首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of amytal on energy metabolism and acid secretion in an isolated gastric mucosa of the guinea-pig were studied. Determination of adenine nucleotides, creatine phosphate, pyruvate and lactate in the gastric mucosa showed that amytal depressed the levels of ATP, creatine phosphate and energy charge with elevation of the AMP and pyruvate levels. This treatment inhibited concomitantly acid secretion and active chloride transport detected by short circuit current. The addition of menadione with ascorbate to the medium in the presence of amytal partially restored ATP and energy charge levels and also induced a partial recovery of acid secretion and active chloride transport. These results suggest that ATP is a direct energy donor for acid secretion in the gastric mucosa of the guinea-pig.  相似文献   

2.
The role of the creatine phosphate shuttle in the energetics of muscle protein synthesis in isolated polysomes, from rat hindlimb muscle, was studied. Triton X-100-treated polysomes, following their centrifugation through a 1 M sucrose gradient, contained 38 mU/mg RNA of bound creatine kinase. In the presence of pH 5 enzyme (obtained from rat liver), 0.5 mM ATP, and 1 microM GTP, amino acid (leucine) incorporation by polysomes in the presence of 8 mM creatine phosphate was twice that in the presence of an exogenous ATP regenerating system of 10 mM phospho(enol)pyruvate and 10 U/ml pyruvate kinase. Since added creatine kinase had no effect on incorporation supported by creatine phosphate it is clear that endogenous creatine kinase allows sufficient regeneration of ATP. These data also suggest that nucleoside diphosphokinase must have been associated with the polysome for phosphate was transferred to GTP from [33P]creatine phosphate, and the specific activities of ATP and GTP increased at equal rates, reaching the specific activity of creatine phosphate at 8 min. We conclude that skeletal muscle polysomes have bound creatine kinase activity and they act as terminals for the creatine phosphate energy shuttle. Creatine phosphate regenerates GTP, probably through an intermediate reaction catalyzed by nucleoside diphosphokinase. This provided an added support for the hypothesis of compartmentation of enzymes and substrates and that the transport form of energy between the mitochondria and energy utilizing sites in muscle is creatine phosphate rather than ATP, which extends the general role of the creatine phosphate energy shuttle.  相似文献   

3.
To compare the extractability of creatine phosphate with that of ATP by alcohol extraction, both compounds were extracted from normal perfused rat heart tissues by using various stepwise concentrations of ethanol and 0.4 M HClO4. Powdered samples (6-15 mg wet wt) from the freeze-clamped tissues were homogenized in 2 ml of the ethanol solutions. After centrifugation, the supernatant was removed; each centrifuged sediment was rehomogenized with 2 ml of 0.4 M HClO4 and centrifuged. The supernatant was neutralized with 0.4 m KHCO3. The same powdered samples were directly homogenized with 2 ml of 0.4 M HClO4 and treated in the same manner. Only a small amount of ATP in the tissues was extracted by an 85% or higher concentration of ethanol. Further, about 13% of the tissue ATP was not extractable by the subsequent perchloric acid extraction. In contrast to ATP, creatine phosphate in the tissues was partially extracted by 95% ethanol and nearly all of the tissue creatine phosphate was extracted by 70% ethanol. The total creatine phosphate obtained by 70% ethanol and by subsequent perchloric acid extraction was significantly higher than that obtained by direct perchloric acid extraction. From these results, it was concluded that the extractability of creatine phosphate in the tissue by alcohol extraction is clearly different from that of ATP. Additionally, the stepwise extraction is recommended as a useful method for the extraction of energy metabolites in perfused rat heart tissue.  相似文献   

4.
31P-nuclear magnetic resonance was applied to living muscles of bullfrogs, and the time courses of metabolic changes of ATP, creatine phosphate, inorganic phosphate, and sugar phosphates were studied under anaerobic and aerobic conditions. A decrease in creatine phosphate was observed in the resting muscle under anaerobic conditions with a concomitant decrease in the intracellular pH, while the ATP level remained constant. With the use of 2,4-dinitro-1-fluorobenzene and iodoacetic acid, ATP disappeared quickly. When the resting muscle was perfused with oxygen-saturated glucose-Ringer's solution, the amount of creatine phosphate increased gradually. These findings indicate that anaerobic glycolysis is insufficient for even the resting energy consumption whereas oxidative phosphorylation is sufficient. The effects of tetanic stimulation on living muscles were also studied. When glycolysis and oxidative phosphorylation were suppressed, the intracellular energy store was depleted by the tetanic contraction. Anaerobic glycolysis produced rapid recovery of the energy store level, although it was insufficient to reach the initial level. Aerobic oxidative phosphorylation produced sufficient energy to reach the initial level, and this level was never exceeded. This finding suggests the existence of a regulatory mechanism for the energy store level.  相似文献   

5.
Resident and thioglycollate-elicited macrophages maintained in culture for 24 h contain approximately 5 x 10(-16) and 12 x 10(-16) mol of ATP per cell, respectively. During particle ingestion, the levels of ATP in these cells did not change. However, the specific activity of ATP extracted from macrophages labeled with [32P]Pi during phagocytosis was 40% lower than ATP extracted from control cells. These results suggested that macrophages contain a high energy phosphate reservoir, in addition to the ATP pool(s). A search for such a reservoir led to the identification of creatine phosphate in both resident and thioglycollate-elicited macrophages at concentrations that are in 3- to 5-fold-molar excess over ATP. Creatine phosphate levels in phagocytosing resident macrophages decreased by 45%, while creatine phosphate levels in phagocytosing thioglycollate-elicited macrophages did not change. Creatine phosphate turnover was measured in macrophages prelabeled with [14C]creatine. Over 90% of the intracellular label was in the form of creatine phosphate. During phagocytosis, there was a 40% decrease in intracellular [14C]creatine phosphate in both resident and thioglycollate-elicited macrophages. These results indicate that creatine phosphate turns over more rapidly during phagocytosis and replenishes the ATP consumed.  相似文献   

6.
Adenosine phosphate and creatine phosphate amount was determined in the brain tissue of 3-4-week, 6-8 month and 26-26 month old mongrel female rats. The maximum ATP and creatine phosphate amount and the minimum of ADP and AMP were found in young rats. In adult rats as compared with the young the ATP amount is the same, the ADP and AMP level rises, that of creative phosphate falls and energy charge decreases. In the brain of old rats the ATP and ADP amount falls, that of creatine phosphate and AMP remains at the level of mature-age animals. Despite a decrease in the ATP amount in the brain at the old age, the Mg, DNP- ATPase activity of mitochondria isolated from brain cortex and stem of the old rats remains at the level typical of adult animals.  相似文献   

7.
The NADH shuttle system is composed of the glycerol phosphate and malate-aspartate shuttles. We generated mice that lack mitochondrial glycerol-3-phosphate dehydrogenase (mGPDH), a rate-limiting enzyme of the glycerol phosphate shuttle. Application of aminooxyacetate, an inhibitor of the malate-aspartate shuttle, to mGPDH-deficient islets demonstrated that the NADH shuttle system was essential for coupling glycolysis with activation of mitochondrial ATP generation to trigger glucose-induced insulin secretion. The present study revealed that blocking the NADH shuttle system severely suppressed closure of the ATP-sensitive potassium (K(ATP)) channel and depolarization of the plasma membrane in response to glucose in beta cells, although properties of the K(ATP) channel on the excised beta cell membrane were unaffected. In mGPDH-deficient islets treated with aminooxyacetate, Ca(2+) influx through the plasma membrane induced by a depolarizing concentration of KCl in the presence of the K(ATP) channel opener diazoxide restored insulin secretion. However, the level of the secretion was only approximately 40% of wild-type controls. Thus, glucose metabolism through the NADH shuttle system leading to efficient ATP generation is pivotal to activation of both the K(ATP) channel-dependent pathway and steps distal to an elevation of cytosolic Ca(2+) concentration in glucose-induced insulin secretion.  相似文献   

8.
The metabolic pathways involved in ATP production in hypertriglyceridemic rat hearts were evaluated. Hearts from male Wistar rats with sugar-induced hypertriglyceridemia were perfused in an isolated organ system. Mechanical performance, oxygen uptake and beat rate were evaluated under perfusion with different oxidizable substrates. Age- and weight-matched animals were used as control. The hypertriglyceridemic (HTG) hearts showed a decrease in the mechanical work and slight diminution in the oxygen uptake when perfused with glucose, pyruvate or lactate. No differences were found when perfused with palmitate, octanoate or -hydroxybutyrate. The glycolytic flux in HTG hearts was 2.4 times lower than in control hearts. Phosphofructokinase-I (PFK-I) was 16% decreased in HTG hearts, whereas pyruvate kinase activity did not change. The increased levels of glucose-6hyphen;phosphate in HTG heart, suggested a flux limitation by the PFK-I. Pyruvate dehydrogenase in its active form (PDHa) diminished as well. The PDHa level in the HTG hearts was restored to control values by dichloroacetate; however, this addition did not significantly improve the mechanical performance. Levels of ATP and phosphocreatine as well as total creatine kinase activity and the MB fraction were significant lower in the HTG hearts perfused with glucose. The data suggested that supply of ATP by glucose oxidation did not suffice to support cardiac work in the HTG hearts; this impairment was exacerbated by the diminution of the creatine kinase system output.  相似文献   

9.
The creatine phosphate energy shuttle--the molecular asymmetry of a "pool"   总被引:2,自引:0,他引:2  
The creatine phosphate shuttle energy transfer mechanism was postulated on the basis of the hexokinase acceptor theory of insulin action. It proposes that the movement of chemical energy from the mitochondrion to the myofibril is in the form of creatine phosphate. This occurs because there are isozymes of creatine phosphokinase bound to the inner membrane of the sarcosome and to the A band of the myofibril. These isozymes have been shown to act as transducers of energy from ATP to creatine phosphate at the translocase site and from creatine phosphate back to ATP at the myofibrillar compartment. Calculations show that there is no significant amount of transformation of creatine phosphate to ATP in the intervening space between the mitochondrion and the myofibril so that, essentially, transport between the oxidative sites and the contractile apparatus is through the creatine phosphate shuttle. There is also evidence that another terminus for this shuttle is the microsome so that muscle activity tends to increase energy supply for protein synthesis.  相似文献   

10.
Survival of cardiac patients undergoing heart surgery depends critically upon the recovery of myocardial energy metabolism during reperfusion of ischemic myocardium. The present study compares various parameters of myocardial energy metabolism using an isolated in situ pig heart. The left anterior descending (LAD) coronary artery was occluded for 60 min, followed by 60 min of global hypothermic cardioplegic arrest and 60 min of reperfusion. Free radical scavengers [superoxide dismutase SOD and catalase] were used to protect the ischemic heart from reperfusion injury. In both control and SOD plus catalase-treated groups, ATP, creatine phosphate (CP), ATP/ADP ratio, energy charge and phosphorylation potential dropped significantly during ischemic insult. After reperfusion, CP, ATP/ADP ratio and phosphorylation potential improved significantly, but they were restored to control level only in treated animals. In either case, free energy of ATP hydrolysis (delta G) lowered only by 5% during ischemia, but recovered promptly upon reperfusion. SOD and catalase also improved coronary blood flow and reduced creatine kinase release compared to those of untreated animals, suggesting improved myocardial recovery upon reperfusion. Our results suggest that SOD and catalase significantly improve the myocardial recovery during reperfusion by enhancing rephosphorylation steps, and the value of delta G is more critical compared to those of ATP and CP for myocardial recovery.  相似文献   

11.
The subcellular distribution of ATP, ADP, creatine phosphate and creatine has been analyzed by fast detergent fractionation of isolated frog heart cells. Digitonin fractionation (0.5 mg/ml, 10 s at 2 degrees C in 20 mM 4-morpholinepropanesulfonic acid/3 mM EDTA/230 mM mannitol medium) was used to separate mitochondria and myofilaments from cytosol. To separate myofilaments from the other cellular compartments. Triton X-100 was used (2%, 15 s in the same medium as digitonin). For either resting or beating cells the total cellular contents of ATP, ADP, creatine phosphate and creatine was similar, nevertheless the O2 consumption was 6-times higher. The compartmentation of these metabolites was also identical. Myofilaments contain 1.1 nmol ADP per mg total cellular proteins. In the cytosolic compartment the metabolite concentrations, all measured in nmol per mg total cellular proteins, were: ATP, 13; ADP, 0.25-0.05; creatine phosphate, 18.5 and creatine, 14. This indicated that the reaction catalyzed by creatine kinase was in a state of (or near) equilibrium.  相似文献   

12.
Electrical shock treatment produces a rapid loss of high energy phosphates in rat brain. The [ATP]/[ADP] ratio decreases to one-third of its control value within 10 s. The ammonia content increases 3-fold during the first minute after starting the stimulus. The total adenine nucleotide plus adenosine content of brain decreases an equivalent amount of hypoxanthine-containing compounds appears. Adenosine, inosine, and hypoxanthine accumulate, and there is a transitory accumulation of adenylosuccinate. The contents of ATP and creatine phosphate, and the [ATP]/[ADP] ratio, are rapidly restored to control values, but other metabolite contents are restored more slowly. The transient rise in adenylosuccinate and IMP provides evidence that the ammonia production is due in part, and possibly in whole, to the operation of the purine nucleotide cycle.  相似文献   

13.
The formation of creatine phosphate by isolated rabbit heart mitochondria in the presence of creatine, α-ketoglutarate, ATP, and inorganic phosphate was studied. Creatine phosphate formation was inhibited by oligomycin. This was most probably due to increased concentration of ADP favoring the reverse reaction (formation of creatine and ATP from phosphocreatine and ADP). The inhibitory effect of oligomycin disappeared in the presence of phosphoenolpyruvate and pyruvate kinase. The results do not indicate any direct coupling between mitochondrial creatine phosphokinase and ATP-ADP translocase as has been suggested for rat heart mitochondria.  相似文献   

14.
The effect of adenylic acid, glucose-6-phosphate, fructose-1,6-diphosphate and phosphoenolpyruvate on creatine kinase isoenzymes (brain extract, muscle and heart extracts and purified muscle enzyme) was studied. These effectors, especially phosphoenolpyruvate, are shown to inhibit in different degree the reaction of ATP formation catalysed by creatine kinase from all tissues. The effectors do not inhibit the creatine phosphate synthesis in extracts, but depress purified creatine kinase. The interrelationship of the creatine kinase system and the key glycolytic enzymes (phosphofructokinase, hexokinase, pyruvate kinase) is discussed.  相似文献   

15.
Muscle contraction results in phosphorylation and activation of the AMP-activated protein kinase (AMPK) by an AMPK kinase (AMPKK). LKB1/STRAD/MO25 (LKB1) is the major AMPKK in skeletal muscle; however, the activity of LKB1 is not increased by muscle contraction. This finding suggests that phosphorylation of AMPK by LKB1 is regulated by allosteric mechanisms. Creatine phosphate is depleted during skeletal muscle contraction to replenish ATP. Thus the concentration of creatine phosphate is an indicator of cellular energy status. A previous report found that creatine phosphate inhibits AMPK activity. The purpose of this study was to determine whether creatine phosphate would inhibit 1) phosphorylation of AMPK by LKB1 and 2) AMPK activity after phosphorylation by LKB1. We found that creatine phosphate did not inhibit phosphorylation of either recombinant or purified rat liver AMPK by LKB1. We also found that creatine phosphate did not inhibit 1) active recombinant alpha1beta1gamma1 or alpha2beta2gamma2 AMPK, 2) AMPK immunoprecipitated from rat liver extracts by either the alpha1 or alpha2 subunit, or 3) AMPK chromatographically purified from rat liver. Inhibition of skeletal muscle AMPK by creatine phosphate was greatly reduced or eliminated with increased AMPK purity. In conclusion, these results suggest that creatine phosphate is not a direct regulator of LKB1 or AMPK activity. Creatine phosphate may indirectly modulate AMPK activity by replenishing ATP at the onset of muscle contraction.  相似文献   

16.
The dependence of the rate of creatine phosphate synthesis in the mitochondrial creatine phosphokinase reaction upon the rate of oxidative phosphorylation and ATP translocation from the matrix to outside of the mitochondria has been studied. It has been experimentally shown that mitochondrial creatine phosphokinase reacts slowly with ATP in the medium but is very active in utilization of ATP synthesized by the oxidative phosphorylation process. From these data, it is postulated, therefore, that the ATP-ADP translocase transports ATP molecules directly to the active site of creatine phosphokinase localized on the outer site of the inner membrane. This results in an increase in the effective concentration of ATP in the vinicity of the active sites of creatine kinase and in acceleration of the forward reaction (creatine phosphate synthesis). The kinetic theory based on this assumption allows a quantitative explanation of the observed dependences. These data indicate the tight functional coupling between ATP-ADP translocase and creatine phosphokinase in heart mitochondria. It is concluded that in heart cells energy can be transported by creatine phosphate molecules only.  相似文献   

17.
The energy metabolism in rat brains during postnatal development was followed by in vivo 31P NMR. Using a small surface coil (from several to 10 mm in diameter) placed at the head of a conscious rat, high-energy phosphate compounds in the brain and the steady-state kinetics among them were measured. The cellular contents of some phosphate compounds changed widely during the period of postnatal cell growth from age 10 to 20 days. During the same period, the cellular activity of creatine kinase increased by a factor of more than 5 as measured by a saturation transfer technique. The in vivo value of the creatine/creatine phosphate ratio was estimated from the in vitro value (in perchloric acid extracts), assuming that the in vivo ratio of the creatine and creatine phosphate pool over the ATP and ADP pool was the same as the corresponding in vitro value. From the creatine/creatine phosphate ratio thus obtained, the value of the cytosolic ATP/ADP ratio was estimated for brains of adult rats and neonate rats. Unexpectedly the value in the latter was found to be smaller.  相似文献   

18.
We show in the accompanying paper that the steady-state level of free Ca2+ maintained by the organelles of permeabilized RINm5F insulinoma cells varies inversely with the ATP/ADP ratio when this ratio is set by addition of creatine phosphokinase and fixed ratios of creatine to creatine phosphate. We, therefore, asked whether acute cyclic alterations in the cytosolic ATP/ADP ratio in the range known to modulate O2 consumption might be involved in regulating the physiological activity of Ca2+ -ATPases and the cytosolic free Ca2+ level. To explore this hypothesis we combined two experimental systems: 1) permeabilized RINm5F insulinoma cells that can maintain a low medium Ca2+ concentration and 2) a cell-free extract of rat skeletal muscle that spontaneously exhibits oscillatory behavior of glycolysis and linked oscillations in the ATP/ADP ratio, when provided with glucose. The free Ca2+ level maintained by the permeabilized cells oscillated in phase with the glycolytic oscillations and correlated closely with the ATP/ADP ratio but not with glucose 6-phosphate, fructose 6-phosphate, orthophosphate, or pH. When glucokinase replaced hexokinase as the glucose phosphorylating enzyme, Ca2+ oscillations were induced by increasing the glucose concentration from 2 to 8 mM. The results demonstrate a link between metabolite changes and free Ca2+ levels in a reconstituted physiological system. They support a model in which oscillations in glycolysis and the ATP/ADP ratio may cause oscillations in cytosolic free Ca2+, beta-cell electrical activity, and insulin release.  相似文献   

19.
Transport of electrolytes/water and exocytosis are activated by elevation of the cytosolic Ca(2+) concentration and are potentiated by elevation of cytosolic cyclic AMP. To correlate mucin and fluid secretion with morphological changes, rat submandibular glands were vascularly perfused and the fluid secretion and N-acetylgalactosamine in the saliva were measured during stimulation with various concentrations of carbachol (CCh) and/or isoproterenol (ISP). Single stimulation with 1 microM CCh induced a transient increase of N-acetyl galactosamine followed by a decline to a low level during sustained stimulation. The overload of 1 microM ISP increased secretion of N-acetyl galactosamine to a higher sustained level of 40-50 microg/g-min. However, at 1 microM CCh, fluid secretion was maintained at the same level during stimulation and even overload of 1 microM ISP did not significantly affect its level, whereas addition of 0.5 microM ISP to the gland stimulated with 0.1 microM CCh increased fluid secretion. Morphological observation was carried out by HRSEM and TEM. Combination of CCh and ISP in different concentrations resulted in distinctive morphological changes which reflect fluid secretion and mucin secretion. The kinetics of ATP and creatine phosphate (PCr) were measured using P-31 NMR, which indicated that the potentiation of fluid secretion is limited under a higher level of CCh stimulation due to a limited energy supply.  相似文献   

20.
J R Koke  D R Anderson 《Cytobios》1986,45(181):97-108
Since fish hearts are resistant to the effects of hypoxia, comparison of the effects of hypoxia and ischaemia on fish and mammalian hearts may lead to better understanding of ischaemic injury in mammalian hearts. The ultrastructure and levels of ATP, creatine phosphate, and lactic acid were examined in hearts obtained from largemouth bass. Bass hearts were subjected to conditions of normoxia, ischaemia, hypoxia, and hypoxia in the presence of fluoride and cyanide. ATP levels remained stable during hypoxia and ischaemia, but fell during hypoxia in the presence of fluoride or fluoride plus cyanide. Changes in creatine phosphate and lactic acid indicated ATP was produced during hypoxia and ischaemia by glycolysis, by rephosphorylation from creatine phosphate, and by oxidative phosphorylation with oxygen obtained from myoglobin or the atmosphere. Ultrastructural changes were found similar to those reported in ischaemic mammalian heart, consisting of inter- and intracellular swelling, glycogen depletion, and mitochondrial alterations. Comparison of metabolic rates between fish and mammalian hearts suggests the lower rate in fish hearts may be the chief factor which permits stable ATP levels during hypoxia and ischaemia, and thus provides resistance to these conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号