首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The protective effects of an antioxidant combination in kidney injury induced by the injection of D‐galactosamine (D‐GaIN) were examined in the present study. Sprague Dawley female rats were used and divided into four groups as follows: (1) animals injected physiological saline solution, intraperitoneally, (2) animals treated with the combination of ascorbic acid (100 mg kg?1 day?1), β‐carotene (15 mg kg?1 day?1), α‐tocopherol (100 mg kg?1 day?1), and sodium selenate (0.2 mg kg?1 day?1) for three days orally, (3) rats injected D‐GaIN (500 mg kg?1) intraperitoneally as a single dose, and (4) animals treated with the antioxidant combination for three days, then injected D‐GaIN. The tissue and blood samples of animals were collected for morphological and biochemical evaluations. Histopathological injury in kidney tissues was observed together with a significant increase in tissue lipid peroxidation (LPO) level, myeloperoxidase (MPO), lactate dehydrogenase, catalase and superoxide dismutase (SOD) activities, and serum creatinine and urea levels, and a significant decrease in glutathione level and glutathione peroxidase activity in D‐GaIN injected rats. However, a decrease in the degenerative changes was detected in the kidney tissue of D‐GaIN + antioxidant group, and biochemical results showed reversed effects. In conclusion, it seems reasonable to conclude that the treatment of the antioxidant combination has a protective effect on D‐GaIN‐induced kidney injury of rats. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
The aim of this study was to assess the possible protective effects of thymol and carvacrol (CAR) against doxorubicin (DOX)‐induced cardiotoxicity. A single dose of DOX (10 mg/kg i.v.) injected to male rats revealed significant increases in serum lactate dehydrogenase, creatine kinase, creatine kinase isoenzyme‐MB, aspartate transaminase, tumor necrosis factor‐alpha, and cardiac troponin levels. It also increased heart contents of malondialdehyde and caspase‐3 accompanied by a significant reduction in heart content of reduced glutathione as well as catalase and superoxide dismutase activity as compared with the control group. In contrast, administration of thymol (20 mg/kg p.o.) and/or CAR (25 mg/kg p.o.) for 14 days before DOX administration and for 2 days after DOX injection ameliorated the heart function and oxidative stress parameters. Summarily, thymol was more cardioprotective than CAR. Moreover, a combination of thymol and CAR had a synergistic cardioprotective effect that might be attributed to antioxidant, anti‐inflammatory, and antiapoptotic activities.  相似文献   

3.
Hesperidin (HES), a flavanone glycoside, predominant in citrus fruits, has an agonistic activity on peroxisome proliferator‐activated receptor gamma (PPAR‐γ). PPAR‐γ is an inhibitor of cardiac hypertrophy (CH) signaling pathways. In this study, we investigated the cardioprotective effect of HES in isoproterenol (ISO)‐induced CH through PPAR‐γ agonistic activity. For this, male albino Wistar rats were divided into six groups (n = 6), that is, normal, ISO‐control, HES treatment group (200 mg kg?1; p.o.), HES per se (200 mg kg?1; p.o.), enalapril treatment group (30 mg kg?1; p.o.), and combination group (HES 200 mg kg?1; p.o.+enalapril 30 mg kg?1; p.o.). ISO (3 mg kg?1; s.c.) was administered to all groups except normal and per se to induce CH. HES or enalapril treatment of 28 days significantly attenuated pathological changes, improved cardiac hemodynamics, suppressed oxidative stress, and apoptosis along with an increased PPAR‐γ expression. The combination of enalapril with HES exhibited an effect similar to that of HES or enalapril alone on all the aforementioned parameters. Therefore, HES may be further evaluated as a promising molecule for the alleviation of CH.  相似文献   

4.
5.
Aldosterone plays a central role in the development of cardiac pathological states involving ion transport imbalances, especially sodium transport. We have previously demonstrated a cardioprotective effect of proanthocyanidins in aldosterone-treated rats. Our objective was to investigate for the first time the effect of proanthocyanidins on serum and glucocorticoid-regulated kinase 1 (SGK1), epithelial Na+ channel (γ-ENaC), neuronal precursor cells expressed developmentally down-regulated 4-2 (Nedd4-2) and phosphoNedd4-2 protein expression in the hearts of aldosterone-treated rats. Male Wistar rats received aldosterone (1 mg kg−1 day−1)+1% NaCl for 3 weeks. Half of the animals in each group were simultaneously treated with the proanthocyanidins-rich extract (80% w/w) (PRO80, 5 mg kg−1 day−1). Hypertension and diastolic dysfunction induced by aldosterone were abolished by treatment with PRO80. Expression of fibrotic, inflammatory and oxidative mediators were increased by aldosterone–salt administration and blunted by PRO80. Antioxidant capacity was improved by PRO80. The up-regulated aldosterone mediator SGK1, ENaC and p-Nedd4-2/total Nedd4-2 ratio were blocked by PRO80. PRO80 blunted aldosterone–mineralocorticoid-mediated up-regulation of ENaC provides new mechanistic insight of the beneficial effect of proanthocyanidins preventing the cardiac alterations induced by aldosterone excess.  相似文献   

6.
Doxorubicin (DOX) is considered as the major culprit in chemotherapy‐induced cardiotoxicity. Yellow wine polyphenolic compounds (YWPC), which are full of polyphenols, have beneficial effects on cardiovascular disease. However, their role in DOX‐induced cardiotoxicity is poorly understood. Due to their antioxidant property, we have been suggested that YWPC could prevent DOX‐induced cardiotoxicity. In this study, we found that YWPC treatment (30 mg/kg/day) significantly improved DOX‐induced cardiac hypertrophy and cardiac dysfunction. YWPC alleviated DOX‐induced increase in oxidative stress levels, reduction in endogenous antioxidant enzyme activities and inflammatory response. Besides, administration of YWPC could prevent DOX‐induced mitochondria‐mediated cardiac apoptosis. Mechanistically, we found that YWPC attenuated DOX‐induced reactive oxygen species (ROS) and down‐regulation of transforming growth factor beta 1 (TGF‐β1)/smad3 pathway by promoting nuclear factor (erythroid‐derived 2)‐like 2 (Nrf2) nucleus translocation in cultured H9C2 cardiomyocytes. Additionally, YWPC against DOX‐induced TGF‐β1 up‐regulation were abolished by Nrf2 knockdown. Further studies revealed that YWPC could inhibit DOX‐induced cardiac fibrosis through inhibiting TGF‐β/smad3‐mediated ECM synthesis. Collectively, our results revealed that YWPC might be effective in mitigating DOX‐induced cardiotoxicity by Nrf2‐dependent down‐regulation of the TGF‐β/smad3 pathway.  相似文献   

7.
The possible protective effects of resveratrol (RVT) against cardiotoxicity were investigated in Wistar albino rats treated with saline, saline+doxorubicin (DOX; 20 mg/kg) or RVT (10 mg/kg)+DOX. Blood pressure and heart rate were recorded on the 1st week and on the 7th week, while cardiomyopathy was assessed using transthoracic echocardiography before the rats were decapitated. DOX-induced cardiotoxicity resulted in decreased blood pressure and heart rate, but lactate dehydrogenase, creatine phosphokinase, total cholesterol, triglyceride, aspartate aminotransferase and 8-OHdG levels were increased in plasma. Moreover, DOX caused a significant decrease in plasma total antioxidant capacity along with a reduction in cardiac superoxide dismutase, catalase and Na+,K+-ATPase activities and glutathione contents, while malondialdehyde, myelopreoxidase activity and the generation of reactive oxygen species were increased in the cardiac tissue. On the other hand, RVT markedly ameliorated the severity of cardiac dysfunction, while all oxidant responses were prevented; implicating that RVT may be of therapeutic use in preventing oxidative stress due to DOX toxicity.  相似文献   

8.
EGb761 has been suggested to be an antioxidant and free radical scavenger. Excess generation of free radicals, leading to lipid peroxidation (LP), has been proposed to play a role in the damage to striatal neurons induced by 1-methyl-4-phenylpyridinium (MPP+). We investigated the effects of EGb761 pretreatment on MPP+ neurotoxicity. C-57 black mice were pretreated with EGb761 for 17 days at different doses (0.63, 1.25, 2.5, 5 or 10 mg/kg) followed by administration of MPP+, (0.18, 0.36 or 0.72 mg/kg). LP was analyzed in corpus striatum at 30 min, 1 h, 2 h and 24 h after MPP+ administration. Striatal dopamine content was analyzed by HPLC at the highest EGb761 dose at 2 h and 24 h after MPP+ administration. MPP+-induced LP was blocked (100%) by EGb761 (10 mg/kg). Pretreatment with EGb761 partially prevented (32%) the dopamine-depleting effect of MPP+ at 24 h. These results suggest that supplements of EGb761 may be effective at preventing MPP+-induced oxidative stress.  相似文献   

9.
The present study was undertaken to evaluate the cardioprotective role of (−)-epigallocatechin-gallate (EGCG) against Fluoride (F) induced oxidative stress mediated cardiotoxicity in rats. The animals exposed to F as sodium Fluoride (NaF) (25 mg/kg BW) for 4 weeks exhibited a significant increase in the levels of cardiac troponins T and I (cTnT & I), cardiac serum markers, lipid peroxidative markers and plasma total cholesterol (TC), triglycerides (TG), phospholipids (PL), free fatty acids (FFA), low density lipoprotein cholesterol, very low density lipoprotein cholesterol as well as cardiac lipids profile (TC, TG and FFA) with the significant decrease of high density lipoprotein cholesterol and cardiac phospholipids. F intoxication also decreased the levels of mitochondrial enzymes such as ICDH, SDH, MDH, α-KGDH and NADH in the cardiac tissue of rats. The mitochondrial Ca2+ ion level was also significantly reduced along with the significant decrease in the levels of enzymatic and non enzymatic antioxidants. Furthermore, F treatment significantly increased the DNA fragmentation, up regulate cardiac pro-apoptotic markers, inflammatory markers and down-regulate the anti-apoptotic markers in the cardiac tissue. Pre administration of EGCG (40 mg/kg/bw) in F intoxicated rats remarkably recovered all these altered parameters to near normalcy through its antioxidant nature. Thus, results of the present study clearly demonstrated that treatment with EGCG prior to F intoxication has a significant role in protecting F-induced cardiotoxicity and dyslipidemia in rats.  相似文献   

10.
The long‐term usage of doxorubicin (DOX) is largely limited due to the development of severe cardiomyopathy. Many studies indicate that DOX‐induced cardiac injury is related to reactive oxygen species generation and ultimate activation of apoptosis. The role of novel mitochondrial fission protein 1 (Mtfp1) in DOX‐induced cardiotoxicity remains elusive. Here, we report the pro‐mitochondrial fission and pro‐apoptotic roles of Mtfp1 in DOX‐induced cardiotoxicity. DOX up‐regulates the Mtfp1 expression in HL‐1 cardiac myocytes. Knockdown of Mtfp1 prevents cardiac myocyte from undergoing mitochondrial fission, and subsequently reduces the DOX‐induced apoptosis by preventing dynamin 1‐like (Dnm1l) accumulation in mitochondria. In contrast, when Mtfp1 is overexpressed, a suboptimal dose of DOX can induce a significant percentage of cells to undergo mitochondrial fission and apoptosis. These data suggest that knocking down of Mtfp1 can minimize the cardiomyocytes loss in DOX‐induced cardiotoxicity. Thus, the regulation of Mtfp1 expression could be a novel therapeutic approach in chemotherapy‐induced cardiotoxicity.  相似文献   

11.
Pirarubicin (THP), an anthracycline anticancer drug, is a first‐line therapy for various solid tumours and haematologic malignancies. However, THP can cause dose‐dependent cumulative cardiac damage, which limits its therapeutic window. The mechanisms underlying THP cardiotoxicity are not fully understood. We previously showed that MiR‐129‐1‐3p, a potential biomarker of cardiovascular disease, was down‐regulated in a rat model of THP‐induced cardiac injury. In this study, we used Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genome (KEGG) pathway enrichment analyses to determine the pathways affected by miR‐129‐1‐3p expression. The results linked miR‐129‐1‐3p to the Ca2+ signalling pathway. TargetScan database screening identified a tentative miR‐129‐1‐3p‐binding site at the 3′‐UTR of GRIN2D, a subunit of the N‐methyl‐D‐aspartate receptor calcium channel. A luciferase reporter assay confirmed that miR‐129‐1‐3p directly regulates GRIN2D. In H9C2 (rat) and HL‐1 (mouse) cardiomyocytes, THP caused oxidative stress, calcium overload and apoptotic cell death. These THP‐induced changes were ameliorated by miR‐129‐1‐3p overexpression, but exacerbated by miR‐129‐1‐3p knock‐down. In addition, miR‐129‐1‐3p overexpression in cardiomyocytes prevented THP‐induced changes in the expression of proteins that are either key components of Ca2+ signalling or important regulators of intracellular calcium trafficking/balance in cardiomyocytes including GRIN2D, CALM1, CaMKⅡδ, RyR2‐pS2814, SERCA2a and NCX1. Together, these bioinformatics and cell‐based experiments indicate that miR‐129‐1‐3p protects against THP‐induced cardiomyocyte apoptosis by down‐regulating the GRIN2D‐mediated Ca2+ pathway. Our results reveal a novel mechanism underlying the pathogenesis of THP‐induced cardiotoxicity. The miR‐129‐1‐3p/Ca2+ signalling pathway could serve as a target for the development of new cardioprotective agents to control THP‐induced cardiotoxicity.  相似文献   

12.
The anti‐allergic drug, N‐(3,4‐dimethoxycinnamonyl) anthranilic acid (3,4‐DAA), is a synthetic anthranilic acid derivative that has been used therapeutically in Japan for many years. In this study, to investigate the effects of 3,4‐DAA in allograft immunorejection model, liver orthotopic transplants were performed using inbred male Dark Agouti donors and Lewis rat recipients (allografts). The levels of indoleamine 2,3‐dioxygenases (IDO) enzymic activities in five groups, allografts (control), dimethyl sulphoxide‐treated group (vehicle control), 200 mg·kg–1·day–1 of 3,4‐DAA‐treated group and 200 mg·kg–1·day–1 of 3,4‐DAA + 5 mg·ml–1 of 1‐methyl‐D‐tryptophan (1‐MT)‐treated group were confirmed by determination of L‐kynurenine (L‐Kyn) concentrations. The serum alanine aminotransferase levels in 3,4‐DAA‐treated rats significantly decreased compared with those in mock and control group, whereas treatment of 1‐MT in allografts led to the opposite effect. Administration of 3,4‐DAA reduced histological severity of allograft immunorejection, decreased serum levels of cytokines tumour necrosis factor‐alpha (TNF‐α) and interferon‐gamma (IFN‐γ), and raised serum levels of interleukin‐10 (IL‐10), suggesting that 3,4‐DAA has both anti‐inflammatory and anti‐immunorejection properties through IDO in immune regulation and may therefore be useful in filling an unmet need, in the treatment of allograft immunorejection. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
The anthracycline antibiotic doxorubicin (DOX) is an effective anticancer agent, but its clinical use is limited by dose-dependent cardiotoxicity. Scutellarin (SCU), a natural polyphenolic flavonoid, is used as a cardioprotective agent for infarction and ischemia-reperfusion injury. This study investigated the beneficial effect of SCU on DOX-induced chronic cardiotoxicity. Rats were injected intraperitoneally (i. p.) with DOX (2.5 mg/kg) twice a week for four weeks and then allowed to rest for two weeks to establish the chronic cardiotoxicity animal model. A dose of 10 mg/kg/day SCU was injected i. p. daily for six weeks to attenuate cardiotoxicity. SCU attenuated DOX-induced elevated oxidative stress levels and cardiac troponin T (cTnT), decreased left ventricular ejection fraction (LVEF) and fractional shortening (LVFS), elevated isovolumic relaxation time (IVRT), electrophysiology and histopathological alterations. In addition, SCU significantly attenuated DOX-induced cardiac fibrosis and reduced extracellular matrix (ECM) accumulation by inhibiting the TGF-β1/Smad2 signaling pathway. Furthermore, SCU also prevented against DOX-induced apoptosis and autophagy as evidenced by upregulation of Bcl-2, downregulation of Bax and cleaved caspase-3, inhibited the AMPK/mTOR pathway. These results revealed that the cardioprotective effect of SCU on DOX-induced chronic cardiotoxicity may be attributed to reducing oxidative stress, myocardial fibrosis, apoptosis and autophagy.  相似文献   

14.
Brain damage is a major complication of fulminant hepatic failure. d ‐Galactosamine (d ‐GalN)‐induced liver toxicity causes damage to brain. The effects of vitamins and selenium mixture against d ‐GalN stimulated brain injury were investigated in this study. Sprague‐Dawley female rats aged 2.0‐2.5 months were used for the study. The rats were divided into four categories. A 0.9% NaCl solution was intraperitoneally given to the experimental rats in the first group. Using gavage technique, the second group of animals were subjected to a formulation consisting of 100 mg·kg?1·day?1 vitamin C, 15 mg·kg?1·day?1 of β‐carotene, 100 mg·kg?1·day?1 of α‐tocopherol in addition to 0.2 mg·kg?1·day?1 of sodium selenate for 3 days. The third group was given a single dose of d ‐GalN hydrochloride at the concentration of 500 mg·kg?1 through a saline injection. The final group was given similar concentrations of both the antioxidant combination and d ‐GalN. Tissue samples were collected under ether anesthesia. The rats treated with d ‐GalN showed brain damage; increased myeloperoxidase, catalase, glutathione peroxidase, glutathione‐S‐transferase, lactate dehydrogenase, and superoxide dismutase activities; and decreased glutathione levels. Treatment with vitamins and selenium combination resulted in alleviation of these alterations in the rats. These findings suggest that administration of the vitamins and selenium combination suppresses oxidative stress and protects brain cells from injury induced by d ‐GalN.  相似文献   

15.
Lim S  Yoon JW  Kang SM  Choi SH  Cho BJ  Kim M  Park HS  Cho HJ  Shin H  Kim YB  Kim HS  Jang HC  Park KS 《PloS one》2011,6(6):e20301

Background

EGb761, a standardized Ginkgo biloba extract, has antioxidant and antiplatelet aggregation and thus might protect against atherosclerosis. However, molecular and functional properties of EGb761 and its major subcomponents have not been well characterized. We investigated the effect of EGb761 and its major subcomponents (bilobalide, kaemferol, and quercetin) on preventing atherosclerosis in vitro, and in a rat model of type 2 diabetes.

Methods and Results

EGb761 (100 and 200 mg/kg) or normal saline (control) were administered to Otsuka Long-Evans Tokushima Fatty rats, an obese insulin-resistant rat model, for 6 weeks (from 3 weeks before to 3 weeks after carotid artery injury). Immunohistochemical staining was performed to investigate cell proliferation and apoptosis in the injured arteries. Cell migration, caspase-3 activity and DNA fragmentation, monocyte adhesion, and ICAM-1/VCAM-1 levels were explored in vitro. Treatment with EGb761 dose-dependently reduced intima-media ratio, proliferation of vascular smooth muscle cells (VSMCs) and induced greater apoptosis than the controls. Proliferation and migration of VSMCs in vitro were also decreased by the treatment of EGb761. Glucose homeostasis and circulating adiponectin levels were improved, and plasma hsCRP concentrations were decreased in the treatment groups. Caspase-3 activity and DNA fragmentation increased while monocyte adhesion and ICAM-1/VCAM-1 levels decreased significantly. Among subcomponents of EGb761, kaemferol and quercetin reduced VSMC migration and increased caspase activity.

Conclusions

EGb761 has a protective role in the development of atherosclerosis and is a potential therapeutic agent for preventing atherosclerosis.  相似文献   

16.
《Translational oncology》2020,13(2):471-480
Dysregulation of calcium homeostasis is a major mechanism of doxorubicin (DOX)-induced cardiotoxicity. Treatment with DOX causes activation of sarcoplasmic reticulum (SR) ryanodine receptor (RYR) and rapid release of Ca2+ in the cytoplasm resulting in depression of myocardial function. The aim of this study was to examine the effect of dantrolene (DNT) a RYR blocker on both the cardiotoxicity and antitumor activity of DOX in a rat model of breast cancer. Female F344 rats with implanted MAT B III breast cancer cells were randomized to receive intraperitoneal DOX twice per week (12 mg/kg total dose), 5 mg/kg/day oral DNT or a combination of DOX + DNT for 3 weeks. Echocardiography and blood troponin I levels were used to measure myocardial injury. Hearts and tumors were evaluated for histopathological alterations. Blood glutathione was assessed as a measure of oxidative stress. The results showed that DNT improved DOX-induced alterations in the echocardiographic parameters by 50%. Histopathologic analysis of hearts showed reduced DOX induced cardiotoxicity in the group treated with DOX + DNT as shown by reduced interstitial edema, cytoplasmic vacuolization, and myofibrillar disruption, compared with DOX-only–treated hearts. Rats treated with DNT lost less body weight, had higher blood GSH levels and lower troponin I levels than DOX-treated rats. These data indicate that DNT is able to provide protection against DOX cardiotoxicity without reducing its antitumor activity. Further studies are needed to determine the optimal dosing of DNT and DOX in a tumor-bearing host.  相似文献   

17.
The protective potential of chelators, i.e. N‐acetyl cysteine (0.6 mg /kg, intraperitoneally) and dithiothreitol (15.4 mg kg?1, intraperitoneally) with selenium (0.5 mg kg?1, pre‐oral) were evaluated individually and in combination against methylmercury‐induced biochemical alterations and oxidative stress consequences. Forty‐two male Sprague–Dawley rats were exposed with methylmercury (1.5 mg kg?1, pre‐oral) daily for 21 days followed by different treatments for five consecutive days. Administration of methylmercury caused significant enhancement in the release of transaminases, alkaline phosphatases and lactate dehydrogenases in serum. A significant increased was observed in lipid peroxidation level with a concomitant decreased in glutathione content after methylmercury exposure in liver, kidney and brain. Hepatic microsomal drug metabolizing enzymes (aniline hydroxylase and amidopyrine N‐demethylase) of cytochrome p4502E1 showed sharp depletion after methylmercury exposure. Alterations in histological changes in liver, kidney and brain were also noted in methylmercury administered group. All treated groups showed recovery pattern, but the combined treatments with N‐acetyl cysteine and dithiothreitol in combination with selenium were more effective than that with either alone treatments in recovering blood biochemical changes after methylmercury toxicity. In conclusion, the results demonstrated that combination therapy may recover all blood biochemical alterations and offer maximum protection against methylmercury‐induced toxicity. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
The clinical application of doxorubicin (Dox) is limited by its adverse effect of cardiotoxicity. Previous studies have suggested the cardioprotective effect of brain‐derived neurotrophic factor (BDNF). We hypothesize that BDNF could protect against Dox‐induced cardiotoxicity. Sprague Dawley rats were injected with Dox (2.5 mg/kg, 3 times/week, i.p.), in the presence or absence of recombinant BDNF (0.4 μg/kg, i.v.) for 2 weeks. H9c2 cells were treated with Dox (1 μM) and/or BDNF (400 ng/ml) for 24 hrs. Functional roles of BDNF against Dox‐induced cardiac injury were examined both in vivo and in vitro. Protein level of BDNF was reduced in Dox‐treated rat ventricles, whereas BDNF and its receptor tropomyosin‐related kinase B (TrkB) were markedly up‐regulated after BDNF administration. Brain‐derived neurotrophic factor significantly inhibited Dox‐induced cardiomyocyte apoptosis, oxidative stress and cardiac dysfunction in rats. Meanwhile, BDNF increased cell viability, inhibited apoptosis and DNA damage of Dox‐treated H9c2 cells. Investigations of the underlying mechanisms revealed that BDNF activated Akt and preserved phosphorylation of mammalian target of rapamycin and Bad without affecting p38 mitogen‐activated protein kinase and extracellular regulated protein kinase pathways. Furthermore, the beneficial effect of BDNF was abolished by BDNF scavenger TrkB‐Fc or Akt inhibitor. In conclusion, our findings reveal a potent protective role of BDNF against Dox‐induced cardiotoxicity by activating Akt signalling, which may facilitate the safe use of Dox in cancer treatment.  相似文献   

19.
Vitiligo is a common skin depigmenting disorder characterized by the loss of functional melanocytes. Its pathogenesis is complicated and oxidative stress plays a critical role in the development of vitiligo. Thus, antioxidant therapy is a promising therapeutic strategy to prevent or even reverse the progression of depigmentation. Ginkgo biloba extract EGb761 has been confirmed to have protective effects on neurons against oxidative stress. Notably, several clinical trials have shown that patients with stable vitiligo achieved repigmentation after taking EGb761. However, the exact mechanism underlying the protective effects of EGb761 on melanocytes against oxidative stress has not been fully elucidated. In the present study, we found that EGb761 effectively protected melanocytes against oxidative stress‐induced apoptosis and alleviated the excessive accumulation of reactive oxygen species (ROS) and lipid peroxidation by enhancing the activity of antioxidative enzymes. Furthermore, the antioxidative effect of EGb761 was achieved by activating Nrf2 and its downstream antioxidative genes. In addition, interfering Nrf2 with siRNA abolished the protective effects of EGb761 on melanocytes against oxidative damage. In conclusion, our study proves that EGb761 could protect melanocytes from H2O2‐induced oxidative stress by activating Nrf2. Therefore, EGb761 is supposed to be a potential therapeutic agent for vitiligo.  相似文献   

20.
This study investigates the effect of aminoguanidine (AG), a selective inducible nitric oxide synthase (iNOS) inhibitor, and pentoxifylline (PTX), a tumour necrosis factor–alpha (TNF‐α) inhibitor, on lipopolysaccharide (LPS)‐induced cardiac stress. Rats were divided into four groups: group I served as a control, group II (LPS) received a single intraperitoneal injection of LPS (10 mg·kg–1), group III (LPS+AG) and group IV (LPS+PTX) were injected with either AG (100 mg·kg–1) or PTX (150 mg·kg–1) intraperitoneally 10 days prior to LPS administration. Normalization of cardiac levels of nitrite/nitrate (NOX), malondialdehyde (MDA), glutathione (GSH), heme oxygenase‐1 (HO‐1), glutathione peroxidase (GPx) and Na+, K+‐ATPase activities was evident in the AG group. Both AG and PTX decreased the elevated serum TNF‐α levels, the activities of lactate dehydrogenase (LDH), creatine kinase (CK) and cardiac myeloperoxidase (MPO). The levels of adenosine triphosphate (ATP), adenosine diphosphate (ADP) and phosphocreatine (PCr) were enhanced following AG and PTX pretreatments. Calcium (Ca2+) levels were altered, and the histopathological observations supported the described results. Conclusively, the study highlights the cardioprotective potential of AG and PTX with superior results from AG. These findings reveal the relative contribution of nitric oxide and TNF‐α to oxidative stress and energy failure during endotoxemia. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号