首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The essential oils isolated from leaves, wood, and cones of the Tunisian endemic cypress Cupressus sempervirens L. var. numidica Trab. collected from three natural populations were characterized by GC‐FID and GC/MS analyses. In the wood, leaf, and cone oils, 38, 35, and 26 constituents, representing 94.4, 97.8, and 98.5% of the total oil composition, respectively, were identified. Monoterpenes constituted the major fraction of the oils from all organs and for all populations. The oils were found to be of an α‐pinene (64.2%)/δ‐car‐3‐ene (11.1%) chemotype with considerable contents of α‐humulene (3.4%) in the leaf oil, cedrol (2.8%) in the wood oil, and sabinene (3.2%) in the cone oil, respectively. α‐Pinene, δ‐car‐3‐ene, limonene, carvacrol methyl ether, α‐humulene, and α‐amorphene were the main components that differentiated the oils of the three organs in the cypress of Makthar.  相似文献   

2.
The chemical composition of the volatile oils obtained from the roots, leaves, flowers, and stems of Thapsia garganica of Tunisian origin was investigated by GC‐FID and GC/MS analyses. Sesquiterpene hydrocarbons and oxygenated monoterpenes were predominant in the oils of all plant parts. Bicyclogermacrene (21.59–35.09%) was the main component in the former compound class, whereas geranial (3.31–14.84%) and linalool (0.81–10.9%) were the most prominent ones in the latter compound class. Principal‐component (PCA) and hierarchical‐cluster (HCA) analyses revealed some common constituents, but also significant variability amongst the oils of the different plant parts. This organ‐specific oil composition was discussed in relation to their biological and ecological functions. For the evaluation of the intraspecific chemical variability in T. garganica, the composition of the flower volatile oils from four wild populations was investigated. Bicyclogermacrene, linalool, and geranial were predominant in the oils of three populations, whereas epicubenol, β‐sesquiphellandrene, and cadina‐1,4‐diene were the most prominent components of the oil of one population. PCA and HCA allowed the separation of the flower oils into three distinct groups, however, no relationship was found between the volatile‐oil composition and the geographical distribution and pedoclimatic conditions of the studied populations.  相似文献   

3.
Mexican oregano (Lippia graveolens) is an important aromatic plant, mainly used as flavoring and usually harvested from non‐cultivated populations. Mexican oregano essential oil showed important variation in the essential‐oil yield and composition. The composition of the essential oils extracted by hydrodistillation from 14 wild populations of L. graveolens growing along an edaphoclimatic gradient was evaluated. Characterization of the oils by GC‐FID and GC/MS analyses allowed the identification of 70 components, which accounted for 89–99% of the total oil composition. Principal component and hierarchical cluster analyses divided the essential oils into three distinct groups with contrasting oil compositions, viz., two phenolic chemotypes, with either carvacrol (C) or thymol (T) as dominant compounds (contents >75% of the total oil composition), and a non‐phenolic chemotype (S) dominated by oxygenated sesquiterpenes. While Chemotype C was associated with semi‐arid climate and shallower and rockier soils, Chemotype T was found for plants growing under less arid conditions and in deeper soils. The plants showing Chemotype S were more abundant in subhumid climate. High‐oil‐yield individuals (>3%) were identified, which additionally presented high percentages of either carvacrol or thymol; these individuals are of interest, as they could be used as parental material for scientific and commercial breeding programs.  相似文献   

4.
The essential oils of 25 populations of Dalmatian sage (Salvia officinalis L.) from nine Balkan countries, including 17 indigenous populations (representing almost the entire native distribution area) and eight non‐indigenous (cultivated or naturalized) populations were analyzed. Their essential‐oil yield ranged from 0.25 to 3.48%. Within the total of 80 detected compounds, ten (β‐pinene, 1,8‐cineole, cis‐thujone, trans‐thujone, camphor, borneol, trans‐caryophyllene, α‐humulene, viridiflorol, and manool) represented 42.60 to 85.70% of the components in the analyzed essential oils. Strong positive correlations were observed between the contents of trans‐caryophyllene and α‐humulene, α‐humulene and viridiflorol, and viridiflorol and manool. Principal component analysis (PCA) on the basis of the contents of the ten main compounds showed that four principal components had an eigenvalue greater than 1 and explained 79.87% of the total variation. Performing cluster analysis (CA), the sage populations could be grouped into four distinct chemotypes (AD). The essential oils of 14 out of the 25 populations of Dalmatian sage belonged to Chemotype A and were rich in cis‐thujone and camphor, with low contents of trans‐thujone. The correlation between the essential‐oil composition and geographic variables of the indigenous populations was not significant; hence, the similarities in the essential‐oil profile among populations could not be explained by the physical proximity of the populations. Additionally, the southeastern populations tended to have higher EO yields than the northwestern ones.  相似文献   

5.
The composition and variability of the terpenes and their derivatives isolated from the needles of a representative pool of 114 adult trees originating from four natural populations of dwarf mountain pine (Pinus mugo Turra ) from the Julian Alps were investigated by GC‐FID and GC/MS analyses. In total, 54 of the 57 detected essential‐oil components were identified. Among the different compound classes present in the essential oils, the chief constituents belonged to the monoterpenes, comprising an average content of 79.67% of the total oil composition (74.80% of monoterpene hydrocarbons and 4.87% of oxygenated monoterpenes). Sesquiterpenes were present in smaller amounts (average content of 19.02%), out of which 16.39% were sesquiterpene hydrocarbons and 2.62% oxygenated sesquiterpenes. The most abundant components in the needle essential oils were the monoterpenes δ‐car‐3‐ene, β‐phellandrene, α‐pinene, β‐myrcene, and β‐pinene and the sesquiterpene β‐caryophyllene. From the total data set of 57 detected compounds, 40 were selected for principal‐component analysis (PCA), discriminant analysis (DA), and cluster analysis (CA). The overlap tendency of the four populations suggested by PCA, was as well observed by DA. CA also demonstrated similarity among the populations, which was the highest between Populations I and II.  相似文献   

6.
Salvia tomentosa essential oils from Greece were studied for the first time here. The oils from five populations growing in Mediterranean pine forests on the island of Thassos (northern Aegean Sea) and from 14 populations situated in deciduous forests in Thrace (northeastern Greek mainland) were investigated. Their essential‐oil contents ranged from 1.1 to 3.3% (v/w, based on the dry weight of the plant material). The populations from Thassos had high contents of α‐pinene (18.0±2.9%), 1,8‐cineole (14.7±3.0%), cis‐thujone (14.0±6.9%), and borneol (12.8±2.2%) and smaller amounts of camphene, camphor, and β‐pinene, whereas the populations from Thrace showed high α‐pinene (16.7±4.0%), β‐pinene (22.8±4.5%), camphor (18.3±4.3%), and camphene (10.3±2.4%) contents, much lower 1,8‐cineole and borneol amounts, while cis‐thujone was completely lacking. The comparison of the present results with published data showed that oils having cis‐thujone as one of the main compounds were reported for the first time here. Multivariate statistical analyses indicate that the observed essential‐oil variation was related to geographical and environmental factors.  相似文献   

7.
Ripe cones of Juniperus communis L. (Cupressaceae) were collected from five wild populations in Kosovo, with the aim of investigating the chemical composition and natural variation of essential oils between and within wild populations. Ripe cones were collected, air dried, crushed, and the essential oils obtained by hydrodistillation. The essential‐oil constituents were identified by GC‐FID and GC/MS analyses. The yield of essential oil differed depending on the population origins and ranged from 0.4 to 3.8% (v/w, based on the dry weight). In total, 42 compounds were identified in the essential oils of all populations. The principal components of the cone‐essential oils were α‐pinene, followed by β‐myrcene, sabinene, and D ‐limonene. Taking into consideration the yield and chemical composition, the essential oil originating from various collection sites in Kosovo fulfilled the minimum requirements for J. communis essential oils of the European Pharmacopoeia. Hierarchical cluster analysis (HCA) and principal component analysis (PCA) were used to determine the influence of the geographical variations on the essential‐oil composition. These statistical analyses suggested that the clustering of populations was not related to their geographic location, but rather appeared to be linked to local selective forces acting on the chemotype diversity.  相似文献   

8.
The fruit essential oils of two populations of Astrantia major L. (Apiaceae, subfamily Saniculoideae) were analyzed in detail by GC and GC/MS analyses. Seventy‐six constituents identified accounted for 92.7–94.0% of the oils. The two oils differed significantly: the wild‐growing population from Serbia contained zingiberene (47.9%), β‐bisabolene (9.7%), and β‐sesquiphellandrene (7.9%), while the one from Poland (botanical gardens) was sesquiterpene‐poor with the major contributors oleic acid (38.6%), nonacosane (15.4%), and linoleic acid (5.1%). Motivated by the unresolved taxonomical relations between the Saniculoideae and Apioideae subfamilies, we performed multivariate statistical analyses on the compositional data of these A. major samples, and additional 14 Saniculoideae and 31 Apioideae taxa. This allowed us to assess the chemotaxonomical usefulness of such chemical data in differentiating taxa from these two Apiaceae subfamilies and to corroborate the existence of at least two A. major chemotypes. Diethyl ether extracts of the two samples of A. major fruits yielded seven diaryltetrahydrofurofurano lignans. Except for eudesmin that has been found for the first time in a Saniculoideae taxon, all other lignans (magnolin, epimagnolins A and B, epieudesmin, yangambin, and epiyangambin) are new for the entire plant family Apiaceae. The lignan profiles also supported the existence of two separate A. major chemotypes.  相似文献   

9.
Essential oils of 25 indigenous populations of Dalmatian sage (Salvia officinalis L.) that represent nearly half of native distribution area of the species were analyzed. Plantlets collected from wild populations were grown in the same field under the same environmental conditions and then sampled for essential‐oil analysis. The yield of essential oil ranged from 1.93 to 3.70% with average of 2.83%. Among the 62 compounds detected, eight (cis‐thujone, camphor, trans‐thujone, 1,8‐cineole, β‐pinene, camphene, borneol, and bornyl acetate) formed 78.13–87.33% of essential oils of individual populations. Strong positive correlations were observed between camphor and β‐pinene, β‐pinene and borneol, as well as between borneol and bornyl acetate. The strongest negative correlation was detected between camphor and trans‐thujone. Principal component analysis (PCA) on the basis of eight main compounds showed that first main component separated populations with high thujone content, from those rich in camphor, while the second component separated populations rich in cis‐thujone from those rich in trans‐thujone. Cluster analysis (CA) led to the identification of three chemotypes of S. officinalis populations: cis‐thujone; trans‐tujone, and camphor/β‐pinene/borneol/bornyl acetate. We propose that differences in essential oils of 25 populations are mostly genetically controlled, since potential environmental factors were controlled in this study.  相似文献   

10.
Analyses by GC, GC/MS, and NMR spectroscopy (1D‐ and 2D‐experiments) of the essential oil and Et2O extract of Trinia glauca (L .) Dumort . (Apiaceae) aerial parts allowed a successful identification of 220 constituents, in total. The major identified compounds of the essential oil were (Z)‐falcarinol (10.6%), bicyclogermacrene (8.0%), germacrene D (7.4%), δ‐cadinene (4.3%), and β‐caryophyllene (3.2%), whereas (Z)‐falcarinol (47.2%), nonacosane (7.4%), and 5‐O‐methylvisamminol (4.0%) were the dominant constituents of the extract of T. glauca. One significant difference between the compositions of the herein and the previously analyzed T. glauca essential oils (only two reports) was noted. (Z)‐Falcarinol was the major constituent in our case, whereas germacrene D (14.4 and 19.6%) was the major component of the previously studied oils. Possible explanations for this discrepancy were discussed. 5‐O‐Methylvisamminol, a (furo)chromone identified in the extract of T. glauca, has a limited occurrence in the plant kingdom and is a possible excellent chemotaxonomic marker (family and/or subfamily level) for Apiaceae.  相似文献   

11.
The chemical composition of 48 essential‐oil samples isolated from the leaves of Xylopia aethiopica harvested in six Ivoirian forests was investigated by GC‐FID and 13C‐NMR analyses. In total, 23 components accounting for 82.5–96.1% of the oil composition were identified. The composition was dominated by the monoterpene hydrocarbons β‐pinene (up to 61.1%) and α‐pinene (up to 18.6%) and the sesquiterpene hydrocarbon germacrene D (up to 28.7%). Hierarchical cluster and principal component analyses allowed the distinction of two groups on the basis of the β‐pinene and germacrene D contents. The chemical composition of the oils of Group I (38 oil samples) was clearly dominated by β‐pinene, while those of Group II (10 samples) were characterized by the association of β‐pinene and germacrene D. The leaves collected in the four inland forests produced β‐pinene‐rich oils (Group I), while the oil samples belonging to Group II were isolated from leaves harvested in forests located near the littoral.  相似文献   

12.
Dormant buds are recognized as valuable side product of the blackcurrant cultivation. Four blackcurrant varieties cultivated in Serbia, i.e., Ben Sarek, Ometa, Ben Lomond, and Ben Nevis, were evaluated for the content, chemical composition, and antimicrobial activity of their bud essential oils. The oil yields of buds harvested during two different growth periods ranged from 1.2–2.0%, and the variety Ometa had the highest yield among the tested varieties. GC‐FID and GC/MS analysis of the oils allowed the identification of eight main components, i.e., α‐pinene (1.6–5.4%), sabinene (1.9–38.4%), δ‐car‐3‐ene (13.0–50.7%), β‐phellandrene (2.9–18.0%), terpinolene (6.6–11.9%), terpinen‐4‐ol (0.9–6.6%), βcaryophyllene (3.8–10.4%), and α‐humulene (0.2–4.1%). In addition, the similarity degree of the essential‐oil compositions of buds harvested from the upper and lower parts of the shrubs was investigated by hierarchical clustering. All essential oils originating from the same genotype were grouped in the same cluster, indicating the reliability of essential oils as chemotaxonomic markers. For more detailed chemotaxonomic investigations, the three compounds with the greatest variance were chosen, i.e., sabinene, δ‐car‐3‐ene, and β‐phellandrene, which proved to be efficient for the variety distinction. Factor analysis showed that the essential‐oil composition as chemotaxonomic marker in blackcurrants was more reliable for variety Ben Sarek than for variety Ben Nevis. Moreover, it was demonstrated that the essential oils had very strong inhibitory activity against all tested microorganisms. Fungi were more sensitive than bacteria; indeed their growth was completely inhibited at much lower concentrations. In comparison to commercial antibiotics, significantly lower concentrations of the oils were necessary for the complete inhibition of fungal growth.  相似文献   

13.
The chemical composition of the essential oils isolated from the aerial parts of Anthemis pignattiorum Guarino, Raimondo & Domina and A. ismelia Lojac . and the aerial parts and flowers of Anthemis cupaniana Tod . ex Nyman , three endemic Sicilian species belonging to the section Hiorthia, was determined by GC‐FID and GC/MS analyses. (Z)‐Muurola‐4(14),5‐diene (27.3%) was recognized as the main constituent of the A. pignattiorum essential oil, together with isospathulenol (10.6%), sabinene (7.7%), and artemisyl acetate (6.8%), while in the oil obtained from the aerial parts of A. ismelia, geranyl propionate (8.8%), bornyl acetate (7.9%), β‐thujone (7.8%), neryl propionate (6.5%), and τ‐muurolol (6.5%) prevailed. α‐Pinene was the main compound of both the aerial part and flower oils of A. cupaniana (18.4 and 13.2%, resp.). Also noteworthy are the considerable amounts of artemisyl acetate (12.7%) and β‐thujone (11.8%) found in the oil from the aerial parts and those of tricosane (9.8%) and sabinene (7.6%) evidenced in the flower oil. Furthermore, an update on the main compounds identified in the essential oils of all the Anthemis taxa studied so far was presented, and cluster analyses were carried out, to compare the essential oils of these taxa.  相似文献   

14.
The essential oils of Daucus carota L. (Apiaceae) seeds sampled from ten wild populations spread over northern Tunisia were characterized by GC‐FID and GC/MS analyses. In total, 36 compounds were identified in the D. carota seed essential oils, with a predominance of sesquiterpene hydrocarbons in most samples (22.63–89.93% of the total oil composition). The main volatile compounds identified were β‐bisabolene (mean content of 39.33%), sabinene (8.53%), geranyl acetate (7.12%), and elemicin (6.26%). The volatile composition varied significantly across the populations, even for oils of populations harvested in similar areas. The chemometric principal component analysis and the hierarchical clustering identified four groups, each corresponding to a composition‐specific chemotype. The in vitro antimicrobial activity of the isolated essential oils was preliminarily evaluated, using the disk‐diffusion method, against one Gram‐positive (Staphylococcus aureus) and two Gram‐negative bacteria (Escherichia coli and Salmonella typhimurium), as well as against a pathogenic yeast (Candida albicans). All tested essential oils exhibited interesting antibacterial and antifungal activities against the assayed microorganisms.  相似文献   

15.
The needle‐terpene profiles of two natural Pinus heldreichii populations from Mts. O?ljak and Gali?ica (Scardo‐Pindic mountain system) were analyzed. Among the 68 detected compounds, 66 were identified. The dominant constituents were germacrene D (28.7%), limonene (27.1%), and α‐pinene (16.2%). β‐Caryophyllene (6.9%), β‐pinene (5.2%), β‐myrcene (2.3%), pimaric acid (2.0%), α‐humulene (1.2%), and seven additional components were found to be present in medium‐to‐high amounts (0.5–10%). Although the general needle‐terpene profile of the population from Gali?ica was similar to those of the populations from Lov?en, Zeletin, Bjelasica, and Zlatibor‐Pe?ter (belonging to the Dinaric Alps), the principle‐component analysis (PCA) of seven terpenes (β‐myrcene, limonene, β‐elemene, β‐caryophyllene, α‐humulene, δ‐cadinene, and germacrene D‐4‐ol) in 121 tree samples suggested a partial divergence in the needle‐terpene profiles between the populations from the Scardo‐Pindic mountain system and the Dinaric Alps. According to previously reported data, the P. heldreichii samples from the Balkan‐Rhodope mountains lack β‐caryophyllene and germacrene D, but contain γ‐muurolene in their terpene profile. Differences in the terpene composition between populations growing in the three above‐mentioned mountain systems were compared and discussed.  相似文献   

16.
The essential‐oil compositions of one Croatian and three Serbian populations of Juniperus deltoides R.P.Adams have been determined by GC/MS analysis. In total, 147 compounds were identified, representing 97.3–98.3% of the oil composition. The oils were dominated by monoterpenes, which are characteristic components for the species of the section Juniperus. Two monoterpenes, α‐pinene and limonene, were the dominant constituents, with a summed‐up average content of 49.45%. Statistical methods were used to determine the diversity of the terpene classes and the common terpenes between the newly described J. deltoides populations from Serbia and Croatia. Only reports on several specimens from this species have been reported so far, and there are no studies that treat population diversity. Cluster analysis of the oil contents of 21 terpenes showed high correlation with the geographical distribution of the populations, separating the Croatian from the Serbian populations. The comparison of the essential‐oil compositions obtained in the present study with literature data, showed the separation of J. deltoides and J. oxycedrus ssp. oxycedrus from the western Mediterranean region.  相似文献   

17.
This study is the first report on the composition and variability of essential oil in the relic, endemic, and vulnerable tree species Serbian spruce, Picea omorika, in its natural populations. In the needles of 108 trees of four natural populations, 49 components of essential oils were identified. The main compounds were bornyl acetate (29.2%), camphene (18.7%), and α‐pinene (12.9%). Fourteen additional components had the contents of up to 0.5%: α‐cadinol (6.1%), limonene (5.8%), santene (3.5%), (E)hex‐2‐enal (2.9%), T‐cadinol (2.9%), δ‐cadinene (2.3%), tricyclene (2.1%), myrcene (1.6%), β‐pinene (1.2%), borneol (0.9%), germacrene D (0.9%), α‐muurolene (0.6%), and two unidentified compounds. Population IV from Mile?evka Canyon had a much higher content of bornyl acetate (42.9%). Populations I–III from Mt. Tara were more abundant in sesquiterpenes (up to 18.2%). The content of bornyl acetate, the multi‐variation analyses according to seven selected components, especially the cluster analysis and genetic analysis of α‐cadinol, which suggested the monogenic type of heredity, showed a clear differentiation of the two geographic areas, the similarity of populations I–III from the area of Mt. Tara, and the separation of the population IV from Mile?evka Canyon.  相似文献   

18.
The chemical composition of 42 essential‐oil samples isolated from the leaves of Xylopia quintasii harvested in three Ivoirian forests was investigated by GC‐FID, including the determination of retention indices (RIs), and by 13C‐NMR analyses. In total, 36 components accounting for 91.9–92.6% of the oil composition were identified. The content of the main components varied drastically from sample to sample: (E)‐β‐caryophyllene (0.9–56.9%), (Z)‐β‐ocimene (0.3–54.6%), β‐pinene (0.8–27.9%), α‐pinene (0.1–22.8%), and furanoguaia‐1,4‐diene (0.0–17.6%). The 42 oil compositions were submitted to hierarchical cluster and principal components analysis, which allowed the distinction of three groups within the oil samples. The composition of the oils of the major group (22 samples) was dominated by (E)‐β‐caryophyllene. The oils of the second group (12 samples) contained β‐pinene and α‐pinene as the principal compounds, while the oils of the third group (8 samples) were dominated by (Z)‐β‐ocimene, germacrene D, (E)‐β‐ocimene, and furanoguaia‐1,4‐diene. The oil samples of Group I and II came from clay‐soil forests, while the oil samples belonging to Group III were isolated from leaves harvested in a sandy‐soil forest.  相似文献   

19.
The chemical composition, antibacterial and antioxidant activities of the essential oil obtained from Eryngium triquetrum from Algeria were studied. The chemical composition of sample oils from 25 locations was investigated using GC‐FID and GC/MS. Twenty‐four components representing always more than 87% were identified in essential oils from total aerial parts of plants, stems, flowers and roots. Falcarinol is highly dominant in the essential oil from the roots (95.5%). The relative abundance of falcarinol in the aerial parts correlates with the phenological stages of the plant. Aerial parts of E. triquetrum produce an essential oil dominated by falcarinol during the early flowering stage, and then there is a decrease in falcarinol and rebalancing of octanal during the flowering stage. To our knowledge, the present study is the first report of the chemical composition of E. triquetrum essential oil. Evaluation of the antibacterial activity by means of the paper disc diffusion method and minimum inhibitory concentration assays, showed a moderate efficiency of E. triquetrum essential oil. Using the DPPH method, the interesting antioxidant activity of E. triquetrum essential oil was established. These activities could be attributed to the dominance of falcarinol. The outcome of our literature search on the occurrence of falcarinol in essential oils suggests that E. triquetrum from Algeria could be considered as a possible source of natural falcarinol.  相似文献   

20.
The variation of the essential‐oil composition among ten wild populations of Stachys lavandulifolia Vahl (Lamiaceae), collected from different geographical regions of Iran, was assessed by GC‐FID and GC/MS analyses, and their intraspecific chemical variability was determined. Altogether, 49 compounds were identified in the oils, and a relatively high variation in their contents was found. The major compounds of the essential oils were myrcene (0.0–26.2%), limonene (0.0–24.5%), germacrene D (4.2–19.3%), bicyclogermacrene (1.6–18.0%), δ‐cadinene (6.5–16.0%), pulegone (0.0–15.1%), (Z)‐hex‐3‐enyl tiglate (0.0–15.1%), (E)‐caryophyllene (0.0–12.9), α‐zingiberene (0.2–12.2%), and spathulenol (1.6–11.1%). For the determination of the chemotypes and the chemical variability, the essential‐oil components were subjected to cluster analysis (CA). The five different chemotypes characterized were Chemotype I (germacrene D/bicyclogermacrene), Chemotype II (germacrene D/spathulenol), Chemotype III (limonene/δ‐cadinene), Chemotype IV (pulegone), and Chemotype V (α‐zingiberene). The high chemical variation among the populations according to their geographical and bioclimatic distribution imposes that conservation strategies of populations should be made appropriately, taking into account these factors. The in situ and ex situ conservation strategies should concern all populations representing the different chemotypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号