首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Omentum fat derived stem cells have emerged as an alternative and accessible therapeutic tool in recent years in contrast to the existing persuasive sources of stem cells, bone marrow and subcutaneous adipose tissue. However, there has been a scanty citation on human omentum fat derived stem cells. Furthermore, identification of specific cell surface markers among aforesaid sources is still controversial. In lieu of this existing perplexity, the current research work aims at signifying omentum fat as a ground-breaking source of stem cells by surface antigenic profiling of stem cell population. In this study, we examined and compared the profiling of cell surface antigenic expressions of hematopoietic stem cells, mesenchymal stem cells, cell adhesion molecules and other unique markers such as ABCG2, ALDH and CD 117 in whole cell population of human omentum fat, subcutaneous fat and bone marrow. The phenotypic characterization through flowcytometry revealed the positive expressions of CD 34, CD 45, CD 133, HLADR, CD 90, CD 105, CD 73, CD 29, CD 13, CD 44, CD 54, CD 31, ALDH and CD 117 in all sources. The similarities between the phenotypic expressions of omentum fat derived stem cells to that of subcutaneous fat and bone marrow substantiates that identification of ultimate source for curative therapeutics is arduous to assess. Nevertheless, these results support the potential therapeutic application of omentum fat derived stem cells.

Electronic supplementary material

The online version of this article (doi:10.1007/s10616-012-9427-4) contains supplementary material, which is available to authorized users.  相似文献   

2.
Recent scientific explorations in search of novel sources for autologous transplantation transpired an alternative source of MSCs (mesenchymal stem cells) derived from omentum fat. The scarcity of experimental evidences probing into the biosafety concerns of omentum fat‐derived MSC under prolonged culture conditions limits its applicability as an efficient tool in regenerative medicine. This study, thus, aims to optimize human omentum fat‐derived MSC in four different media [DMEM (Dulbecco's modified Eagle's medium) LG (low glucose), DMEM KO (knock out), α‐MEM (α‐minimal essential media) and DMEM F12] in the facets of phenotypic characterization, growth kinetics, differentiation and karyotyping under prolonged culture. The cells exhibited a similarity in expression profile for the majority of markers with evidential variations in certain markers. The relevance of omentum fat‐derived MSCs became evident from its triumphant differentiation potential and karyotypic stability substantiated even at later passage. The results obtained from growth curve and PDT (population doubling time) lead to optimization of appropriate media for omentum fat‐derived stem cell research, thereby bringing omentum fat into the forefront of regenerative medicine.  相似文献   

3.
4.
Playing with bone and fat   总被引:15,自引:0,他引:15  
The relationship between bone and fat formation within the bone marrow microenvironment is complex and remains an area of active investigation. Classical in vitro and in vivo studies strongly support an inverse relationship between the commitment of bone marrow-derived mesenchymal stem cells or stromal cells to the adipocyte and osteoblast lineage pathways. In this review, we focus on the recent literature exploring the mechanisms underlying these differentiation events and discuss their implications relevant to osteoporosis and regenerative medicine.  相似文献   

5.
Although stem cells are present in various adult tissues and body fluids, bone marrow has been the most popular source of stem cells for treatment of a wide range of diseases. Recent results for stem cells from adipose tissue have put it in a position to compete for being the leading therapeutic source. The major advantage of these stem cells over their counterparts is their amazing proliferative and differentiation potency. However, their pancreatic lineage transdifferentiation competence was not compared to that for bone marrow-derived stem cells. This study aims to identify an efficient source for transdifferentiation into pancreatic islet-like clusters, which would increase potential application in curative diabetic therapy. The results reveal that mesenchymal stem cells (MSC) derived from bone marrow and subcutaneous adipose tissue can differentiate into pancreatic islet-like clusters, as evidenced by their islet-like morphology, positive dithizone staining and expression of genes such as Nestin, PDX1, Isl 1, Ngn 3, Pax 4 and Insulin. The pancreatic lineage differentiation was further corroborated by positive results in the glucose challenge assay. However, the results indicate that bone marrow-derived MSCs are superior to those from subcutaneous adipose tissue in terms of differentiation into pancreatic islet-like clusters. In conclusion, bone marrow-derived MSC might serve as a better alternative in the treatment of diabetes mellitus than those from adipose tissue.  相似文献   

6.
骨髓基质干细胞的分离纯化及培养   总被引:5,自引:0,他引:5  
目的 建立骨髓基质干细胞(MSCs)良好的分离纯化和培养方法。方法 将小鼠骨髓基质干细胞自殷骨中分离,应用贴壁选择法结合细胞克隆挑选法进行分离纯化,应用细胞生长因子(EGF和PDGF-BB)刺激法进行MSCs的体外培养和传代,倒置显微镜下观察分离培养的细胞并照像记录。结果,培养获得了纯化的呈梭形成纤雏样细胞的骨髓基质干细胞。在生长因子EGF和PDGF-BB的共同作用下,传代MSCs生长旺盛,形态均一。结论 该方法是简便高效的骨髓基质干细胞的分离纯化和培养方法。  相似文献   

7.
Presently, bone marrow is considered as a prime source of mesenchymal stem cells; however, there are some drawbacks and limitations. Compared with other mesenchymal stem cell (MSC) sources, gingiva‐derived mesenchymal stem cells (GMSCs) are abundant and easy to obtain through minimally invasive cell isolation techniques. In this study, MSCs derived from gingiva and bone marrow were isolated and cultured from mice. GMSCs were characterized by osteogenic, adipogenic and chondrogenic differentiation, and flow cytometry. Compared with bone marrow MSCs (BMSCs), the proliferation capacity was judged by CCK‐8 proliferation assay. Osteogenic differentiation was assessed by ALP staining, ALP assay and Alizarin red staining. RT‐qPCR was performed for ALP, OCN, OSX and Runx2. The results indicated that GMSCs showed higher proliferative capacity than BMSCs. GMSCs turned more positive for ALP and formed a more number of mineralized nodules than BMSCs after osteogenic induction. RT‐qPCR revealed that the expression of ALP, OCN, OSX and Runx2 was significantly increased in the GMSCs compared with that in BMSCs. Moreover, it was found that the number of CD90‐positive cells in GMSCs elevated more than that of BMSCs during osteogenic induction. Taking these results together, it was indicated that GMSCs might be a promising source in the future bone tissue engineering.  相似文献   

8.
The presence within bone marrow of a population of mesenchymal stem cells (MSCs) able to differentiate into a number of different mesenchymal tissues, including bone and cartilage, was first suggested by Friedenstein nearly 40 years ago. Since then MSCs have been demonstrated in a variety of fetal and adult tissues, including bone marrow, fetal blood and liver, cord blood, amniotic fluid and, in some circumstances, in adult peripheral blood. MSCs from all of these sources can be extensively expanded in vitro and when cultured under specific permissive conditions retain their ability to differentiate into multiple lineages including bone, cartilage, fat, muscle, nerve, glial and stromal cells. There has been great interest in these cells both because of their value as a model for studying the molecular basis of differentiation and because of their therapeutic potential for tissue repair and immune modulation. However, MSCs are a rare population in these tissues. Here we tried to identify cells with MSC-like potency in human placenta. We isolated adherent cells from trypsin-digested term placentas and examined these cells for morphology, surface markers, and differentiation potential and found that they expressed several stem cell markers. They also showed endothelial and neurogenic differentiation potentials under appropriate conditions. We suggest that placenta-derived cells have multilineage differentiation potential similar to MSCs in terms of morphology and cell-surface antigen expression. The placenta may prove to be a useful source of MSCs.  相似文献   

9.
程飞飞  杨智  钱程 《生物工程学报》2014,30(10):1515-1521
去分化脂肪(Dedifferentiated fat,DFAT)细胞是由人体内含量最丰富的成熟脂肪细胞经体外天花板法培养去分化而来。研究发现:DFAT细胞具有均一性高、对供者年龄要求较低等脂肪来源干细胞(Adipose-derived stem cells,ASCs)和骨髓间充质干细胞(Bone marrow mesenchymal stem cells,BMSCs)所不具有的优势。此外,它还具有体内外成脂、成软骨、成骨、成肌、成神经等多向分化能力以及免疫调节能力。作为具有潜力的组织工程及同种异体干细胞移植的优秀种子细胞,DFAT细胞在治疗骨缺损、神经性疾病、局部缺血性心脏病及肾脏疾病等方面均具有较好的应用前景,对其开展深入的研究具有重要的理论和实践意义。文中从免疫学性质、多向分化能力及临床应用潜力等方面对DFAT细胞的研究进展作一综述。  相似文献   

10.
11.
目的研究骨髓间充质干细胞分化为心肌细胞过程中Notch表达的研究。方法用密度梯度离心法分离培养犬骨髓间充质干细胞,按照酶法及差速贴壁法分离培养心肌细胞。观察干细胞增殖及传代情况。单独培养的干细胞为对照组,实验组将骨髓间充质干细胞与心肌细胞共培养,用RT-PCR、免疫细胞化学、MTT等方法检测干细胞分化为心肌细胞的情况,及干细胞在增殖与分化为心肌细胞过程中Notch信号系统的表达情况。结果骨髓间充质干细胞呈梭形、旋涡样生长,增殖及传代能力强,并可诱导分化为心肌样细胞,免疫荧光示心肌细胞标志物的表达。RT-PCR及免疫细胞化学显示实验组有Notch信号通路受体及配体的表达,而对照组表达微弱。结论骨髓间充质干细胞在增殖及分化过程中存在Notch信号通路,在干细胞分化为心肌细胞过程中Notch信号系统的表达上调。  相似文献   

12.
The therapeutic use of ionizing radiation (e.g., X-rays and γ-rays) needs to inflict minimal damage on non-target tissue. Recent studies have shown that substance P (SP) mediates multiple activities in various cell types, including cell proliferation, anti-apoptotic responses, and inflammatory processes. The present study investigated the effects of SP on γ-irradiated bone marrow stem cells (BMSCs). In mouse bone marrow extracts, SP prolonged activation of Erk1/2 and enhanced Bcl-2 expression, but attenuated the activation of apoptotic molecules (e.g., p38 and cleaved caspase-3) and down-regulated Bax. We also observed that SP-decreased apoptotic cell death and stimulated cell proliferation in γ-irradiated mouse bone marrow tissues through TUNEL assay and PCNA analysis. To determine how SP affects bone marrow stem cell populations, mouse bone marrow cells were isolated and colony-forming unit (CFU) of mesenchymal stem cells (MSCs) and hematopoietic stem cells (HSCs) was estimated. SP-pretreated ones showed higher CFUs of MSC and HSC than untreated ones. Furthermore, when SP was pretreated in cultured human MSC, it significantly decreased apoptotic cells at 48 and 72 h after γ-irradiation. Compared with untreated cells, SP-treated human MSCs showed reduced cleavage of apoptotic molecules such as caspase-8, -9, -3, and poly ADP-ribose polymerase (PARP). Thus, our results suggest that SP alleviates γ-radiation-induced damage to mouse BMSCs and human MSCs via regulation of the apoptotic pathway.  相似文献   

13.
Potdar PD  D'Souza SB 《Human cell》2010,23(4):152-155
Mesenchymal stem cells (MSCs) have immense therapeutic potential because of their ability to self-renew and differentiate into various connective tissue lineages. The in vitro proliferation and expansion of these cells is necessary for their use in stem cell therapy. Recently our group has developed and characterized mesenchymal stem cells from subcutaneous and visceral adipose tissue. We observed that these cells show a slower growth rate at higher passages and therefore decided to develop a supplemented medium, which will induce proliferation. Choi et al. have recently shown that the use of ascorbic acid enhances the proliferation of bone marrow derived MSCs. We therefore studied the effect of ascorbic acid on the proliferation of MSCs and characterized their phenotypes using stem cell specific molecular markers. It was observed that the use of 250 μM ascorbic acid promoted the significant growth of MSCs without loss of phenotype and differentiation potential. There was no considerable change in gene expression of cell surface markers CD105, CD13, Nanog, leukemia inhibitory factor (LIF) and Keratin 18. Moreover, the MSCs maintained in the medium supplemented with ascorbic acid for a period of 4 weeks showed increase in pluripotency markers Oct4 and SOX 2. Also cells in the experimental group retained the typical spindle shaped morphology. Thus, this study emphasizes the development of suitable growth medium for expansion of MSCs and maintenance of their undifferentiated state for further therapeutic use.  相似文献   

14.
Diabetes mellitus is the most common endocrine disorder that affects more than 285 million people worldwide. The purpose of this study was to investigate the effect of mesenchymal stem cells (MSCs) from the bone marrow of albino rats, on hyperglycemia, hyperlipidemia, and oxidative stress induced by intraperitoneal injection (i.p.) of alloxan at a dose of 150 mg/kg in rats. Injection of alloxan into rats resulted in a significant increase in serum glucose, total cholesterol, triglyceride, low density lipoprotein cholesterol, and sialic acid level and a significant decrease in serum insulin, high density lipoprotein-cholesterol, vitamin E, and liver glycogen as compared to their corresponding controls. Also, oxidative stress was noticed in pancreatic tissue as evidenced by a significant decrease in glutathione level, superoxide dismutase, glutathione-S-transferase activities, also a significant increase in malondialdehyde and nitric oxide levels when compared to control group. Treatment of diabetic rats with MSCs stem cells significantly prevented these alterations and attenuated alloxan-induced oxidative stress. In conclusion, rat bone marrow harbors cells that have the capacity to differentiate into functional insulin-producing cells capable of controlling hyperglycemia, hyperlipidemia, and oxidative stress in diabetic rats. This may be helpful in the prevention of diabetic complications associated with oxidative stress.  相似文献   

15.
16.
卫静  袁发焕  黄云剑 《生物磁学》2011,(10):1987-1990
骨髓间充质干细胞是目前广受关注的一群成体干细胞,具有取材容易,增殖能力强,生物学特性稳定,可以跨胚层分化,低免疫源性,参与受损组织修复等优点,随着组织工程的兴起和发展以及其自身所特有的生物学特性,人们逐渐认识到将骨髓间充质干细胞作为肾脏病移植治疗的种子细胞具有良好的应用前景。本文就骨髓间充质干细胞的生物学特性及其在肾脏病移植治疗中的进展做一综述。  相似文献   

17.
骨髓间充质干细胞是目前广受关注的一群成体干细胞,具有取材容易,增殖能力强,生物学特性稳定,可以跨胚层分化,低免疫源性,参与受损组织修复等优点,随着组织工程的兴起和发展以及其自身所特有的生物学特性,人们逐渐认识到将骨髓间充质干细胞作为肾脏病移植治疗的种子细胞具有良好的应用前景。本文就骨髓间充质干细胞的生物学特性及其在肾脏病移植治疗中的进展做一综述。  相似文献   

18.
AIM: To improve the isolation and expansion of human marrow-derived mesenchymal stem cells (MSCs) based on rat samples. METHODS: Based on the fact that rat MSCs are relatively easy to obtain from a small aspirate, bone marrow-derived MSCs from rat were cultured and characterized to set up the different protocols used in this study. Then, accordingly, almost the same protocols were performed on human healthy bone marrow samples, after obtaining approval of the ethics committee and gaining informed consent. We used different protocols and culture conditions, including the type of basal media and the culture composition. The MSCs were characterized by immunophenotyping and differentiation. RESULTS: There was no difference in morphology and proliferation capacity between different culture media at the first passage. During the 5-7th passages, the cells gradually lost their morphology and proliferation potential on Dulbecco’s modified Eagle’s medium (DMEM) high glucose and α modified Eagle’s medium. Although the cells expanded rapidly for up to 10 passages on DMEM low glucose containing 10% to 15% fetal calf serum (FCS), their proliferation was arrested without change in morphology and differentiation capacity at the third passage on 5% FCS. Flow cytometric analysis and functional tests confirmed that more than 90% of marrow cells which were isolated and expanded by our selective protocols were MSCs. CONCLUSION: We improved the isolation and expansion of human bone marrow derived MSCs, based on rat sample experiments, for further experimental and clinical use.  相似文献   

19.
The biologic characteristics of mesenchymal stem cells (MSCs) isolated from two distinct tissues, bone marrow and adipose tissue were evaluated in these studies. MSCs derived from human and non-human primate (rhesus monkey) tissue sources were compared. The data indicate that MSCs isolated from rhesus bone marrow (rBMSCs) and human adipose tissue (hASCs) had more similar biologic properties than MSCs of rhesus adipose tissue (rASCs) and human bone marrow MSCs (hBMSCs). Analyses of in vitro growth kinetics revealed shorter doubling time for rBMSCs and hASCs. rBMSCs and hASCs underwent significantly more population doublings than the other MSCs. MSCs from all sources showed a marked decrease in telomerase activity over extended culture; however, they maintained their mean telomere length. All of the MSCs expressed embryonic stem cell markers, Oct-4, Rex-1, and Sox-2 for at least 10 passages. Early populations of MSCs types showed similar multilineage differentiation capability. However, only the rBMSCs and hASCs retain greater differentiation efficiency at higher passages. Overall in vitro characterization of MSCs from these two species and tissue sources revealed a high level of common biologic properties. However, the results demonstrate clear biologic distinctions, as well.  相似文献   

20.
目的建立小型猪骨髓间充质干细胞(mesenchymal stem cells,MSCs)的体外分离和培养方法。方法穿刺小型猪髂后上嵴抽取骨髓,经密度梯度法离心得到骨髓单个核细胞,接种后形成单层贴壁细胞。用形态学方法鉴定培养的MSCs。结果经培养存活的MSCs原代和一代呈纺锤型、多边型或星型。至二代起呈均一纺锤型,似成纤维细胞样,长宽比例约为(2~3)?1。体外培养的原代MSCs8~10d达到融合,传代后仍具有较强的增殖能力。结论小型猪MSCs可在体外长期、稳定培养,其分离、培养体系的建立为基础研究和组织工程技术提供了一个有价值的动物模型。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号