首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. A preparation of mitochondrial outer membranes from rat liver can be shown to contain two kinetically distinct monoamine oxidase activities. These activities are distinguishable by their different sensitivities to the irreversible inhibitor clorgyline, and by the effect of the reversible inhibitors benzyl cyanide and 4-cyanophenol. 2. The substrate specificities of the preparation and the two enzyme species have been elucidated.  相似文献   

2.
3.
4.
5.
6.
Changes in the outer mitochondrial membranes during apoptosis   总被引:1,自引:0,他引:1  
Mitochondria are involved in many apoptotic responses. Following permeabilization of their outer membrane, they release many apoptogenic proteins, including cytochrome c, which contribute to caspase activation. The mechanisms responsible for membrane permeability are not completely understood. Here, we briefly review the mechanisms that have been proposed to explain this phenomenon.  相似文献   

7.
1. D-beta-hydroxybutyrate, a major ketone body, is produced or converted in mitochondria from various animal tissues. 2. It is an easy permeate anion of the inner mitochondrial membrane. However, its translocation is not a passive diffusion process since it is inhibited by pyruvate transport inhibitors like alpha-cyanocinnamate and derivatives. 3. This carrier mediated process is associated with proton movements. Besides, dicarboxylate anions strongly inhibit the penetration into mitochondria. 4. This is in agreement with the existence of a second transport process related to the dicarboxylate carrier.  相似文献   

8.
9.
Isolated rat liver mitochondrial membranes are found to contain tightly bound protein substrate(s) which can be phosphorylated in the presence of ATP by protein kinase(s) previously extracted with 0.7 M NaCl from the membranes themselves and by phosvitin kinase purified from liver cytosol. Such proteinkinase-dependent phosphorylation, which seems to be cyclic AMP-independent, involves the seryl and threonyl residues of the protein substrate(s).  相似文献   

10.
11.
The results reported in this paper show two distinct ways for the incorporation ofN-acetylglucosamine into mitochondrial outer membranes. The first one is the glycosylation of dolichol acceptors, which is indicated by the inhibition of the synthesis of these products by the inhibitors of the dolichol intermediates (tunicamycin and GDP). The second one is the incorporation ofN-acetylglucosamine into protein acceptors directly from UDP-N-acetylglucosamine. This second way of glycosylation is only localized in mitochondria outer membranes.The existence of a direct route forN-glycoprotein biosynthesis has been based on the following evidence. First, the synthesis of theN-acetylglucosaminylated protein acceptors was not inhibited by tunicamycin or GDP. Second, the addition of exogenous dolichol-phosphate did not change the rate of biosynthesis of glycosylated protein material. Third, the sequential incorporation ofN-acetylglucosamine and mannose from their nucleotide derivatives in the presence of GDP and tunicamycin led to the synthesis of glycosylated protein material which entirely bound to Concanavalin A-Sepharose. The oligosaccharide moiety of the glycosylated protein material resulting from the direct transfer of sugars from their nucleotide derivatives to the protein acceptor is of theN-glycan type. On sodium dodecylsulphate polyacrylamide gel electrophoresis, this glycosylated material migrated as a marker protein with a molecular weight between 45 000 and 63 000. HPLC chromatofocusing analysis revealed that the fraction studied was anionic. The oligosaccharide moiety of the glycoprotein material can only be elongated by the incorporation ofN-acetylglucosamine and galactose from their nucleotide derivatives.  相似文献   

12.
The outer membranes of mitochondria prepared from the liver of rats kept 12 days on a choline-deficient diet were analyzed for changes in phospholipid and protein content. The total amount of phospholipid in the outer membranes was not affected by the deficiency. There was, however, a significant decrease in the amount of phosphatidylcholine and an increase in phosphatidylethanolamine. The alterations in the membrane phospholipids were reflected in a reduction in the fluorescence of the membrane probe, 8-anilino-1-naphthalene sulfonate. Choline deficiency also affected the protein composition of the outer membranes as judged by electrophoretic analysis; however, the activity of several enzymes which serve as markers for the outer membrane was not affected by the deficiency.  相似文献   

13.
14.
15.
16.
NADH-dependent 3,4-benzpyrene hydroxylase activity was detected in the purified mitochondrial outer membrane fraction from the livers of rats treated with 3-methylcholanthrene. The specific activity in the outer membrane fraction is nearly equal to that of microsomes, a level too high to be accounted for only by the microsomal contamination. On the other hand, the NADPH-dependent 3,4-benzpyrene hydroxylase activity in the outer membrane fraction is about 50% of that of microsomes. The ratio of the specific activity of NADPH- to NADH-dependent 3,4-benzpyrene hydroxylase in microsomal fraction was about 3.5, while that of the outer membrane fraction was about 1.5. Moreover, it was found that NADH-dependent 3,4-benzpyrene hydroxylase activity in mitochondrial outer membrane from control rat liver was cyanide-insensitive, while that in microsomes was cyanide-sensitive. These results suggest the presence in the mitochondrial outer membrane fraction of aryl hydrocarbon hydroxylase activity which uses as electron donor NADH nearly to the same extent as NADPH. The hydroxylase system is composed of cyanide-insensitive cytochrome P-450 and is inducible markedly by 3-methylcholanthrene treatment. The probable electron transfer pathways in the mitochondrial outer membrane cytochrome P-450 oxidase system are discussed.  相似文献   

17.
18.
19.
The present investigation has attempted to define in rat liver mitochondria the distribution of outer membrane proteins in relation to the inner membrane by fractionation with digitonin and phospholipase A2. Porin, the channel-forming protein in the outer membrane, was measured quantitatively by immunological methods. Neither monoamine oxidase nor porin could be released by phospholipase A2 treatment, but both were released by digitonin, at the same detergent concentration. Thus, the release of monoamine oxidase and porin requires the disruption of the cholesterol but not the phospholipid domains of the membrane and the two polypeptides exist in the same, or similar, membrane environment with regard to cholesterol. Changes in the energy state, or binding of brain hexokinase to rat liver mitochondria prior to fractionation with digitonin, did not alter the release patterns of porin and monoamine oxidase. The uptake of Ca2+, however, resulted in the concomitant release of the outer membrane markers together with the matrix marker, malate dehydrogenase. The present findings with liver differ from those obtained recently with brain mitochondria (L. Dorbani et al. (1987) Arch. Biochem. Biophys. 252, 188-196) in which two populations of porin were located in two different cholesterol domains. The significance of these differences in the location of porin in liver and brain mitochondria is discussed.  相似文献   

20.
1. The interaction of malonyl-CoA with the outer carnitine palmitoyltransferase (CPT) system of rat liver mitochondria was re-evaluated by using preparations of highly purified outer membranes, in the light of observations that other subcellular structures that normally contaminate crude mitochondrial preparations also contain malonyl-CoA-sensitive CPT activity. 2. In outer-membrane preparations, which were purified about 200-fold with respect to the inner-membrane-matrix fraction, malonyl-CoA binding was largely accounted for by a single high-affinity component (KD = 0.03 microM), in contrast with the dual site (low- and high-affinity) previously found with intact mitochondria. 3. There was no evidence that the decreased sensitivity of CPT to malonyl-CoA inhibition observed in outer membranes obtained from 48 h-starved rats (compared with those from fed animals) was due to a decreased ratio of malonyl-CoA binding to CPT catalytic moieties. Thus CPT specific activity and maximal high-affinity [14C]malonyl-CoA binding (expressed per mg of protein) were increased 2.2- and 2.0-fold respectively in outer membranes from 48 h-starved rats. 4. Palmitoyl-CoA at a concentration that was saturating for CPT activity (5 microM) decreased the affinity of malonyl-CoA binding by an order of magnitude, but did not alter the maximal binding of [14C]malonyl-CoA. 5. Preincubation of membranes with either tetradecylglycidyl-CoA or 2-bromopalmitoyl-CoA plus carnitine resulted in marked (greater than 80%) inhibition of high-affinity binding, concurrently with greater than 95% inhibition of CPT activity. These treatments also unmasked an effect of subsequent treatment with palmitoyl-CoA to increase low-affinity [14C]malonyl-CoA binding. 6. These data are discussed in relation to the possible mechanism of interaction between the malonyl-CoA-binding site and the active site of the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号