首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
C75 is a potential drug for the treatment of obesity. It was first identified as a competitive, irreversible inhibitor of fatty acid synthase (FAS). It has also been described as a malonyl-CoA analogue that antagonizes the allosteric inhibitory effect of malonyl-CoA on carnitine palmitoyltransferase I (CPT I), the main regulatory enzyme involved in fatty acid oxidation. On the basis of MALDI-TOF analysis, we now provide evidence that C75 can be transformed to its C75-CoA derivative. Unlike the activation produced by C75, the CoA derivative is a potent competitive inhibitor that binds tightly but reversibly to CPT I. IC50 values for yeast-overexpressed L- or M-CPT I isoforms, as well as for purified mitochondria from rat liver and muscle, were within the same range as those observed for etomoxiryl-CoA, a potent inhibitor of CPT I. When a pancreatic INS(823/13), muscle L6E9, or kidney HEK293 cell line was incubated directly with C75, fatty acid oxidation was inhibited. This suggests that C75 could be transformed in the cell to its C75-CoA derivative, inhibiting CPT I activity and consequently fatty acid oxidation. In vivo, a single intraperitoneal injection of C75 in mice produced short-term inhibition of CPT I activity in mitochondria from the liver, soleus, and pancreas, indicating that C75 could be transformed to its C75-CoA derivative in these tissues. Finally, in silico molecular docking studies showed that C75-CoA occupies the same pocket in CPT I as palmitoyl-CoA, suggesting an inhibiting mechanism based on mutual exclusion. Overall, our results describe a novel role for C75 in CPT I activity, highlighting the inhibitory effect of its C75-CoA derivative.  相似文献   

2.
3.
Cellular senescence, a state of growth arrest, is involved in various age‐related diseases. We previously found that carnitine palmitoyltransferase 1C (CPT1C) is a key regulator of cancer cell proliferation and senescence, but it is unclear whether CPT1C plays a similar role in normal cells. Therefore, this study aimed to investigate the role of CPT1C in cellular proliferation and senescence of human embryonic lung MRC‐5 fibroblasts and the involved mechanisms. The results showed that CPT1C could reverse the cellular senescence of MRC‐5 fibroblasts, as evidenced by reduced senescence‐associated β‐galactosidase activity, downregulated messenger RNA (mRNA) expression of senescence‐associated secretory phenotype factors, and enhanced bromodeoxyuridine incorporation. Lipidomics analysis further revealed that CPT1C gain‐of‐function reduced lipid accumulation and reversed abnormal metabolic reprogramming of lipids in late MRC‐5 cells. Oil Red O staining and Nile red fluorescence also indicated significant reduction of lipid accumulation after CPT1C gain‐of‐function. Consequently, CPT1C gain‐of‐function significantly reversed mitochondrial dysfunction, as evaluated by increased adenosine triphosphate synthesis and mitochondrial transmembrane potential, decreased radical oxygen species, upregulated respiratory capacity and mRNA expression of genes related to mitochondrial function. In summary, CPT1C plays a vital role in MRC‐5 cellular proliferation and can reverse MRC‐5 cellular senescence through the regulation of lipid metabolism and mitochondrial function, which supports the role of CPT1C as a novel target for intervention into cellular proliferation and senescence and suggests CPT1C as a new strategy for antiaging.  相似文献   

4.
5.
《Chirality》2017,29(1):10-13
The elevated activity of fatty acid synthase has been reported in a number of cancer types. Inhibition of this enzyme has been demonstrated to induce cancer cell death and reduce tumor growth. In addition, the fatty acid synthase inhibitor drug C75 has been reported to synergistically enhance the cancer‐killing ability of ionizing radiation. However, clinical use of C75 has been limited due to its producing weight loss, believed to be caused by alterations in the activity of carnitine palmitoyltransferase‐1. C75 is administered in the form of a racemic mixture of (−) and (+) enantiomers that may differ in their regulation of fatty acid synthase and carnitine palmitoyltransferase‐1. Therefore, we assessed the relative cancer‐killing potency of different enantiomeric forms of C75 in prostate cancer cells. These results suggest that (−)‐C75 is the more cytotoxic enantiomer and has greater radiosensitizing capacity than (+)‐C75. These observations will stimulate the development of fatty acid synthase inhibitors that are selective for cancer cells and enhance the tumor‐killing activity of ionizing radiation, while minimizing weight loss in cancer patients.  相似文献   

6.
C75, a synthetic inhibitor of fatty acid synthase (FAS), is hypothesized to alter the metabolism of neurons in the hypothalamus that regulate feeding behavior to contribute to the decreased food intake and profound weight loss seen with C75 treatment. In the present study, we characterize the suitability of primary cultures of cortical neurons for studies designed to investigate the consequences of C75 treatment and the alteration of fatty acid metabolism in neurons. We demonstrate that in primary cortical neurons, C75 inhibits FAS activity and stimulates carnitine palmitoyltransferase-1 (CPT-1), consistent with its effects in peripheral tissues. C75 alters neuronal ATP levels and AMP-activated protein kinase (AMPK) activity. Neuronal ATP levels are affected in a biphasic manner with C75 treatment, decreasing initially, followed by a prolonged increase above control levels. Cerulenin, a FAS inhibitor, causes a similar biphasic change in ATP levels, although levels do not exceed control. C75 and cerulenin modulate AMPK phosphorylation and activity. TOFA, an inhibitor of acetyl-CoA carboxylase, increases ATP levels, but does not affect AMPK activity. Several downstream pathways are affected by C75 treatment, including glucose metabolism and acetyl-CoA carboxylase (ACC) phosphorylation. These data demonstrate that C75 modulates the levels of energy intermediates, thus, affecting the energy sensor AMPK. Similar effects in hypothalamic neurons could form the basis for the effects of C75 on feeding behavior.  相似文献   

7.
Homocamptothecin (hCPT) is an E‐ring modified camptothecin (CPT) analogue, which showed pronounced inhibitory activity of topoisomerase I. In search of novel hCPT‐type anticancer agents, two series of hCPT derivatives were synthesized and evaluated in vitro against three human tumor cell lines. The results indicated that the 10‐substituted hCPT derivatives had a considerably higher cytotoxic activity than the 12‐substituted ones. Among the 10‐substituted compounds, 8a, 8b, 9b , and 9i showed an equivalent or even more potent activity than the positive control drug topotecan against the lung cancer cell line A‐549. Moreover, the hCPT analogues 8a and 8b exhibited a higher topoisomerase I inhibitory activity than CPT at a concentration of 100 μM .  相似文献   

8.
《Journal of Asia》2006,9(1):43-48
Fatty acid synthesis produces long-chain fatty acids that are principal forms of stored energy and essential constituents of cellular membrane lipids. In animals fatty acid synthesis is catalyzed by fatty acid synthase (FAS) from acetyl-coenyzyme A (CoA) and malonyl-CoA. Cerulenin and C75, potent FAS inhibitors, can inhibit feeding in mammals.Using these inhibitors we examined the effect of feeding inhibition during H. zea larval stage. Growth of larvae injected (30 μg/g body weight) with C75 or cerulenin was significantly delayed during the first 8 hrs after injection, but recovered to normal levels within 20 hrs. During the first 8 hr period, the amount of consumed diet in the inhibitor treated larvae was significantly less than the control group. The retardation of larval development could be caused from the reduction of food intake after injection of the inhibitor. The result indicates that C75 or cerulenin inhibits fatty acid synthesis, resulting in feeding suppression in the larval moth as demonstrated in vertebrates.Pheromone production was significantly decreased in the isolated pheromone gland of H. zea females treated with FAS inhibitors. Pheromone production was inhibited by blocking fatty acid synthesis, even though PBAN stimulated pheromone biosynthesis. After topical application of D3-16: Acid to pheromone glands the relative labeled pheromone amount was increased when the gland was incubated with C75. This result indicates that a part of the pheromone amount could be synthesized from 16: Acid directly when fatty acid synthesis was blocked. These results indicate that the inhibitors have a potential possibility to control insect feeding activity and inhibit pheromone biosynthesis in moths.  相似文献   

9.
It was shown that racemic (±)‐ 2 [1′‐benzyl‐3‐(3‐fluoropropyl)‐3H‐spiro[[2]benzofuran‐1,4′‐piperidine], WMS‐1813 ] represents a promising positron emission tomography (PET) tracer for the investigation of centrally located σ1 receptors. To study the pharmacological activity of the enantiomers of 2 , a preparative HPLC separation of (R)‐2 and (S)‐2 was performed. The absolute configuration of the enantiomers was determined by CD‐spectroscopy together with theoretical calculations of the CD‐spectrum of a model compound. In receptor binding studies with the radioligand [3H]‐(+)‐pentazocine, (S)‐2 was thrice more potent than its (R)‐configured enantiomer (R)‐2 . The metabolic degradation of the more potent (S)‐enantiomer was considerably slower than the metabolism of (R)‐2 . The structures of the main metabolites of both enantiomers were elucidated by determination of the exact mass using an Orbitrap‐LC‐MS system. These experiments showed a stereoselective biotransformation of the enantiomers of 2 . Chirality, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

10.
11.
True bugs (Hemiptera) are an important pest complex not controlled by Bt‐transgenic crops. An alternative source of resistance includes inhibitors of digestive enzymes, such as protease or amylase inhibitors. αAI‐1, an α‐amylase inhibitor from the common bean, inhibits gut‐associated α‐amylases of bruchid pests of grain legumes. Here we quantify the in vitro activity of α‐amylases of 12 hemipteran species from different taxonomic and functional groups and the in vitro inhibition of those α‐amylases by αAI‐1. α‐Amylase activity was detected in all species tested. However, susceptibility to αAI‐1 varied among the different groups. α‐Amylases of species in the Lygaeidae, Miridae and Nabidae were highly susceptible, whereas those in the Auchenorrhyncha (Cicadellidae, Membracidae) had a moderate susceptibility, and those in the Pentatomidae seemed to be tolerant to αAI‐1. The species with αAI‐1 susceptible α‐amylases represented families which include both important pest species but also predatory species. These findings suggest that αAI‐1‐expressing crops have potential to control true bugs in vivo.  相似文献   

12.
Both enantiomers of three biologically relevant paraconic acids—MB‐3, methylenolactocin, and C75—were obtained with enantioselectivities up to 99% by kinetic enzymatic resolutions. Good enantiomeric excesses were obtained for MB‐3 and methylenolactocin, using α‐chymotrypsin and aminoacylase as enantiocomplementary enzymes, while C75 was resolved with aminoacylase. They all were evaluated for their antiproliferative, antibacterial, and antifungal activities, showing weak effects and practically no difference between enantiomers in each case. At high concentrations (16–64 µg/mL), (–)‐ C75 acted as an antimicrobial agent against Gram‐positive bacteria. Chirality 27:239–246, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

13.
We have examined the potential role of fatty acid oxidation (FAO) in AMP‐activated protein kinase (AMPK)‐induced meiotic maturation. Etomoxir and malonyl CoA, two inhibitors of carnitine palmitoyl transferase‐1 (CPT1), and thus FAO, blocked meiotic induction in dbcAMP‐arrested cumulus cell‐enclosed oocytes (CEO) and denuded oocytes (DO) by the AMPK activator, AICAR. C75, an activator of CPT1 and FAO, stimulated meiotic resumption in CEO and DO. This effect was insensitive to the AMPK inhibitor, compound C, indicating an action downstream of AMPK. Palmitic acid or carnitine also promoted meiotic resumption in DO in the presence of AICAR. Since C75 also suppresses the activity of fatty acid synthase (FAS), we tested another FAS inhibitor, cerulenin. Cerulenin stimulated maturation in arrested oocytes, but to a lesser extent, exhibited significantly slower kinetics and was effective in CEO but not DO. Moreover, etomoxir completely blocked C75‐induced maturation but was ineffective in cerulenin‐treated oocytes, suggesting that the meiosis‐inducing action of C75 is through activation of FAO within the oocyte, while that of cerulenin is independent of FAO and acts within the cumulus cells. Finally, we determined that long chain, but not short chain, fatty acyl carnitine derivatives were stimulatory to oocyte maturation. Palmitoyl carnitine stimulated maturation in both CEO and DO, with rapid kinetics in DO; this effect was blocked by mercaptoacetate, a downstream inhibitor of FAO. These results indicate that activation of AMPK stimulates meiotic resumption in mouse oocytes by eliminating a block to FAO. Mol. Reprod. Dev. 76: 844–853, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

14.
Illicit rac‐MDPV (3,4‐methylenedioxypyrovalerone), manufactured in clandestine labs, has become widely abused for its cocaine‐like stimulant properties. It has recently been found as one of the toxic materials in the so‐called “bath salts,” producing, among other effects, psychosis and tachycardia in humans when introduced by any of the several routes of administration (e.g., intravenous, oral, etc.). The considerable toxicity of this “designer drug” probably resides in one of the enantiomers of the racemate. In order to obtain a sufficient amount of the enantiomers of rac‐MDPV to determine their activity, we improved the known synthesis of rac‐MDPV and found chemical resolving agents, (+)‐ and (–)‐2’‐bromotetranilic acid, that gave the MDPV enantiomers in >96% enantiomeric excess as determined by 1H nuclear magnetic resonance and chiral high‐performance liquid chromatography. The absolute stereochemistry of these enantiomers was determined by single‐crystal X‐ray diffraction studies. Chirality 27:287‐293, 2015. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

15.
16.
Protein tyrosine phosphatases are involved in diverse human diseases, including cancer, diabetes and inflammatory disorders. Loss of Vaccinia‐H1 related phosphatase (VHR) has been shown to arrest at the G1‐S and G2‐M transitions of the cell cycle, and to increases cell death of prostate cancer cells through JNK activation, suggesting that VHR can be considered as an anticancer target. In this study, 658 natural products were screened through in vitro enzyme assay to identify VHR inhibitor. Among the VHR‐inhibitory compounds, 1,2,3,4,6‐O‐pentagalloylglucose (PGG) was selected for further study as it has been reported to show antitumor effects against tumor model mice, but its direct target has not been identified. PGG inhibited the catalytic activity of VHR (Ki=53 nm ) in vitro. Furthermore, the incubation of HeLa cervical cancer cells with PGG dramatically decreased cell viability and markedly increased the protein levels of the cleaved PARP, a hallmark of apoptosis. In addition, treatment of HeLa cells with PGG significantly reduced the protein levels of cyclin D1, Bcl‐2 and STAT3 phosphorylation. Taken together, these results suggest that PGG could be a potential therapeutic candidate for the treatment of cervical cancer through VHR inhibition.  相似文献   

17.
18.
The synthesis of three racemates and the corresponding non‐chiral analogues of a C5‐methyl pyridazine series is described here, as well as the isolation of pure enantiomers and their absolute configuration assignment. In order to obtain optically active compounds, direct chromatographic methods of separation by HPLC‐UV were investigated using four chiral stationary phases (CSPs: Lux Amylose‐2, Lux Cellulose‐1, Lux Cellulose‐2 and Lux Cellulose‐3). The best resolution was achieved using amylose tris(5‐chloro‐2‐methylphenylcarbamate) (Lux Amylose‐2), and single enantiomers were isolated on a semipreparative scale with high enantiomeric excess, suitable for biological assays. The absolute configuration of optically active compounds was unequivocally established by X‐ray crystallographic analysis and comparative chiral HPLC‐UV profile. All compounds of the series were tested for formyl peptide receptor (FPR) agonist activity, and four were found to be active, with EC50 values in the micromolar range. Chirality 25:400–408, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

19.
Fibrillar amyloid plaques are largely composed of amyloid‐beta (Aβ) peptides that are metabolized into products, including Aβ1‐16, by proteases including matrix metalloproteinase 9 (MMP‐9). The balance between production and degradation of Aβ proteins is critical to amyloid accumulation and resulting disease. Regulation of MMP‐9 and its endogenous inhibitor tissue inhibitor of metalloproteinase (TIMP)‐1 by nitric oxide (NO) has been shown. We hypothesize that nitric oxide synthase (NOS2) protects against Alzheimer's disease pathology by increasing amyloid clearance through NO regulation of MMP‐9/TIMP‐1 balance. We show NO‐mediated increased MMP‐9/TIMP‐1 ratios enhanced the degradation of fibrillar Aβ in vitro, which was abolished when silenced for MMP‐9 protein translation. The in vivo relationship between MMP‐9, NO and Aβ degradation was examined by comparing an Alzheimer's disease mouse model that expresses NOS2 with a model lacking NOS2. To quantitate MMP‐9 mediated changes, we generated an antibody recognizing the Aβ1‐16 fragment, and used mass spectrometry multi‐reaction monitoring assay for detection of immunoprecipitated Aβ1‐16 peptides. Aβ1‐16 levels decreased in brain lysates lacking NOS2 when compared with strains that express human amyloid precursor protein on the NOS2 background. TIMP‐1 increased in the APPSwDI/NOS2?/? mice with decreased MMP activity and increased amyloid burden, thereby supporting roles for NO in the regulation of MMP/TIMP balance and plaque clearance.  相似文献   

20.
Intense efforts are underway to identify inhibitors of the enzyme gamma‐glutamyl transpeptidase 1 (GGT1) which cleaves extracellular gamma‐glutamyl compounds and contributes to the pathology of asthma, reperfusion injury and cancer. The glutamate analog, 6‐diazo‐5‐oxo‐norleucine (DON), inhibits GGT1. DON also inhibits many essential glutamine metabolizing enzymes rendering it too toxic for use in the clinic as a GGT1 inhibitor. We investigated the molecular mechanism of human GGT1 (hGGT1) inhibition by DON to determine possible strategies for increasing its specificity for hGGT1. DON is an irreversible inhibitor of hGGT1. The second order rate constant of inactivation was 0.052 mM ?1 min?1 and the K i was 2.7 ± 0.7 mM . The crystal structure of DON‐inactivated hGGT1 contained a molecule of DON without the diazo‐nitrogen atoms in the active site. The overall structure of the hGGT1‐DON complex resembled the structure of the apo‐enzyme; however, shifts were detected in the loop forming the oxyanion hole and elements of the main chain that form the entrance to the active site. The structure of hGGT1‐DON complex revealed two covalent bonds between the enzyme and inhibitor which were part of a six membered ring. The ring included the OG atom of Thr381, the reactive nucleophile of hGGT1 and the α‐amine of Thr381. The structure of DON‐bound hGGT1 has led to the discovery of a new mechanism of inactivation by DON that differs from its inactivation of other glutamine metabolizing enzymes, and insight into the activation of the catalytic nucleophile that initiates the hGGT1 reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号