首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We extend recent modeling studies of proton hopping, used to describe the functioning of membrane channels and axon nerve conduction, to offer an explanation of the initiation of the nerve impulse at an effector? ligand encounter. This encounter is proposed to create a hydronium ion in the vicinity of the effector and ligand, which leads to a continuous flow of protons, called proton hopping, through water adjacent to this encounter. This proton hopping is proposed to be the message carried from the encounter to the axon of a particular nerve system associated with that particular effector? ligand system.  相似文献   

2.
The Hodgkin-Huxley model of the nerve axon describes excitation and propagation of the nerve impulse by means of a nonlinear partial differential equation. This equation relates the conservation of the electric current along the cablelike structure of the axon to the active processes represented by a system of three rate equations for the transport of ions through the nerve membrane. These equations have been integrated numerically with respect to both distance and time for boundary conditions corresponding to a finite length of squid axon stimulated intracellularly at its midpoint. Computations were made for the threshold strength-duration curve and for the repetitive firing of propagated impulses in response to a maintained stimulus. These results are compared with previous solutions for the space-clamped axon. The effect of temperature on the threshold intensity for a short stimulus and for rheobase was determined for a series of values of temperature. Other computations show that a highly unstable subthreshold propagating wave is initiated in principle by a just threshold stimulus; that the stability of the subthreshold wave can be enhanced by reducing the excitability of the axon as with an anesthetic agent, perhaps to the point where it might be observed experimentally; but that with a somewhat greater degree of narcotization, the axon gives only decrementally propagated impulses.  相似文献   

3.
Rydmark  M  Berthold  C.-H  Gatzinsky  K. P 《Brain Cell Biology》1998,27(2):99-108
We have calculated the number of paranodal Schwann cell mitochondria in adult feline ventral and dorsal lumbar spinal roots using ultrastructural serial section analysis. Distinct accumulations of paranodal mitochondria were noted in nerve fibres more than 4-5 mm in diameter. The calculated number of paranodal mitochondria increased linearly with fibre diameter from a few hundred up to 20 000-30 000 per node. A linear increase in the number of paranodal mitochondria per node also appeared as a function of nodal variables such as ‘nodal axon membrane area’, ‘nodal Schwann cell membrane area’, and ‘node gap extracellular volume’. In large fibres (D=15-18 mm), a calculated number of about 20 000 paranodal Schwann cell mitochondria were accumulated at each node of Ranvier and related to nodal axon membrane area of about 20 mm2. Our calculations indicate that, on the average, 1000 paranodal Schwann cell mitochondria with a total volume of 6.7 mm3, a total outer membrane area of 250 mm2 and a total inner membrane area of 580 mm2 projected to each mm2 of the nodal axon membrane via the nodal Schwann cell brush border.  相似文献   

4.
The space-clamped squid axon membrane and two versions of the Hodgkin-Huxley model (the original, and a strongly adapting version) are subjected to a first order dynamic analysis. Stable, repetitive firing is induced by phase-locking nerve impulses to sinusoidal currents. The entrained impulses are then pulse position modulated by additional, small amplitude perturbation sinusoidal currents with respect to which the frequencies response of impulse density functions are measured. (Impulse density is defined as the number of impulses per unit time of an ensemble of membranes with each membrane subject to the same stimulus). Two categories of dynamic response are observed: one shows clear indications of a corner frequency, the other has the corner frequency obscured by dynamics associated with first order conductance perturbations in the interspike interval. The axon membrane responds with first order perturbations whereas the unmodified Hodgkin-Huxley model does not. Quantitative dynamic signatures suggest that the relaxation times of axonal recovery excitation variables are twice as long as those of the corresponding model variables. A number of other quantitative differences between axon and models, including the values of threshold stimuli are also observed.  相似文献   

5.
The gross motor innervation of the abdominal longitudinal ventro-lateral muscles of the larva of Calliphora erythrocephala is described. Two of these muscles, 6A and 7A, are innervated by the same two multiterminally-ending axons, and thus comprise a single motor unit. No difference is found between the axon diameters in the main nerve trunks, but there is a difference where the axons run over the muscle surface. Only the dorsal, inner, surface of the muscle is innervated. Electro-physiological results show two sizes of EPSP: the large fast EPSP presumably corresponds to the thicker axon and the small slow one to the thinner axon. Preliminary work indicates that it is not possible to distinguish between the two axons with electron microscopy; the presynaptic regions possess both ‘classical’ synaptic and ‘neurosecretory’ type vesicles, and have no glial cell covering.  相似文献   

6.
The ERG of the dragonfly ocellus has been analyzed into four components, two of which originate in the photoreceptor cells, two in the ocellar nerve fibers (Ruck, 1961 a). Component 1 is a sensory generator potential, component 2 a response of the receptor axons. Component 3 is an inhibitory postsynaptic potential, component 4, a discharge of afferent nerve impulses in ocellar nerve fibers. Responses to flickering light are examined in terms of this analytic scheme. It has been found that the generator potential can respond to higher rates of flicker—up to 220/sec.—than can the receptor axon responses, the postsynaptic potential, or the ocellar nerve impulses. The maximum flicker fusion frequency as measured by fusion of the ERG is that of the sensory generator potential itself.  相似文献   

7.
Inhibition in the eye of Limulus   总被引:4,自引:0,他引:4       下载免费PDF全文
In the compound lateral eye of Limulus each ommatidium functions as a single receptor unit in the discharge of impulses in the optic nerve. Impulses originate in the eccentric cell of each ommatidium and are conducted in its axon, which runs without interruption through an extensive plexus of nerve fibers to become a fiber of the optic nerve. The plexus makes interconnections among the ommatidia, but its exact organization is not understood. The ability of an ommatidium to discharge impulses in the axon of its eccentric cell is reduced by illumination of other ommatidia in its neighborhood: the threshold to light is raised, the number of impulses discharged in response to a suprathreshold flash of light is diminished, and the frequency with which impulses are discharged during steady illumination is decreased. Also, the activity that can be elicited under certain conditions when an ommatidium is in darkness can be inhibited similarly. There is no evidence for the spread of excitatory influences in the eye of Limulus. The inhibitory influence exerted upon an ommatidium that is discharging impulses at a steady rate begins, shortly after the onset of the illumination on neighboring ommatidia, with a sudden deep minimum in the frequency of discharge. After partial recovery, the frequency is maintained at a depressed level until the illumination on the neighboring receptors is turned off, following which there is prompt, though not instantaneous recovery to the original frequency. The inhibition is exerted directly upon the sensitive structure within the ommatidium: it has been observed when the impulses were recorded by a microelectrode thrust into an ommatidium, as well as when they were recorded more proximally in single fibers dissected from the optic nerve. Receptor units of the eye often inhibit one another mutually. This has been observed by recording the activity of two optic nerve fibers simultaneously. The mediation of the inhibitory influence appears to depend upon the integrity of nervous interconnections in the plexus: cutting the lateral connections to an ommatidium abolishes the inhibition exerted upon it. The nature of the influence that is mediated by the plexus and the mechanism whereby it exerts its inhibitory action on the receptor units are not known. The depression of the frequency of the discharge of nerve impulses from an ommatidium increases approximately linearly with the logarithm of the intensity of illumination on receptors in its vicinity. Inhibition of the discharge from an ommatidium is greater the larger the area of the eye illuminated in its vicinity. However, equal increments of area become less effective as the total area is increased. The response of an ommatidium is most effectively inhibited by the illumination of ommatidia that are close to it; the effectiveness diminishes with increasing distance, but may extend for several millimeters. Illumination of a fixed region of the eye at constant intensity produces a depression of the frequency of discharge of impulses from a nearby ommatidium that is approximately constant, irrespective of the level of excitation of the ommatidium. The inhibitory interaction in the eye of Limulus is an integrative process that is important in determining the patterns of nervous activity in the visual system. It is analogous to the inhibitory component of the interaction that takes place in the vertebrate retina. Inhibitory interaction results in the exaggeration of differences in sensory activity from different regions of the eye illuminated at different intensities, thus enhancing visual contrast.  相似文献   

8.
The neuromuscular effects of four purified toxins and crude venom from the scorpion Androctonus australis were investigated in the extensor tibiae nerve-muscle preparation of the locust Locusta migratoria. Insect and crustacean toxin and the mammal toxins I and II which have previously been shown to act on fly larvae, isopods, and mice all paralyse locust larvae. The paralytic potencies decrease in the following order: insect toxin → mammal toxin I → crustacean toxin → mammal toxin II.The toxins and crude venom cause repetitive activity of the motor axons. This leads to long spontaneous trains of junction potentials in the case of crude venom and insect toxin. The other toxins chiefly cause short bursts of action and junction potentials following single stimuli.The ‘slow’ excitatory motor axon invariably is affected sooner than the inhibitory or the ‘fast’ excitatory one. The minimal doses of toxins required to affect the ‘slow’ motor axon decrease in an order somewhat different from that established for their paralytic potencies: insect toxin → crustacean toxin → mammal toxin I → mammal toxin II.Crude venom depolarises and destabilises the muscle membrane potential at low doses. At high doses it decreases the membrane resistance, whereas insect toxin leads to an increase.Crude venom and insect toxin enhance the frequency of mejps, whereas mammal toxin I leads to the occurrence of ‘giant’ mejps.The pattern of axonal activities indicates that the various peripheral branches of the motor nerve are the primary target of the toxins.The time course of nerve action potentials is affected by mammal toxin I and crustacean toxin which cause anomalous shapes and prolongations not caused by insect toxin.The results with other animals suggest that only the insect toxin is selective in its activity. The way it affects the axon might be quite different from that previously reported for scorpion venoms or toxins.  相似文献   

9.
  1. The morphology of descending interneurons (DNs) which have arborizations in the lateral accessory lobe (LAL) of the protocerebrum, the higher order olfactory center, and have an axon in the ventral nerve cord (VNC), were characterized in the male silkworm moth, Bombyx mori.
  2. Two clusters (group I, group II) of DNs which have arborizations mainly in the LALs were morphologically characterized. The axons of these DNs are restricted to the dorsal part of the each connective (Figs. 1–5).
  3. Pheromonal responses of the group I and group II DNs were characterized. Flipflopping activity patterns, which have two distinct firing frequencies (high and low) in response to sequential pheromonal stimulation, were usually recorded (Figs.6–10).
  4. Two types of flipflopping activity patterns were classified into those that had an antiphasic relationship (called the ‘FF’ type) between the left and right connectives and those with a synchronized relationship (‘ff’ type) (Figs. 8–12). We propose that some group II DNs show ‘FF’ flipflopping activity patterns (Fig. 10).
  5. A state transition was usually elicited by less than 10 ng bombykol, the principal pheromone component. Extra impulses were elicited during constant light stimulation (Fig. 9).
  6. Our results suggest that the LAL olfactory pathways might be important for producing flipflopping activity patterns (Fig. 11).
  相似文献   

10.
Recent experiments have begun to decipher the molecular dialog that mediates differentiation at sites of synaptic between neurons and their targets. It had been hypothesized that the protein agrin is released by axon terminals at embryonic neuromuscular junctions and binds to a receptor on the myofiber surface to trigger postsynaptic differentiation. Now a genetic ‘Knockout’ experiment has confirmed the essential role of agrin in signaling between developing nerve and muscle(1). A second ‘knockout’ has shown that the muscle-specific receptor tyrosine kinase MuSK is a critical element in the agrin-induced signaling cascade(2). Additional results suggest that MuSK may comprise a portion of the agrin receptor(3).  相似文献   

11.
Kainate, a conformational analogue of glutamate, blocks synaptic transmission across the giant synapse of the squid. In the presence of blocking doses of kainate, impulses continue to propagate into the nerve terminal, but action potentials are slightly reduced in size and the subsequent hyperpolarization is greatly diminished. Kainate depolarizes the postsynaptic axon. Since the depolarizing action of kainate is confined to the postsynaptic membrane, it appears that kainate can combine with the receptors which are normally activated by the transmitter. This results in a diminished effect of the transmitter released by a presynaptic nerve impulse.  相似文献   

12.
Synaptic terminals on branches of an excitatory motor axon in a spider crab (Hyas areneas) were examined by electron microscopy to determine whether differences in size, structure, and number of synapses could be correlated with differences in transmitter release. Terminals releasing relatively large amounts of transmitter during low frequencies of nerve impulses ("high-output" terminals) had larger synapses, more prominent presynaptic dense bodies (active zones), and fewer synapses per unit length than terminals releasing relatively small amounts of transmitter ("low-output" terminals). Neither the difference in synaptic area, nor the quantitative differences in the active zones, were sufficient in themselves to explain the difference in synaptic efficacy, and it is postulated that a non-linear relationship may exist between structural features of the synapse and release of transmitter by a nerve impulse, and that differences other than those apparent from the ultrastructure could be involved. Greater facilitation at low-output terminals with high frequencies of nerve impulses may be due to greater reserves of "immediately available" transmitter, and to recruitment or activation of more individual synaptic contacts.  相似文献   

13.
The neuron and its vascular-interstitial communications form, in vivo, an electrophoretic closed circuit. It is charged by ionic pumps in the nerve cell membrane at rest. Electrophoretic products of reaction collect at biologic electrodes, represented by redox proteins. These are located in the pre- and postsynaptic membranes and also in associated capillary membranes in the vascular part of the closed circuit. Efferent brain impulses start a series of events preceding muscle contraction. They open ionic channels in the membrane of the nerve cell body. A short-circuiting is thereby created, and cations flow into the cell. The membrane pumps cannot withstand this ionic inflow and maintain the transmembranous potential difference. The circuit is no longer driven but starts selfdriving reactions by previously formed products of reaction at the biological electrodes. Fuel cell reactions start at these and create in the axon the peak of the action potential. In vivo, the action potentials preceding the contracting of a muscle are transmitted through the circuit. In the vascular pathway of the closed circuit, the action potentials appear, by summation, as the previously described slow potential waves. The function of nerve cell matrices, as well as the nodes of Ranvier, are discussed. The proposed theory is in accordance with the vascular-interstitial-neuromuscular closed circuit. It provides new possibilities to explain the development of the action potential, transport and disappearance of various synaptic structures and the neurotransmitter. Technical analogues are presented to illustrate a new possible background mechanism for understanding structure and function in neuromuscular transmission.  相似文献   

14.
Moderate exercise in the form of treadmill training and brief electrical nerve stimulation both enhance axon regeneration after peripheral nerve injury. Different regimens of exercise are required to enhance axon regeneration in male and female mice (Wood et al.: Dev Neurobiol 72 (2012) 688–698), and androgens are suspected to be involved. We treated mice with the androgen receptor blocker, flutamide, during either exercise or electrical stimulation, to evaluate the role of androgen receptor signaling in these activity‐based methods of enhancing axon regeneration. The common fibular (CF) and tibial (TIB) nerves of thy‐1‐YFP‐H mice, in which axons in peripheral nerves are marked by yellow fluorescent protein (YFP), were transected and repaired using CF and TIB nerve grafts harvested from non‐fluorescent donor mice. Silastic capsules filled with flutamide were implanted subcutaneously to release the drug continuously. Exercised mice were treadmill trained 5 days/week for 2 weeks, starting on the third day post‐transection. For electrical stimulation, the sciatic nerve was stimulated continuously for 1 h prior to nerve transection. After 2 weeks, lengths of YFP+ profiles of regenerating axons were measured from harvested nerves. Both exercise and electrical stimulation enhanced axon regeneration, but this enhancement was blocked completely by flutamide treatments. Signaling through androgen receptors is necessary for the enhancing effects of treadmill exercise or electrical stimulation on axon regeneration in cut peripheral nerves. © 2013 Wiley Periodicals, Inc. Develop Neurobiol 74: 531–540, 2014  相似文献   

15.
The molecular motor kinesin moves along microtubules using energy from ATP hydrolysis in an initial step coupled with ADP release. In neurons, kinesin‐1/KIF5C preferentially binds to the GTP‐state microtubules over GDP‐state microtubules to selectively enter an axon among many processes; however, because the atomic structure of nucleotide‐free KIF5C is unavailable, its molecular mechanism remains unresolved. Here, the crystal structure of nucleotide‐free KIF5C and the cryo‐electron microscopic structure of nucleotide‐free KIF5C complexed with the GTP‐state microtubule are presented. The structures illustrate mutual conformational changes induced by interaction between the GTP‐state microtubule and KIF5C. KIF5C acquires the ‘rigor conformation’, where mobile switches I and II are stabilized through L11 and the initial portion of the neck‐linker, facilitating effective ADP release and the weak‐to‐strong transition of KIF5C microtubule affinity. Conformational changes to tubulin strengthen the longitudinal contacts of the GTP‐state microtubule in a similar manner to GDP‐taxol microtubules. These results and functional analyses provide the molecular mechanism of the preferential binding of KIF5C to GTP‐state microtubules.  相似文献   

16.
Conventional, vertex-ipsilateral ear records (‘A’), as well as 3-channel Lissajous' trajectories (3-CLTs) of auditory brain-stem evoked potentials (ABEPs) were recorded from the scalp simultaneously with tympanic membrane electrocochleograms (‘TME’) and auditory nerve compound action potentials (‘8-AP’) recorded intracranially using a wick electrode on the auditory nerve between the internal auditory meatus and the brain-stem. The recordings were made during surgical procedures exposing the auditory nerve.The peak latency recorded from ‘TME’ corresponded to trajectory amplitude peak ‘a’ of 3-LLT and to peak ‘I’ of the ‘A’ channel ABEP. Peak latency of ‘8-AP’ was slightly longer than the latency of peak ‘II’ of ‘A’ when ‘8-AP’ was recorded from the root entry zone and the same or shorter when recorded from the nerve trunk. ‘8-AP’ peak latency was shorter than trajectory amplitude peak ‘b’ of 3-CLT regardless of where the wick electrode was along the nerve. Peak latencies from all recordings sites clustered into two distinct groups—those that included N1 from ‘TME’, peak ‘I’ of the ‘A’ record and trajectory amplitude peak ‘a’ of 3-CLT, and those that included the negative peak of ‘8-AP’ and trajectory amplitude peak ‘b’ of 3-CLT, as well as peak ‘II’ of the ‘A’ record, when present. In one case, the latency of peak ‘II’ and trajectory amplitude peak ‘b’ was manipulated by changing the conductive properties of the medium surrounding the auditory nerve.These results are consistent with other evidence proposing: (1) the most distal (cochlear) portion of the auditory nerve is the generator of the first ABEP component (‘I’, ‘a’); (2) the proximal auditory nerve is the major contributor to the ‘A’ channel ABEP component ‘II’; (3) in addition to the auditory nerve, more central structures participate in the generation of the 3-CLT ‘b’ component.  相似文献   

17.
The conventional view that neuroinflammatory lesions contain strictly pro- and anti-inflammatory cytokines is being challenged. Some proinflammatory products e.g. TNF-α are crucial intermediates in axon regeneration, oligodendroglial renewal and remyelination. A more functional system of nomenclature classifies cytokines by their neuro ‘protective’ or ‘suppressive’ properties. Beyond the balance of these ‘environmental’ or ‘extrinsic’ signals, specific ‘intrinsic’ determinants of cytokine signalling appear to influence the outcome of axoglial regeneration. In this commentary, we examine the potential importance of cytokine-induced histone modification on oligodendrocyte differentiation. Neuroinflammation mediates the release of astrocytic leukaemia inhibitory factor (LIF) and erythropoietin (EPO) which potentiates oligodendrocyte differentiation and myelin production. Meanwhile, histone deacetylation strongly suppresses important inhibitors of oligodendrocyte differentiation. Given that LIF and EPO induce histone deacetylases in other systems, future studies should examine whether this mechanism significantly influences the outcome of cytokine-induced remyelination, and whether epigenetic drug targets could potentiate the effects of exogenous cytokine therapy.  相似文献   

18.
Sprouty (Spry) proteins are negative feedback inhibitors of receptor tyrosine kinase signaling. Downregulation of Spry2 has been demonstrated to promote elongative axon growth of cultured peripheral and central neurons. Here, we analyzed Spry2 global knockout mice with respect to axon outgrowth in vitro and peripheral axon regeneration in vivo. Neurons dissociated from adult Spry2 deficient sensory ganglia revealed stronger extracellular signal‐regulated kinase activation and enhanced axon outgrowth. Prominent axon elongation was observed in heterozygous Spry2+/? neuron cultures, whereas homozygous Spry2?/? neurons predominantly exhibited a branching phenotype. Following sciatic nerve crush, Spry2+/? mice recovered faster in motor but not sensory testing paradigms (Spry2?/? mice did not tolerate anesthesia required for nerve surgery). We attribute the improvement in the rotarod test to higher numbers of myelinated fibers in the regenerating sciatic nerve, higher densities of motor endplates in hind limb muscles and increased levels of GAP‐43 mRNA, a downstream target of extracellular regulated kinase signaling. Conversely, homozygous Spry2?/? mice revealed enhanced mechanosensory function (von Frey's test) that was accompanied by an increased innervation of the epidermis, elevated numbers of nonmyelinated axons and more IB4‐positive neurons in dorsal root ganglia. The present results corroborate the functional significance of receptor tyrosine kinase signaling inhibitors for axon outgrowth during development and nerve regeneration and propose Spry2 as a novel potential target for pharmacological inhibition to accelerate long‐distance axon regeneration in injured peripheral nerves. © 2014 Wiley Periodicals, Inc. Develop Neurobiol 75: 217–231, 2015  相似文献   

19.
Understanding how speciation can take place in the presence of homogenizing gene flow remains a major challenge in evolutionary biology. In the early stages of ecological speciation, reproductive isolation between populations occupying different habitats is expected to be concentrated around genes for local adaptation. These genomic regions will show high divergence while gene exchange in other regions of the genome should continue relatively unimpaired, resulting in low levels of differentiation. The problem is to explain how speciation progresses from this point towards complete reproductive isolation, allowing genome‐wide divergence. A new study by Via and West (2008) on speciation between host races of the pea aphid, Acyrthosiphon pisum, introduces the mechanism of ‘divergence hitchhiking’ which can generate large ‘islands of differentiation’ and facilitate the build‐up of linkage disequilibrium, favouring increased reproductive isolation. This idea potentially removes a major stumbling block to speciation under continuous gene flow.  相似文献   

20.
Actin polymerizes near the leading edge of nerve growth cones, and actin filaments show retrograde movement in filopodia and lamellipodia. Linkage between actin filament retrograde flow and cell adhesion molecules (CAMs) in growth cones is thought to be one of the mechanisms for axon outgrowth and guidance. However, the molecular basis for this linkage remains elusive. Here, we show that shootin1 interacts with both actin filament retrograde flow and L1-CAM in axonal growth cones of cultured rat hippocampal neurons, thereby mediating the linkage between them. Impairing this linkage, either by shootin1 RNA interference or disturbing the interaction between shootin1 and actin filament flow, inhibited L1-dependent axon outgrowth, whereas enhancing the linkage by shootin1 overexpression promoted neurite outgrowth. These results strengthen the actin flow-CAM linkage model ("clutch" model) for axon outgrowth and suggest that shootin1 is a key molecule involved in this mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号