a deeper slightly acidic zone (pH 5.5; zone III) with smaller amounts of iron. In this study, the impact of pH on the Fe(III)-reducing activities in both of these sediment zones was investigated, and molecular analyses that elucidated the sediment microbial diversity were performed. Fe(II) was formed in zone I and III sediment microcosms at rates that were approximately 710 and 895 nmol cm−3 day−1, respectively. A shift to pH 5.3 conditions increased Fe(II) formation in zone I by a factor of 2. A shift to pH 3 conditions inhibited Fe(II) formation in zone III. Clone libraries revealed that the majority of the clones from both zones (approximately 44%) belonged to the Acidobacteria phylum. Since moderately acidophilic Acidobacteria species have the ability to oxidize Fe(II) and since Acidobacterium capsulatum reduced Fe oxides at pHs ranging from 2 to 5, this group appeared to be involved in the cycling of iron. PCR products specific for species related to Acidiphilium revealed that there were higher numbers of phylotypes related to cultured Acidiphilium or Acidisphaera species in zone III than in zone I. From the PCR products obtained for bioleaching-associated bacteria, only one phylotype with a level of similarity to Acidithiobacillus ferrooxidans of 99% was obtained. Using primer sets specific for Geobacteraceae, PCR products were obtained in higher DNA dilutions from zone III than from zone I. Phylogenetic analysis of clone libraries obtained from Fe(III)-reducing enrichment cultures grown at pH 5.5 revealed that the majority of clones were closely related to members of the Betaproteobacteria, primarily species of Thiomonas. Our results demonstrated that the upper acidic sediment was inhabited by acidophiles or moderate acidophiles which can also reduce Fe(III) under slightly acidic conditions. The majority of Fe(III) reducers inhabiting the slightly acidic sediment had only minor capacities to be active under acidic conditions.  相似文献   

16.
The hypothesis is tested that pH-dependent Fe and P uptake influence the preference of epiphytic and saxicolous lichens for certain ranges of ambient pH. Five species from acidic substrata (Hypogymnia physodes, Parmeliopsis ambigua, and Platismatia glauca) or covering the range from weakly acidic to alkaline substrata (Lecanora muralis and Phaeophyscia orbicularis) were exposed to solutions of FeCl2, FeCl3, or KH2PO4 at pH 3 and 8 in the laboratory. Avoidance of alkaline substrata is explainable by low Fe3+ uptake at pH 8 in the case of H. physodes and the inability for net P uptake and membrane damage in P. ambigua at this pH. Preference for acidic substrata in Pl. glauca, however, is neither related to Fe nor P uptake. Efficient Fe3+ and P uptake at pH 8 explains the tolerance of L. muralis and Ph. orbicularis to alkaline conditions. Intracellular accumulation of Fe2+ in probably toxic amounts at pH 3 in Ph. orbicularis is correlated with the absence of this lichen from strongly acidic substrata. Avoidance of acidic sites by L. muralis is not attributable to Fe or P uptake. In summary, the results suggest that pH-dependent Fe and P uptake characteristics are involved in the determination of pH preferences of epiphytic and saxicolous lichens, but are not the only relevant factor.  相似文献   

17.
59Fe- and 125I-labelled transferrin-labelled rabbit reticulocyte ghosts were incubated at 37°C for 60 min with unlabelled reticulocyte and erythrocyte stroma-free haemolysates, and the ability of these haemolysates to release 59Fe- and 125I-labelled transferrin was investigated. Reticulocyte and erythrocyte haemolysates were equally effective in releasing 59Fe from the ghosts, but only the reticulocyte haemolysate was able to release 125I-labelled transferrin. The elution profiles of the post-incubation haemolysates upon AcA 44 gel filtration were similar. The 59Fe appeared as five separate peaks and the 125I-labelled transferrin appeared as a single, unbound peak. In the post-incubation reticulocyte haemolysate, 25% of the 59Fe was bound to ferritin and transferrin, and 69% was associated with the haemoglobin fraction; 52.8% of the 59Fe was present as haem-59Fe intimately associated with haemoglobin. Another 12.5% of the 59Fe was loosely bound to proteins in the haemoglobin fraction. The haem-59Fe released to the haemoglobin fraction was derived from preformed haem in the reticulocyte ghost. 59Fe release was not impaired in experiments in which haem and protein synthesis were inhibited with isonicotinic acid hydrazide and cycloheximide. When tested alone, the haemoglobin fraction was able to release 59Fe from the ghosts to an even greater degree than reticulocyte haemolysate. It is concluded that protein in the haemoglobin fraction function as heme carriers.Less than 6% of the 59Fe released by reticulocyte haemolysate was associated with a low molecular size protein fraction. Removal of this fraction from the unlabelled haemolysate by ultrafiltration did not impair the 59Fe-releasing capacity of the haemolysate. However, both this fraction and the ferritin fraction were able to bind some 59Fe from the ghosts. Ferrous and ferric chelators, as well as defatted bovine serum albumin, were also able to bind 59Fe from the ghosts, but not to the same degree as the haemolysates.The release of 125I-labelled transferrin from the ghosts by the reticulocyte haemolysate was affected by stimulatory and inhibitory factors. The stimulatory factor(s) was present in the non-haemoglobin components of the haemoglobin fraction. The inhibitory effect was dependent on the low molecular weight fraction.  相似文献   

18.
Little is known about factors effecting plant growth at high pH, with research often limited by the inability to separate nutritional deficiencies and HCO 3 toxicity from the direct limitations imposed under high pH conditions. Various methods of controlling dilute nutrient solutions for studies at high pH were investigated. For short-term studies, it was found that a solution without Cu, Fe, Mn and Zn and aerated with CO2 depleted air, greatly reduced nutrient precipitation at high pH, thus eliminating nutritional differences between treatments. Manual pH adjustment and the use of ion exchange resins as pH buffers were unsuitable methods of pH control. However, pH control by automated titration had little effect on solution composition while maintaining constant pH. The system described is suitable for studies in which the pH of the bulk nutrient solution must be maintained. The system was used to examine OH toxicity in mungbeans (Vigna radiata (L.) Wilczek cv. Emerald), with root length reduced at a bulk solution pH of 8.5 and greater.  相似文献   

19.
Mechanism of transferrin iron uptake by rat reticulocytes was studied using 59Fe- and 125I-labelled rat transferrin. Whereas more than 80% of the reticulocyte-bound 59Fe was located in the cytoplasmic fraction, only 25–30% of 125I-labelled transferrin was found inside the cells. As shown by the presence of acetylcholine esterase, 10–15% of the cytoplasmic 125I-labelled transferrin might have been derived from the contamination of this fraction by the plasma membrane fragments. Electron microscopic autoradiography indicated 26% of the cell-bound 125I-labelled transferrin to be inside the reticulocytes. Both the electron microscopic and biochemical studies showed that the rat reticulocytes endocytosed their plasma membrane independently of transferrin. Sepharose-linked transferrin was found to be capable of delivering 59Fe to the reticulocytes. Our results suggest that penetration of the cell membrane by transferrin is not necessary for the delivery of iron and that, although it might make a contribution to the cellular iron uptake, internalization of transferrin reflects endocytotic activity of the reticulocyte cell membrane.  相似文献   

20.
pH Changes Associated with Iron-Stress Response   总被引:3,自引:0,他引:3  
When Fe-inefficient T3238fer and Fe-efficient T3238FER tomatoes were supplied iron, and nitrogen as nitrate, they increased the pH of the nutrient culture. When they were supplied nitrogen as ammonium, they decreased the pH. When Fe supply was limited, Fe-stress response developed in T3238FER that opposed the usual nitrate response and decreased, rather than increased, the pH. A “reductant” which reduced Fe3+ to Fe2+ was released from the roots of these plants and lowered the pH; and there was a tremendous increase in the uptake of Fe. T3238fer did not produce “reductant” in response to Fe-stress; the pH increased, and the plants developed Fe-deficiency when nitrogen was supplied as nitrate. Nitrogen nutrition and iron-stress response are important factors associated with iron chlorosis in plants. Release of hydrogen ions from roots of Fe-stressed plants is caused by more than response to imbalanced uptake of cations and anions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号