首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The enantiomers of ketoprofen were separated by capillary electrophoresis using the (2,3,6‐tri‐O‐methyl)‐derivatives of α‐, β‐, and γ‐cyclodextrin (CyD) as chiral selectors. The affinity pattern of the ketoprofen enantiomers toward these CyDs changed depending on their cavity size. Thus, with hexakis (2,3,6‐tri‐O‐methyl)‐α‐CyD and heptakis (2,3,6‐tri‐O‐methyl)‐β‐CyD, the R enantiomer of the drug migrated first, whereas the enantiomer migration order was reversed in the presence of octakis(2,3,6‐tri‐O‐methyl)‐γ‐CyD. The change in the migration order was rationalized on the basis of changes in the structure of the complexes between the ketoprofen enantiomers and the chiral selectors as derived from nuclear magnetic resonance spectroscopy experiments. Chirality, 25:79–88, 2013.© 2012 Wiley Periodicals, Inc.  相似文献   

2.
A method for the enantiospecific quantitation of two commonly prescribed non-steroidal anti-inflammatory drugs (ketoprofen and ibuprofen) is described. The method involves formation of a mixed anhydride of the drug with ethylchloroformate and subsequent conversion to an amide by reaction with optically active amphetamine. The subsequently formed diastereomers are separated by gas chromatography—mass spectrometry using selected-ion monitoring. The assay is capable of quantifying ketoprofen (2 ng/ml) and ibuprofen (3 ng/ml) enantiomers from a 200-μl sample of synovial fluid or plasma and is particularly suitable for protein binding studies.  相似文献   

3.
The purpose was to assess the impact of the use of a chiral bioanalytical method on the conclusions of a bioequivalence study that compared two ibuprofen suspensions with different rates of absorption. A comparison of the conclusion of bioequivalence between a chiral method and an achiral approach was made. Plasma concentrations of R‐ibuprofen and S‐ibuprofen were determined using a chiral bioanalytical method; bioequivalence was tested for R‐ibuprofen and for S‐ibuprofen separately and for the sum of both enantiomers as an approach for an achiral bioanalytical method. The 90% confidence interval (90% CI) that would have been obtained with an achiral bioanalytical method (90% CI: Cmax: 117.69–134.46; AUC0t: 104.75–114.45) would have precluded the conclusion of bioequivalence. This conclusion cannot be generalized to the active enantiomer (90% CI: Cmax: 103.36–118.38; AUC0t: 96.52–103.12), for which bioequivalence can be concluded, and/or the distomer (90% CI: Cmax: 132.97–151.33; AUC0t: 115.91–135.77) for which a larger difference was observed. Chiral bioanalytical methods should be required when 1) the enantiomers exhibit different pharmacodynamics and 2) the exposure (AUC or Cmax) ratio of enantiomers is modified by a difference in the rate of absorption. Furthermore, the bioequivalence conclusion should be based on all enantiomers, since the distomer(s) might not be completely inert, in contrast to what is required in the current regulatory guidelines. In those cases where it is unknown if the ratio between enantiomers is modified by changing the rate of absorption, chiral bioanalytical methods should be employed unless enantiomers exhibit the same pharmacodynamics. Chirality 28:429–433, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

4.
The R enantiomers of some of the 2-arylpropionic acid non-steroidal antiinflammatory drugs (NSAIDs) are known to undergo metabolic chiral inversion to their more pharmacologically active antipodes. This process is drug and species dependent and usually unidirectional. The S to R chiral inversion, on the other hand, is rare and has been observed, in substantial extents, only for ibuprofen in guinea pigs and 2-phenylpropionic acid in dogs. After i.p. administration of single doses of racemic ketoprofen or its optically pure enantiomers to male CD-1 mice and subsequent study of the concentration time-course of the enantiomers, we noticed substantial chiral inversion in both directions. Following racemic doses, no stereoselectivity in the plasma-concentration time courses was observed. After dosing with optically pure enantiomer, the concentration of the administered enantiomer predominated during the absorption phase. During the terminal elimination phase, however, the enantiomers had the same concentrations. Our observation is suggestive of a rapid and reversible chiral inversion for ketoprofen enantiomers in mice. Chirality 9:29–31, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

5.
Propylisopropyl acetamide (PID), an amide analogue of the major antiepileptic drug valproic acid (VPA), possesses favorable anticonvulsant and CNS properties. PID contains one chiral carbon atom and therefore exists in two enantiomeric forms. The purpose of this work was to synthesize the two PID enantiomers and evaluate their enantiospecific teratogenicity. Enantioselective synthesis of PID enantiomers was achieved by coupling valeroyl chloride with optically pure (4S)‐ and (4R)‐benzyl‐2‐oxazolidinone chiral auxiliaries. The two oxazolidinone enolates were alkylated with isopropyl triflate, hydrolyzed, and amidated to yield (2R)‐ and (2S)‐PID. These two PID enantiomers were obtained with excellent enantiomeric purity, exceeding 99.4%. Unlike VPA, both (2R)‐ and (2S)‐PID failed to exert teratogenic effects in NMRI mice following a single 3 mmol/kg subcutaneous injection. From this study we can conclude that individual PID enantiomers do not demonstrate stereoselective teratogenicity in NMRI mice. Due to its better anticonvulsant activity than VPA and lack of teratogenicity, PID (in a stereospecific or racemic form) has the potential to become a new antiepileptic and CNS drug. Chirality 11:645–650, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

6.
Quan Zhang  Cui Wang 《Chirality》2013,25(11):787-792
The existence of enantiomer‐enriched mixtures of chiral pesticides in the environment is overwhelmingly positive. However, interactions between enantiomers have not been considered so far in risk assessments. Here, we chose three organophosphorus pesticides as representative chiral pesticides to investigate the possible interaction mode between each pair of enantiomers both in in vivo and in vitro. Data show that the enantiomers of methamidophos and profenofos have a simple additive effect, <zaq;1> whereas fensulfothion acts as an antagonist in AChE‐inhibition model. In contrast, enantiomers of methamidophos and fensulfothion had an additive effect in an acute toxicity test against Daphnia magna. A synergistic effect was observed in the joint toxicity of the profenofos enantiomers. The ability for enantiospecific biodegradation in the in vivo model contributed to the different interaction observed between the in vitro and in vivo models. Moreover, binding affinities were suspected as another reason for the different mode of action of mixture enantiomers. Our study recommends using a joint research model to treat chiral compounds in the real environment. Chirality 25:787–792, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

7.
Enantioselective biodegradation of chiral pesticide metalaxyl in grape, tomato, and rice plants under field conditions were studied. Metalaxyl enantiomers were completely separated with a resolution (Rs) of 5.01 by high‐performance liquid chromatography (HPLC) based on a cellulose tris (3‐chloro‐4‐methyl phenyl carbamate) chiral column (Lux Cellulose‐2). Metalaxyl enantiomers from matrixes were extracted by acetonitrile and purged using Cleanert Alumina‐A solid phase extraction (SPE). The linearity, recovery, precision, sensitivity, and matrix effect of the method were assessed. The result showed that significant stereoselectivity occurred in grape, tomato, and rice plants. In grape, (+)‐S‐metalaxyl with a half‐life of 5.5 d degraded faster than (–)‐R‐metalaxyl with that of 6.9 d, and the enantiomer fraction (EF) value reached 0.37 at 21 d. The same enantioselectivity was observed in tomato, and the half‐life was 2.2 d for the S‐enantiomer and 3.0 d for the R‐enantiomer. The EF values decreased from 0.49 of 0 d to 0.26 of 14 d. On the other hand, a preferential degradation of the R‐form was found in rice plants, with an EF value of 0.70 at 14 d, and the corresponding half‐life was 2.3 d for the R‐form and 2.8 d for the S‐form. Chirality 27:109–114, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

8.
8‐Prenylnaringenin (8PN) is a naturally occurring bioactive chiral prenylflavonoid found most commonly in the female flowers of hops (Humulus lupulus L.). A stereospecific method of analysis for 8PN in biological fluids is necessary to study the pharmacokinetic disposition of each enantiomer. A novel and simple liquid chromatographic‐electrospray ionization‐mass spectrometry (LC‐ESI‐MS) method was developed for the simultaneous determination of R‐ and S‐8PN in rat serum and urine. Carbamazepine was used as the internal standard (IS). Enantiomeric resolution of 8PN was achieved on a Chiralpak® AD‐RH column with an isocratic mobile phase consisting of 2‐propanol and 10 mM ammonium formate (pH 8.5) (40:60, v/v) and a flow rate of 0.7 mL/min. Detection was achieved using negative selective ion monitoring (SIM) of 8PN at m/z 339.15 for both enantiomers and positive SIM m/z at 237.15 for the IS. The calibration curves for urine were linear over a range of 0.01–75 µg/mL and 0.05–75 µg/mL for serum with a limit of quantification of 0.05 µg/mL in serum and 0.01 µg/mL in urine. The method was successfully validated showing that it was sensitive, reproducible, and accurate for enantiospecific quantification of 8PN in biological matrices. The assay was successfully applied to a preliminary study of 8PN enantiomers in rat. Chirality 26:419–426, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

9.
β‐cyclodextrin (CD) and its derivatives HP‐β‐CD, DM‐β‐CD, and TM‐β‐CD have been employed as chiral selectors for the separation of three nonsteroidal antiinflammatory drugs (NSAIDs) and anticoagulant at relatively low concentration (8–15 mM) by capillary zone electrophoresis (CZE). In this study, baseline separation was achieved for ibuprofen, ketoprofen, naproxen, and warfarin. It was found that the addition of 0.1% hydroxypropyl methyl cellulose (HPMC) was effective for separation. Under these conditions, the S‐(+) enantiomer eluted before R‐(−) in terms of ibuprofen; the calculated energy values obtained from the molecular modeling correlated well with the elution order. An equation for calculating the pKa values by capillary electrophoresis was introduced, and the pKa values of the four chiral drugs at 25°C were obtained based on the equation. The value pKa + 0.5 is proposed to be the suitable pH of the background electrolyte for the separation of chiral compounds containing a carboxylic group. Chirality 11:56–62, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

10.
The aim of the present investigation was to compare the pharmacokinetics of two tablet formulations of 600 mg of racemic ibuprofen obtained using enantiospecific and non-enantiospecific assays, in order to explore if chiral assays should be employed in bioequivalence studies of chiral active substances. The stereoselective assay showed that, for both formulations, there was an initial phase where (R)-ibuprofen was the predominant enantiomer followed by a final phase where (S)-ibuprofen was the predominant one. Results from both analytical methods proved that the two formulations were bioequivalent. However, the chiral bioanalytical method detected a larger difference in the eutomer than that showed by the nonchiral bioanalytical method. In conclusion, although the exposure ratios of enantiomers are near unity, the measurement of unresolved ibuprofen alone is not an adequate measure of bioequivalence since it may mask the actual difference in the eutomer exposure among formulations.  相似文献   

11.
Oxcarbazepine is a second‐generation antiepileptic drug indicated as monotherapy or adjunctive therapy in the treatment of partial seizures or generalized tonic–clonic seizures in adults and children. It undergoes rapid presystemic reduction with formation of the active metabolite 10‐hydroxycarbazepine (MHD), which has a chiral center at position 10, with the enantiomers (S)‐(+)‐ and R‐(?)‐MHD showing similar antiepileptic effects. This study presents the development and validation of a method of sequential analysis of oxcarbazepine and MHD enantiomers in plasma using liquid chromatography with tandem mass spectrometry (LC‐MS/MS). Aliquots of 100 μL of plasma were extracted with a mixture of methyl tert‐butyl ether: dichloromethane (2:1). The separation of oxcarbazepine and the MHD enantiomers was obtained on a chiral phase Chiralcel OD‐H column, using a mixture of hexane:ethanol:isopropanol (80:15:5, v/v/v) as mobile phase at a flow rate of 1.3 mL/min with a split ratio of 1:5, and quantification was performed by LC‐MS/MS. The limit of quantification was 12.5 ng oxcarbazepine and 31.25 ng of each MHD enantiomer/mL of plasma. The method was applied in the study of kinetic disposition of oxcarbazepine and the MHD enantiomers in the steady state after oral administration of 300 mg/12 h oxcarbazepine in a healthy volunteer. The maximum plasma concentration of oxcarbazepine was 1.2 µg/mL at 0.75 h. The kinetic disposition of MHD is enantioselective, with a higher proportion of the S‐(+)‐MHD enantiomer compared to R‐(?)‐MHD and an AUC0‐12 S‐(+)/R‐(?) ratio of 5.44. Chirality 25:897–903, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

12.
Serum albumin, the most abundant transport protein of mammalian blood, interacts with various nonsteroidal anti-inflammatory drugs (NSAIDs) affecting their disposition, metabolism, and excretion. A big group of chiral NSAIDs transported by albumin, profens, is created by derivatives of 2-arylpropionic acid. The chiral center in the structures of profens is adjacent to the carboxylate moiety and often determines different pharmacological properties of profen enantiomers. This study describes crystal structures of two albumins, isolated from equine and leporine serum, in complexes with three profens: ibuprofen, ketoprofen, and suprofen. Based on three-dimensional structures, the stereoselectivity of albumin is discussed and referred to the previously published albumin complexes with drugs. Drug Site 2 (DS2) of albumin, the bulky hydrophobic pocket of subdomain IIIA with a patch of polar residues, preferentially binds (S)-enantiomers of all investigated profens. Almost identical binding mode of all these drugs clearly indicates the stereoselectivity of DS2 towards (S)-profens in different albumin species. Also, the affinity studies show that DS2 is the major site that presents high affinity towards investigated drugs. Additionally, crystallographic data reveal the secondary binding sites of ketoprofen in leporine serum albumin and ibuprofen in equine serum albumin, both overlapping with previously identified naproxen binding sites: the cleft formed between subdomains IIIA and IIIB close to the fatty acid binding site 5 and the niche created between subdomains IIA and IIIA, called fatty acid site 6.  相似文献   

13.
The chiral pesticide enantiomers often have different toxic effects and environmental behaviors, which suggests that the risk assessments should be on an enantiomeric level. In this work, the chiral separation of the napropamide enantiomers and the stereoselective degradation in tomato, cucumber, rape, cabbage, and soil were investigated. Napropamide enantiomers could be separated absolutely by high‐performance liquid chromatography (HPLC) using a Chiralpak IC column with a resolution factor of 11.75 under the optimized condition. Solid phase extraction (SPE) was used for cleanup of the enantiomers in the vegetable samples. The residue analysis method was validated. Good linearities (R2 = 0.9997) and recoveries (71.43% ‐97.64%) were obtained. The limits of detection (LOD) were 0.05 mg/kg in soil and 0.20 mg/kg in vegetables. The results of degradation showed that napropamide dissipated rapidly in vegetables with half‐lives of only 1.13–2.21 days, but much more slowly in soil, with a half‐life of 11.95 d. Slight stereoselective degradation of the two enantiomers was only observed in cabbage, with enantiomeric fraction (EF) = 0.46, and there was no enantioselectivity in the other vegetables. The degradation of napropamide in the five matrixes was fast, and there was no enantioselectivity. Chirality 28:108–113, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

14.
《Chirality》2017,29(3-4):140-146
Trichlorfon (TF), an organophosphorus insecticide, has been widely used in seawater aquaculture; it is easily degraded to the highly toxic insecticide, dichlorvos (DDVP). In this study, the enantioseparation of TF enantiomers, as well as their degradation behavior and product (DDVP) formation in mariculture pond sediments, was investigated. The results show that both TF enantiomers degrade into DDVP, which is the main degradation product. Furthermore, S ‐(+)‐TF is preferentially degraded under natural conditions, suggesting that TF enantiomers degrade enantioselectively. Nevertheless, the degradation behavior of TF enantiomers is not enantiospecific under sterile conditions. The formation of DDVP and the enantiospecific degradation of TF enantiomers are attributed to the activities of microbes present in the sediments.  相似文献   

15.
Benalaxyl (BX), methyl‐N‐phenylacetyl‐N‐2,6‐xylyl alaninate, is a potent acylanilide fungicide and consist of a pair of enantiomers. The stereoselective metabolism of BX was investigated in rat and rabbit microsomes in vitro. The degradation kinetics and the enantiomer fraction (EF) were determined using normal high‐performance liquid chromatography with diode array detection and a cellulose‐tris‐(3,5‐dimethylphenylcarbamate)‐based chiral stationary phase (CDMPC‐CSP). The t1/2 of (?)‐R‐BX and (+)‐S‐BX in rat liver microsomes were 22.35 and 10.66 min of rac‐BX and 5.42 and 4.03 of BX enantiomers. However, the t1/2 of (?)‐R‐BX and (+)‐S‐BX in rabbit liver microsomes were 11.75 and 15.26 min of rac‐BX and 5.66 and 9.63 of BX enantiomers. The consequence was consistent with the stereoselective toxicokinetics of BX in vitro. There was no chiral inversion from the (?)‐R‐BX to (+)‐S‐BX or inversion from (+)‐S‐BX to (?)‐R‐BX in both rabbit and rat microsomes. These results suggested metabolism of BX enantiomers was stereoselective in rat and rabbit liver microsomes. Chirality, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

16.
Many cells respond directionally to small DC electrical fields (EFs) by an unknown mechanism, but changes in intracellular Ca2+ are widely assumed to be involved. We have used zebrafish (Danio rerio) keratocytes in an effort to understand the nature of the EF‐cell interaction. We find that the adult zebrafish integument drives substantial currents outward through wounds produced by scale removal, establishing that keratocytes near the wound will experience endogenous EFs. Isolated keratocytes in culture turn toward the cathode in fields as small as 7 mV mm?1, and the response is independent of cell size. Epidermal sheets are similarly sensitive. The frequency of intracellular Ca2+ spikes and basal Ca2+ levels were increased by EFs, but the spikes were not a necessary aspect of migration or EF response. Two‐photon imaging failed to detect a pattern of gradients of Ca2+ across the lamellipodia during normal or EF‐induced turning but did detect a sharp, stable Ca2+ gradient at the junction of the lamellipodium and the cell body. We conclude that gradients of Ca2+ within the lamellipodium are not required for the EF response. Immunostaining revealed an anode to cathode gradient of integrin β1 during EF‐induced turning, and interference with integrin function attenuated the EF response. Neither electrophoretic redistribution of membrane proteins nor asymmetric perturbations of the membrane potential appear to be involved in the EF response, and we propose a new model in which hydrodynamic forces generated by electro‐osmotic water flow mediate EF‐cell interactions via effects on focal adhesions. J. Cell. Physiol. 219: 162–172, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

17.
The enantiomerization and enantioselective bioaccumulation of metalaxyl by a single dose of exposure to Tenebrio molitor larvae under laboratory condition were studied by high‐performance liquid chromatography tandem mass spectroscopy (HPLC‐MS/MS) based on a ChiralcelOD‐3R [cellulosetris‐tris‐(3, 5‐dichlorophenyl‐carbamate)] column. Exposure of enantiopure R‐metalaxyl and S‐metalaxyl in Tenebrio molitor larvae exhibited significant enantiomerization, with formation of the R enantiomers from the S enantiomers, and vice versa, which might be attributed to the chiral pesticide catalyzed by a certain enzyme in Tenebrio molitor larvae. Enantiomerization was not observed in wheat bran during the period of 21 d. In addition, bioaccumulation of rac‐metalaxyl in Tenebrio molitor larvae was enantioselective with a preferential accumulation of S‐metalaxyl. These results showed that enantioselectivity was caused not only by actual degradation and metabolism but also by enantiomerization, which was an important process in the environmental fate and behavior of metalaxyl enantiomers. Chirality 26:88–94, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

18.
A novel method for chiral separation of flurbiprofen enantiomers was developed using aqueous two‐phase extraction (ATPE) coupled with biphasic recognition chiral extraction (BRCE). An aqueous two‐phase system (ATPS) was used as an extracting solvent which was composed of ethanol (35.0% w/w) and ammonium sulfate (18.0% w/w). The chiral selectors in ATPS for BRCE consideration were L‐dioctyl tartrate and L‐tryptophan, which were screened from amino acids, β‐cyclodextrin derivatives, and L‐tartrate esters. Factors such as the amounts of L‐dioctyl tartrate and L‐tryptophan, pH, flurbiprofen concentration, and the operation temperature were investigated in terms of chiral separation of flurbiprofen enantiomers. The optimum conditions were as follows: L‐dioctyl tartrate, 80 mg; L‐tryptophan, 40 mg; pH, 4.0; flurbiprofen concentration, 0.10 mmol/L; and temperature, 25 °C. The maximum separation factor α for flurbiprofen enantiomers could reach 2.34. The mechanism of chiral separation of flurbiprofen enantiomers is discussed and studied. The results showed that synergistic extraction has been established by L‐dioctyl tartrate and L‐tryptophan, which enantioselectively recognized R‐ and S‐enantiomers in top and bottom phases, respectively. Compared to conventional liquid–liquid extraction, ATPE coupled with BRCE possessed higher separation efficiency and enantioselectivity without the use of any other organic solvents. The proposed method is a potential and powerful alternative to conventional extraction for separation of various enantiomers. Chirality 27:650–657, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

19.
A convenient and precise chiral method was developed and validated for measuring indoxacarb enantiomers in cucumber and tomato using liquid chromatography‐tandem mass spectrometry (LC‐MS/MS) with a reversed‐phase Chiralpak AD‐RH column. The target analytes were extracted by acetonitrile and then purified by solid phase extraction (SPE) using NH2/Carb combined‐cartridge. Parameters including the matrix effect, linearity, precision, accuracy, and stability were used. Then the proposed method was successfully applied to investigate the possible enantioselective degradation of rac‐indoxacarb in cucumber and tomato under open conditions. The results indicated that the degradation of indoxacarb enantiomers followed first‐order kinetics in cucumber and tomato. The half‐lives of (+)‐S‐indoxacarb in cucumber and tomato were 3.0 and 5.9 days, respectively; while the (–)‐R‐indoxacarb were 7.3 and 12.2 days, respectively. The data of the half‐lives showed that (+)‐S‐indoxacarb was preferentially degraded in cucumber and tomato. Moreover, indoxacarb degraded faster in cucumber than in tomato. Chirality 25:350–354:, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

20.
In this study, an indirect diastereomeric method and a direct method utilizing a chiral stationary phase (CSP) were investigated for the resolution of ibuprofen enantiomers. In the indirect method, ethylchloroformate (ECF) and 2-ethoxy-1-1-ethoxycarbonyl-1,2-dihydroquinoline (EEDQ) were utilized as first-step derivatizing reagents in acetonitrile or toluene. In the direct CSP method, ibuprofen enantiomers were derivatized to p-nitrobenzyl ureides and then resolved on an (R)-(−)-(1-naphthyl)ethylurea CSP column. The derivatization procedure took place in 10 min with an overall inversion efficiency of 90.3%. Racemization was not observed under the derivatization conditions used. The HPLC-CSP method was utilized to study the pharmacokinetics of ibuprofen enantiomers in dog plasma after a single oral administration of 200 mg of ibuprofen racemate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号