首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There is considerable evidence suggesting that compartmentalized functional pools of cholesterol in the liver contribute differently to the formation of bile acids as the precursor. The present paper deals with the incorporation of [1-14C]acetate and of [1,2-3H]cholesterol carried on lipoproteins (LDL and HDL) into biliary bile acids in perfused rat livers and bile-fistula rats. The results showed that endogenous cholesterol synthesized newly from [1-14C]acetate in the liver was incorporated into both cholic acid and chenodeoxycholic acid in a similar way, while exogenous lipoprotein-[1,2-3H]cholesterol delivered to hepatocytes from hepatic circulation was incorporated into chenodeoxycholic acid at a higher rate.  相似文献   

2.
Estrogen mercapturic acids in the adult male rat   总被引:1,自引:0,他引:1  
J S Elce  J Chandra 《Steroids》1973,22(5):699-705
N-Acetylcysteine derivatives of catechol estrogens have been isolated from the urine of adult male hooded rats with ligated bile ducts, following injection of [4-14C]2-hydroxyestradiol-17β and of [4-14C]estradiol-17β-By application of double isotope methods previously described, it was shown that 2-hydroxyestradiol-17β was converted into mercapturic acids in a yield of 6–8%, confirming two previous experiments with bile duct cannulated rats, and that estradiol-17β was converted into mercapturic acids to the extent of 3–6%. Since these figures are small, and since it has been shown that in two women estrogen mercapturic acids were not formed, it appears that this class of compound will not provide an answer to the problem of unidentified water-soluble metabolites of the estrogens.  相似文献   

3.
Treatment of rats with 6-aminonicotinamide showed a small but significant decrease in the labeling of amino acids in the brain after injection of [3H]acetate. The results of these experiments also gave evidence of the presence of [3H]glucose and [3H]lactate, and an increase in [3H]glucose content in the brain of 6-aminonicotinamide treated rats. To apportion the contribution of [3H]glucose formed by gluconeogenesis from [3H]acetate to the labeling of amino acids a method was formulated based on the measurement of radioactivity of amino acids, lactate and free sugars in brain after injection of [6-3H]glucose or [1-3H]glucose relative to that after co-injection of [U-14C]glucose or [2-14C]glucose. In contrast to the expected formation of [1, 6-3H]glucose by gluconeogenesis from [3H]acetate,3H-labeled glucose isolated from brain, blood and liver showed the presence of [6-3H]glucose only. The values corrected for the presence of [6-3H]glucose showed that treatment with 6-aminonicotinamide had no effect on the labeling of amino acids by oxidation of [3H]acetate. These findings indicated that a significant decrease in the labeling of amino acids from [U-14C]glucose reported previously and again confirmed using [1-3H], [6-3H], [2-14C] or [U-14C]glucose in the present investigation was not due to the inhibition of the activities of enzymes of the citric acid cycle. These results support the postulated role of the hexosemonophosphate shunt for the utilization of glucose in providing neurotransmitter amino acids glutamate and -aminobutyrate.Dedicated to Professor K. A. C. Elliott on his 80th birthday.  相似文献   

4.
This study focuses on the activity of the pentose-phosphate pathway and its relationship to de novo synthesis of fatty acids and cholesterol in oligodendrocyte-enriched glial cell cultures derived from 1-week old rat brain. The proportion of glucose that was metabolized along the pentose-phosphate pathway was estimated by measuring 14CO2 production from [1-14C]-, [2-14C]- and [6-14C]glucose, the utilization of glucose and the production of lactate. Incorporation of 14C from [14C]glucose and from [3-14C]acetoacetate into lipids was analysed. The pentose- phosphate pathway produced much more CO2 from glucose than the Krebs cycle, although it accounted for only a small part of the consumption of glucose (< 3%). The higher 14CO2 production from [2-14C]glucose than from [6-14C]glucose indicated that recycling of the products of the pentose-phosphate pathway takes place in these cells.Gradual inhibition of the pathway with increasing concentrations of 6-aminonicotinamide resulted in a parallel inhibition of the conversion of acetoacetate and of glucose into fatty acids and into cholesterol. Glycolysis was also strongly inhibited in the presence of 6-aminonicotinamide whereas the activity of the Krebs cycle was not affected.These results suggest that de novo synthesis of fatty acids and cholesterol by oligodendrocytes of neonatal rats is closely geared to the activity of the pentose-phosphate pathway in these cells.  相似文献   

5.
We have investigated the glycine, serine and leucine metabolism in slices of various rat brain regions of 14-day-old or adult rats, using [1-14C]glycine, [2-14C]glycine, L-[3-14C]serine and L-[U-14C]leucine. We showed that the [1-14C]glycine oxidation to CO2 in all regions studied occurs almost exclusively through its cleavage system (GCS) in brains of both 14-day-old and adults rats. In 14-day-old rats, the highest oxidation of [1-14C]glycine was in cerebellum and the lowest in medulla oblongata. In these animals, the L-[U-14C]leucine oxidation was lower than the [1-14C]glycine oxidation, except in medulla oblongata where both oxidations were the same. Serine was the amino acid that showed lowest oxidation to CO2 in all structure studied. In adult rats brains, the highest oxidation of [1-14C]glycine was in cerebral cortex and the lowest in medulla oblongata. We have not seen difference in the lipid synthesis from both glycine labeled, neither in 14-day-old rats nor in adult ones, indicating that the lipids formed from glycine were not neutral. Lipid synthesis from serine was significantly high than lipid synthesis and from all other amino acids studied in all studied structures. Protein synthesis from L-[U-14C]leucine was significantly higher than that from glycine in all regions and ages studied.  相似文献   

6.
Abstract— D-β-hydroxybutyrate (β-OHB) was compared to glucose as a precursor for brain amino acids during rat development. In the first study [3-14C]β-OHB or [2-14C]glucose was injected subcu-taneously (01 μCi/g body wt) into suckling rats shortly after birth and at 6. 11, 13, 15 and 21 days of age. Blood and brain tissue were obtained 20 min later after decapitation. The specific activity of the labelled precursor in the blood and in the brain tissue was essentially the same for each respective age suggesting that the labelled precursor had equilibrated between the blood and brain pools before decapitation. [3-14C]β-OHB rapidly labelled brain amino acids at all ages whereas [2-14C]glucose did not prior to 15 days of age. These observations are consistent with a maturational delay in the flux of metabolites through glycolysis and into the tricarboxylic acid cycle. Brain glutamate, glutamine, asparate and GABA were more heavily labelled by [3-14C]β-OHB from birth-15 days of age whereas brain alanine was more heavily labelled by [2-14C]glucose at all ages of development. The relative specific activity of brain glutamine/glutamate was less than one at all ages for both labelled precursors suggesting that β-OHB and glucose are entering the‘large’glutamate compartment throughout development. In a second study, 6 and 15 day old rats were decapitated at 5 min intervals after injection of the labelled precursors to evaluate the flux of the [14C]label into brain metabolites. At 6 days of age, most of the brain acid soluble radioactivity was recovered in the glucose fraction of the [2-,4C]glucose injected rats with 72, 74, 65 and 63% after 5, 10, 15 and 20 min. In contrast, the 6 day old rats injected with [3-14C]β-OHB accumulated much of the brain acid soluble radioactivity in the amino acid fraction with 22, 47, 57 and 54% after 5, 10, 15 and 20 min. At 15 days of age the transfer of the [14C]label from [2-14C]glucose into the brain amino acid fraction was more rapid with 29, 40, 45, 61 and 73% of the brain acid soluble radioactivity recovered in the amino acid fraction after 5, 10, 15, 20 and 30 min. There was almost quantitative transfer of [14C]label into the brain amino acids of the 15-day-old [3-14C]β-OHB injected rats with 66, 89, 89, 89 and 90% of the brain acid soluble radioactivity recovered in the amino acid fraction after 5, 10, 15, 20 and 30 min. The calculated half life for /?-OHB at 6 days was 19 8 min and at 15 days was 12-2 min. Surprisingly, the relative specific activity of brain GABA/glutamate was lower at 15 days of age in the [3-14C]β-OHB injected rats compared to the [2-14C]glucose injected rats despite a heavier labelling of brain glutamate in the [3-14C]β-OHB injected group. We interpreted these data to mean that β-OHB is a less effective precursor for the brain glutamate ‘subcompartment’ which is involved in the synthesis of GABA.  相似文献   

7.
[7β-3H]-(24R and 24S)-27-nor-24-methyl-3α,7α-dihydroxy-5β-cholestan-26-oic acids and [7β-3H]-27-nor-3α,7α-dihydroxy-5β-cholestan-26-oic acid (C27 and C26 bile acids having the same nuclear configuration as cheno-deoxycholic acid and its precursor, 3α,7α-dihydroxy-5β-cholestan-26-oic-acid) were synthesized and administered intraperitoneally to bile fistula guinea pigs. The biliary bile acids formed were hydrolyzed and analyzed by thin layer chromatography, and the metabolites were identified by the inverse isotope dilution method. The results showed that both (24R and 24S)-27-nor-24-methyl-3α,7α-dihydroxy-5β-cholestan-26-oic acids were not metabolized by the liver and were excreted unchanged as their taurine and glycine conjugates whereas 27-nor-3α,7α-dihydroxy-5β-cholestan-26-oic acid was converted to chenodeoxycholic acid.  相似文献   

8.
[1-13C, 1,1-2H2] ethanol and [2,2,2-2H3] ethanol were administered to bile fistula rats. A new technique, 2H, 1H-decoupled 13C nuclear magnetic resonance, was used in attempting to account for the distribution of the isotopic species along the steroid skeleton of 3–45 mg of isolated bile acids. The technique revealed 2H incorporation at many carbon sites unambiguously, but has limitations as a quantitative 2H assay at these levels of sample availability.  相似文献   

9.
To clarify the unique characteristics of amino acid metabolism derived from glucose in the central nervous system (CNS), we injected [1-13C]glucose intraperitoneally to the rat, and extracted the free amino acids from several kinds of tissues and measured the amount of incorporation of13C derived from [1-13C]glucose into each amino acid using13C-magnetic resonance spectroscopy (NMR). In the adult rat brain, the intensities of resonances from13C-amino acids were observed in the following order: glutamate, glutamine, aspartate, -aminobutyrate (GABA) and alanine. There seemed no regional difference on this labeling pattern in the brain. However, only in the striatum and thalamus, the intensities of resonances from [2-13C]GABA were larger than that from [2,3-13C]aspartate. In the other tissues, such as heart, kidney, liver, spleen, muscle, lung and small intestine, the resonances from GABA were not detected and every intensity of resonances from13C-amino acids, except13C-alanine, was much smaller than those in the brain and spinal cord. In the serum,13C-amino acid was not detected at all. When the rats were decapitated, in the brain, the resonances from [1-13C]glucose greatly reduced and the intensities of resonances from [3-13C]lactate, [3-13C]alanine, [2, 3, 4-13C]GABA and [2-13C]glutamine became larger as compared with those in the case that the rats were sacrificed with microwave. In other tissues, the resonances from [1-13C]glucose were clearly detected even after the decapitation. In the glioma induced by nitrosoethylurea in the spinal cord, the large resonances from glutamine and alanine were observed; however, the intensities of resonances from glutamate were considerably reduced and the resonances from GABA and aspartate were not detected. These results show that the pattern of13C label incorporation into amino acids is unique in the central nervous tissues and also suggest that the metabolic compartmentalization could exist in the CNS through the metabolic trafficking between neurons and astroglia.Abbreviations NMR nuclear magnetic resonance - GABA -aminobutyrate - GFAP glial fibrillary acidic protein Special issue dedicated to Dr. Bernard W. Agranoff.  相似文献   

10.
87.9% of a given dose of [3H]Norethisterone ([3H]N) and 76.7% of [3H]Ethinyloestradiol ([3H]EE2) were excreted in the bile of male heterozygous Gunn rats in 2 hours Similarly, 86.9% of a given dose [3H]N and 84.0% of [3H]EE2 were excreted in the bile of male homozygous Gunn rats in 2 hours. In both heterozygous and homozygous rats glucuronide conjugates were present. Despite the lesion in UDP-glucuronyltransferase, the homozygous rats is able to conjugate the synthetic steroids apparently normally.  相似文献   

11.
1. The nucleic acid metabolism in the pyridoxine-deficient rat has been investigated through studies on the incorporation of radioactivity from various isotopically labelled compounds into liver and spleen DNA and RNA. 2. In pyridoxine deficiency, the incorporation of radioactivity from sodium [14C]formate was apparently increased. The magnitude of this effect on incorporation into liver RNA and DNA and spleen RNA was approximately the same. The incorporation into spleen DNA was enhanced to a much greater degree. Administration of pyridoxine 24hr. before the rats were killed reversed the changes in incorporation of radioactivity from [14C]formate. 3. In pyridoxine deficiency, the incorporation of radioactivity from dl-[3-14C]serine, [8-14C]adenine, [Me-3H]thymidine and [2-14C]deoxyuridine was decreased. The incorporation of radioactivity from l-[Me-14C]methionine was not affected. No noteworthy differences in the effect of pyridoxine deficiency on the incorporation of radioactivity from dl-[3-14C]serine into DNA and RNA were observed, whereas the effect of the deficiency on the incorporation of radioactivity from [8-14C]adenine into spleen DNA was somewhat greater than that into spleen RNA. Administration of pyridoxine 24hr. before the rats were killed reversed the changes in incorporation of radioactivity from [3-14C]serine and [8-14C]adenine. 4. The adverse effects of pyridoxine deficiency on the biosynthesis of nucleic acids and cell multiplication are discussed in relation to the role of pyridoxal phosphate in the production of C1 units via the serine-hydroxymethylase reaction.  相似文献   

12.
The metabolism of oligodendrocytes has been studied using cultures of oligodendrocyte-enriched glial cells isolated from cerebra of 5–8-day old rats. Cultures containing 60–80% oligodendrocytes were incubated for 16h with [3-14C]acetoacetate, d-[3-14C]3-hydroxybutyrate, [U-14C]glucose, l-[U-14C]glutamine and [1-14C]pyruvate or [2-14C]pyruvate in the presence or absence of other oxidizable substrates. Labelled CO2 was collected as an index of oxidative metabolism and the incorporation of label into total lipids, fatty acids and cholesterol was used as an index of the de novo synthesis of lipids. Glucose, acetoacetate, D-3-hydroxybutyrate, pyruvate and l-lactate were measured to determine substrate utilization and product formation under various conditions. Our results indicate that glucose is rapidly converted to lactate and is a relatively poor substrate for oxidative metabolism and lipid synthesis. Ketone bodies were used as an energy source and as precursors for the synthesis of fatty acids and cholesterol. Preferential incorporation of acetoacetate into cholesterol was not observed. Exogenous pyruvate was incorporated into both the glycerol skeleton of complex lipids and into cholesterol and fatty acids. l-Glutamine appeared to be an important substrate for the energy metabolism of these cells.  相似文献   

13.
Uptake of Tween-fatty acid esters and incorporation of the fatty acids into lipids by soybean (Glycine max [L.] Merr.) suspension cultures was investigated, together with subsequent turnover of the incorporated fatty acids and associated changes in endogenous fatty acid synthesis. Tween uptake was saturable, and fatty acids were rapidly transferred from Tweens to all acylated lipids. Patterns of incorporation into glycerolipids were similar in cells treated with Tweens carrying [1-14C]-fatty acids and in cells treated with [1-14C]acetate, indicating that exogenous fatty acids were used for glycerolipid synthesis essentially as if they had been made by the cell. In Tween-treated cells neutral lipids (which include Tweens) initially accounted for the majority of lipid radioactivity. Radioactivity was then rapidly transferred to glycerolipids. A transient pool of free fatty acids accounting for up to 10% of lipid radioactivity was observed. This was consistent with the hypothesis that fatty acids are transferred from Tweens to lipids by deacylation of the Tweens, creating a pool of free fatty acids which are then used for lipid synthesis. Sterols were only slightly labeled in cells treated with Tweens, but accounted for nearly 50% of lipid radioactivity in cells treated with acetate. This suggested very little degradation and reutilization of the radioactive fatty acids in cells treated with Tweens. In cells treated with either [1-14C]acetate or Tween-[1-14C]-18:1, 70% of the initial fatty acid radioactivity remained in fatty acids after a 100 hour chase. By contrast, fatty acids not normally present disappeared more rapidly, suggesting differential treatment of such fatty acids compared with those normally present. Cells which had incorporated large amounts of exogenous fatty acids altered fatty acid synthesis in three distinct ways: (a) amounts of [1-14C]acetate incorporated into fatty acids were reduced; (b) cells incorporating exogenous unsaturated fatty acids increased the proportion of [1-14C]acetate partitioned into saturated fatty acids, while the converse was true of cells which had incorporated exogenous saturated fatty acids; (c) desaturation of 18:1 to 18:2 and 18:3 was reduced in cells which had incorporated unsaturated fatty acids. These results suggest that Tween-fatty acid esters will be useful for supplying fatty acids to cells for a variety of studies related to fatty acid or membrane metabolism.  相似文献   

14.
1. The biliary excretion of [14C]trimophonium iodide [tri[14C]methyl(3-hydroxyphenyl)ammonium iodide] was studied in normal Wistar animals and in jaundiced homozygous Gunn rats. 2. In normal Wistar rats small amounts of radioactivity (approx. 3% of the dose in 4h) were excreted in bile as two glucuronide conjugates, i.e. [14C]trimophonium glucuronide [tri[14C]methyl-(3-oxyphenyl)ammonium glucuronide] (85%) and 3-di[14C]methylaminophenyl glucuronide (10–15%). Only minor amounts of the unchanged drug were detected in bile. 3. In the homozygous jaundiced Gunn rat large amounts of radioactivity (26% of the dose in 4h) were eliminated in bile as [14C]trimophonium glucuronide alone. The quantitative excretion of this metabolite in Gunn rat bile was about ten times that in normal animals. 4. It is proposed that the biochemical lesion in the homozygous Gunn rat may indirectly affect the biliary transport of exogenous glucuronides across the canalicular membrane.  相似文献   

15.
Abnormal myo-[2-3H]inositol incorporation into phosphatidylinositol has been found in phentolamine-treated synaptosomes that were isolated from the cerebral hemispheres of galactose toxic rats and incubated with [33P]Pi and myo-[2-3H] inositol. In galactose toxic rats phentolamine-stimulated myo-[2-3H]inositol labeling of phosphatidylinositol was 70% greater than in normal animals. This enhanced labeling of synaptosomal phosphatidylinositol in galactose toxic rats during stimulation with phentolamine is in marked contrast to the depressed myo-inositol labeling of phosphatidylinositol reported with acetylcholine stimulation.  相似文献   

16.
The effects of phenylpyruvate and hyperphenylalaninemia on the incorporation of [6-3H]glucose into lipids, proteins and nucleic acids were examined in differentiating and adult rat brain. Foetal brain was most sensitive to inhibition by phenylpyruvate in vitro, with significant effects occurring at 2·5 mM for labelling of lipids and proteins and at 5 mM for labelling RNA and DNA. Older age groups were less affected, and cortical slices from adult brain were slightly or not at all affected by phenylpyruvate. The inhibition by phenylpyruvate of incorporation of [6-3H]glucose into nucleic acids, proteins, and lipids could be further distinguished by the reversibility of the effect on nucleic acid and protein synthesis at high levels of glucose and the irreversibility of the effect on lipid synthesis. Lipid synthesis was most sensitive to inhibition by phenylpyruvate at the stage of fatty acid synthesis, with lesser effect on the formation of glyceride glycerol. Exposure in utero of the foetal brain to maternal hyperphenylalaninemia resulted in reduction of 26–38 per cent in the subsequent incorporation in vitro of [6-3H]glucose into lipids, proteins, RNA and DNA of brain slices from foetal animals. Feeding hyperphenylalaninemic pregnant rats a high-glucose diet significantly protected the foetal brain from the neurotoxicity accompanying the hyperphenylalanemia.  相似文献   

17.
Rat liver slices were incubated with specifically 3H-labeled glucoses and [2-3H]sorbitol, and the incorporations of 3H into fatty acids and cholesterol were determined. Incorporation of 3H from [1-3H]glucose relative to that from [3-3H]glucose via NADPH formed in the pentose cycle was similar into fatty acids and cholesterol. This indicates (1) the presence of a common pool of NADPH formed via the pentose cycle, from which is derived the reductive hydrogens for fatty acid and cholesterol synthesis; (2) the absence of a major separate pool of NADPH formed from glucose by microsomal glucose dehydrogenase (EC 1.1.1.47) catalysis for use in cholesterol synthesis. 3H from [4-3H]glucose and from [2-3H]sorbitol was incorporated into cholesterol more than into fatty acids relative to the incorporations of 3H from [3-3H]glucose. Assuming that the 3H from [4-3H]glucose and from [2-3H]sorbitol were incorporated via the conversion, catalyzed by malic enzyme, of NADH to NADPH, this indicates the Compartmentation of the NADPH formed via malic enzyme catalysis from that formed via the pentose cycle. Alternatively, NADH provides reductive hydrogens for cholesterol synthesis in greater measure than in fatty acid formation or the stereochemistry of the synthetic processes are such that [A-3H]NADPH has greater excess than [B-3H]NADPH to cholesterol synthesis relative to fatty acid synthesis.  相似文献   

18.
The effects of glucose (10 mm), glycerol (3 mm), and lactate/pyruvate (10 mm) on the incorporation of 3H from 3H2O into fatty acids were studied in isolated hepatocytes prepared from chow-fed female rats. Lactate/pyruvate markedly increased lipogenic rates, while glucose and glycerol did not significantly affect rates of lipogenesis. In cells incubated with lactate/pyruvate plus glycerol, the increase in 3H incorporation was greater than observed with lactate/pyruvate alone. In hepatocytes isolated from 24-h starved rats, lactate/pyruvate again increased de novo fatty acid synthesis to a greater extent than either glucose or glycerol. Glycerol significantly increased lipogenesis compared to the endogenous rates and when incubated with lactate/pyruvate produced an increase above lactate/pyruvate alone. (?)-Hydroxycitrate, a potent inhibitor of ATP-citrate lyase (EC 4.1.3.8), and agaric acid, an inhibitor of tricarboxylate anion translocation, were studied in hepatocytes to determine their effects on lipogenesis by measuring 3H2O, [1-14C]acetate, and [2-14C]lactate incorporation into fatty acids. 3H incorporation into fatty acids was markedly inhibited by both inhibitors with agaric acid (60 μm) producing the greater inhibition. (?)-Hydroxycitrate (2 mm) increased acetate incorporation into fatty acids from [1-14C]acetate and agaric acid produced a strong inhibitory effect. Combined effects of (?)-hydroxycitrate and agaric acid on lipogenesis from [1-14C]acetate showed an inhibitory response to a lesser extent than with agaric acid alone. With substrate concentrations of acetate present, there was no significant increase in rates of lipogenesis from [1-14C]acetate and the increase previously observed with (?)-hydroxycitrate alone was minimized. Agaric acid significantly inhibited fatty acid synthesis from acetate in the presence of exogenous substrate, but the effect was decreased in comparison to rates with only endogenous substrate present. With [2-14C]lactate as the lipogenic precursor, agaric acid and (?)-hydroxycitrate strongly inhibited fatty acid synthesis. However, agaric acid despite its lower concentration (60 μm vs 2 mm) was twice as effective as (?)-hydroxycitrate. A similar pattern was observed when substrate concentrations of lactate/pyruvate (10 mm) were added to the incubations. When (?)-hydroxycitrate and agaric acid were simultaneously incubated in the presence of endogenous substrate, there was an additive effect of the inhibitors on decreasing fatty acid synthesis. Results are discussed in relation to the origin of substrate for hepatic lipogenesis and whether specific metabolites increase lipogenic rates.  相似文献   

19.
The incorporation of polar and non-polar moieties into cerebral cortex (CC) and cerebellum (CRBL) phospholipids of adult (3.5-month-old) and aged (21.5-month-old) rats was studied in a minced tissue suspension. The biosynthesis of acidic phospholipids through [3H]glycerol appears to be slightly increased with respect to that of zwitterionic or neutral lipids in CC of aged rats with respect to adult rats. On the contrary, the synthesis of phosphatidylcholine (PC) from [3H]choline was inhibited. However, the incorporation of [14C]serine into phosphatidylserine (PS) was higher in CC and CRBL in aged rats with respect to adult rats. The synthesis of phosphatidylethanolamine (PE) from PS was not modified during aging. Saturated ([3H]palmitic) and polyunsaturated ([3H]arachidonic) acids were incorporated successfully by adult and aged brain lipids. In addition [3H]palmitic, [3H]oleic and [3H]arachidonic acid were employed as glycerolipid precursors in brain homogenate from aged (28.5 month old) and adult (3.5 month old) rats. [3H]oleic acid incorporation into neutral lipids (NL) and [3H]arachidonic acid incorporation into PC, PE and phosphatidylinositol (PI) were increased in aged rats with respect to adult rats. Present results show the ability and avidity of aged brain tissue in vitro to incorporate unsaturated fatty acids when they are supplied exogenously. They also suggest a different handling of choline and serine by base exchange enzyme activities to synthesize PC and PS during aging.  相似文献   

20.
In pancreatic islets prepared from either normal or GK rats and incubated at either low (2.8 mM) or high (16.7 mM) D-glucose concentration, the labelling of both lipids and their glycerol moiety is higher in the presence of D-[1-14C]glucose than D-[6-14C]glucose. The rise in D-glucose concentration augments the labelling of lipids, the paired 14C/3H ratio found in islets exposed to both D-[1-14C]glucose or D-[6-14C]glucose and D-[3-3H]glucose being even slightly higher at 16.7 mM D-glucose than that found, under otherwise identical conditions, at 2.8 mM D-glucose. Such a paired ratio exceeds unity in islets exposed to D-[1-14C]glucose. The labelling of islet lipids by D-[6-14C]glucose is about 30 times lower than the generation of acidic metabolites from the same tracer. These findings indicate (i) that the labelling of islet lipids accounts for only a minor fraction of D-glucose catabolism in pancreatic islets, (ii) a greater escape to L-glycerol-3-phosphate of glycerone-3-phosphate generated from the C1-C2-C3 moiety of D-glucose than D-glyceraldehyde-3-phosphate produced from the C4-C5-C6 moiety of the hexose, (iii) that only a limited amount of [3-3H]glycerone 3-phosphate generated from D-[3-3H]glucose is detritiated at the triose phosphate isomerase level before being converted to L-glycerol-3-phosphate, and (iv) that a rise in D-glucose concentration results in an increased labelling of islet lipids, this phenomenon being somewhat more pronounced in the case of D-[1-14C]glucose or D-[6-14C]glucose rather than D-[3-3H]glucose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号