首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The nuclear import signal of snRNPs is composed of two essential components, the m(3)G cap structure of the snRNA and the Sm core NLS carried by the Sm protein core complex. We have previously proposed that, in yeast, this last determinant is represented by a basic-rich protuberance formed by the C-terminal extensions of Sm proteins. In mammals, as well as in other organisms, this component has not yet been precisely defined. Using GFP-Sm fusion constructs and immunolocalization as well as biochemical experiments, we show here that the C-terminal domains of human SmD1 and SmD3 proteins possess nuclear localization properties. Deletions of these domains increase cytoplasmic fluorescence and cytoplasmic localization of GFP-Sm mutant fusion alleles. Our results are consistent with a model in which the Sm core NLS is evolutionarily conserved and composed of a basic-rich protuberance formed by C-terminal domains of different Sm subtypes.  相似文献   

2.
The spinal muscular atrophy disease gene product (SMN) is crucial for small nuclear ribonuclear protein (snRNP) biogenesis in the cytoplasm and plays a role in pre-mRNA splicing in the nucleus. SMN oligomers interact avidly with the snRNP core proteins SmB, -D1, and -D3. We have delineated the specific sequences in the Sm proteins that mediate their interaction with SMN. We show that unique carboxyl-terminal arginine- and glycine-rich domains comprising the last 29 amino acids of SmD1 and the last 32 amino acids of SmD3 are necessary and sufficient for SMN binding. Interestingly, SMN also interacts with at least two of the U6-associated Sm-like (Lsm) proteins, Lsm4 and Lsm6. Furthermore, the carboxyl-terminal arginine- and glycine-rich domain of Lsm4 directly interacts with SMN. This suggests that SMN also functions in the assembly of the U6 snRNP in the nucleus and in the assembly of other Lsm-containing complexes. These findings demonstrate that arginine- and glycine-rich domains are necessary and sufficient for SMN interaction, and they expand further the range of targets of the SMN protein.  相似文献   

3.
Within the yeast commitment complex, SmB, SmD1, and SmD3 make direct contact with the pre-mRNA substrate, close to the 5' splice site. Only these three Sm proteins have long and highly charged C-terminal tails, in metazoa as well as in yeast. We replaced these proteins with tail-truncated versions. Genetic assays demonstrate that the tails contribute to similar and overlapping functions, and cross-linking assays show that the tails make direct contact with the pre-mRNA in a largely sequence-independent manner. Other biochemical assays indicate that they function at least in part to stabilize the U1 snRNP-pre-mRNA interaction. We speculate that this role may be general, and may have even evolved to aid weak intermolecular nucleic acid interactions of only a few base pairs.  相似文献   

4.
Messenger RNA processing in trypanosomes by cis and trans splicing requires spliceosomal small nuclear ribonucleoproteins (snRNPs) U1, U2, U4/U6, and U5, as well as the spliced leader (SL) RNP. As in other eukaryotes, these RNPs share a core structure of seven Sm polypeptides. Here, we report that the identity of the Sm protein constituents varies between spliceosomal snRNPs: specifically, two of the canonical Sm proteins, SmB and SmD3, are replaced in the U2 snRNP by two novel, U2 snRNP-specific Sm proteins, Sm15K and Sm16.5K. We present a model for the variant Sm core in the U2 snRNP, based on tandem affinity purification-tagging and in vitro protein-protein interaction assays. Using in vitro reconstitutions with canonical and U2-specific Sm cores, we show that the exchange of two Sm subunits determines discrimination between individual Sm sites. In sum, we have demonstrated that the heteroheptameric Sm core structure varies between spliceosomal snRNPs, and that modulation of the Sm core composition mediates the recognition of small nuclear RNA-specific Sm sites.  相似文献   

5.
snRNPs, integral components of the pre-mRNA splicing machinery, consist of seven Sm proteins which assemble in the cytoplasm as a ring structure on the snRNAs U1, U2, U4, and U5. The survival motor neuron (SMN) protein, the spinal muscular atrophy disease gene product, is crucial for snRNP core particle assembly in vivo. SMN binds preferentially and directly to the symmetrical dimethylarginine (sDMA)-modified arginine- and glycine-rich (RG-rich) domains of SmD1 and SmD3. We found that the unmodified, but not the sDMA-modified, RG domains of SmD1 and SmD3 associate with a 20S methyltransferase complex, termed the methylosome, that contains the methyltransferase JBP1 and a JBP1-interacting protein, pICln. JBP1 binds SmD1 and SmD3 via their RG domains, while pICln binds the Sm domains. JBP1 produces sDMAs in the RG domain-containing Sm proteins. We further demonstrate the existence of a 6S complex that contains pICln, SmD1, and SmD3 but not JBP1. SmD3 from the methylosome, but not that from the 6S complex, can be transferred to the SMN complex in vitro. Together with previous results, these data indicate that methylation of Sm proteins by the methylosome directs Sm proteins to the SMN complex for assembly into snRNP core particles and suggest that the methylosome can regulate snRNP assembly.  相似文献   

6.
In eukaryotes the seven Sm core proteins bind to U1, U2, U4, and U5 snRNAs. In Trypanosoma brucei, Sm proteins have been implicated in binding both spliced leader (SL) and U snRNAs. In this study, we examined the function of these Sm proteins using RNAi silencing and protein purification. RNAi silencing of each of the seven Sm genes resulted in accumulation of SL RNA as well as reduction of several U snRNAs. Interestingly, U2 was unaffected by the loss of SmB, and both U2 and U4 snRNAs were unaffected by the loss of SmD3, suggesting that these snRNAs are not bound by the heptameric Sm complex that binds to U1, U5, and SL RNA. RNAi silencing and protein purification showed that U2 and U4 snRNAs were bound by a unique set of Sm proteins that we termed SSm (specific spliceosomal Sm proteins). This is the first study that identifies specific core Sm proteins that bind only to a subset of spliceosomal snRNAs.  相似文献   

7.
Sm proteins form stable ribonucleoprotein (RNP) complexes with small nuclear (sn)RNAs and are core components of the eukaryotic spliceosome. In vivo, the assembly of Sm proteins onto snRNAs requires the survival motor neurons (SMN) complex. Several reports have shown that SMN protein binds with high affinity to symmetric dimethylarginine (sDMA) residues present on the C-terminal tails of SmB, SmD1, and SmD3. This post-translational modification is thought to play a crucial role in snRNP assembly. In human cells, two distinct protein arginine methyltransferases (PRMT5 and PRMT7) are required for snRNP biogenesis. However, in Drosophila, loss of Dart5 (the fruit fly PRMT5 ortholog) has little effect on snRNP assembly, and homozygous mutants are completely viable. To resolve these apparent differences, we examined this topic in detail and found that Drosophila Sm proteins are also methylated by two methyltransferases, Dart5/PRMT5 and Dart7/PRMT7. Unlike dart5, we found that dart7 is an essential gene. However, the lethality associated with loss of Dart7 protein is apparently unrelated to defects in snRNP assembly. To conclusively test the requirement for sDMA modification of Sm proteins in Drosophila snRNP assembly, we constructed a fly strain that exclusively expresses an isoform of SmD1 that cannot be sDMA modified. Interestingly, these flies were viable, and snRNP assays revealed no defects in comparison to wild type. In contrast, dart5 mutants displayed a strong synthetic lethal phenotype in the presence of a hypomorphic Smn mutation. We therefore conclude that dart5 is required for viability when SMN is limiting.  相似文献   

8.
Human Tudor staphylococcal nuclease (Tudor-SN) is composed of four tandem repeats of staphylococcal nuclease (SN)-like domains, followed by a tudor and SN-like domain (TSN) consisting of a central tudor flanked by two partial SN-like sequences. The crystal structure of the tudor domain displays a conserved aromatic cage, which is predicted to hook methyl groups. Here, we demonstrated that the TSN domain of Tudor-SN binds to symmetrically dimethylarginine (sDMA)-modified SmB/B' and SmD1/D3 core proteins of the spliceosome. We demonstrated that this interaction ability is reduced by the methyltransferase inhibitor 5-deoxy-5-(methylthio)adenosine. Mutagenesis experiments indicated that the conserved amino acids (Phe-715, Tyr-721, Tyr-738, and Tyr-741) in the methyl-binding cage of the TSN domain are required for Tudor-SN-SmB interaction. Furthermore, depletion of Tudor-SN affects the association of Sm protein with snRNAs and, as a result, inhibits the assembly of uridine-rich small ribonucleoprotein mediated by the Sm core complex in vivo. Our results reveal the molecular basis for the involvement of Tudor-SN in regulating small nuclear ribonucleoprotein biogenesis, which provides novel insight related to the biological activity of Tudor-SN.  相似文献   

9.
Spliceosomal small nuclear ribonucleoproteins (snRNPs) in trypanosomes contain either the canonical heptameric Sm ring or variant Sm cores with snRNA-specific Sm subunits. Here we show biochemically by a combination of RNase H cleavage and tandem affinity purification that the U4 snRNP contains a variant Sm heteroheptamer core in which only SmD3 is replaced by SSm4. This U4-specific, nuclear-localized Sm core protein is essential for growth and splicing. As shown by RNA interference (RNAi) knockdown, SSm4 is specifically required for the integrity of the U4 snRNA and the U4/U6 di-snRNP in trypanosomes. In addition, we demonstrate by in vitro reconstitution of Sm cores that under stringent conditions, the SSm4 protein suffices to specify the assembly of U4 Sm cores. Together, these data indicate that the assembly of the U4-specific Sm core provides an essential step in U4/U6 di-snRNP biogenesis and splicing in trypanosomes.The excision of intronic sequences from precursor mRNAs is a critical step during eukaryotic gene expression. This reaction is catalyzed by the spliceosome, a macromolecular complex composed of small nuclear ribonucleoproteins (snRNPs) and many additional proteins. Spliceosome assembly and splicing catalysis occur in an ordered multistep process, which includes multiple conformational rearrangements (35). Spliceosomal snRNPs are assembled from snRNAs and protein components, the latter of which fall into two classes: snRNP-specific and common proteins. The common or canonical core proteins are also termed Sm proteins, specifically SmB, SmD1, SmD2, SmD3, SmE, SmF, and SmG (10; reviewed in reference 9), which all share an evolutionarily conserved bipartite sequence motif (Sm1 and Sm2) required for Sm protein interactions and the formation of the heteroheptameric Sm core complex around the Sm sites of the snRNAs (3, 7, 29). Prior to this, the Sm proteins form three heteromeric subcomplexes: SmD3/SmB, SmD1/SmD2, and SmE/SmF/SmG (23; reviewed in reference 34). Individual Sm proteins or Sm subcomplexes cannot stably interact with the snRNA. Instead, a stable subcore forms by an association of the subcomplexes SmD1/SmD2 and SmE/SmF/SmG with the Sm site on the snRNA; the subsequent integration of the SmD3/SmB heterodimer completes Sm core assembly.In addition to the canonical Sm proteins, other proteins carrying the Sm motif have been identified for many eukaryotes. Those proteins, termed LSm (like Sm) proteins, exist in distinct heptameric complexes that differ in function and localization. For example, a complex composed of LSm1 to LSm7 (LSm1-7) accumulates in cytoplasmic foci and participates in mRNA turnover (4, 8, 31). Another complex, LSm2-8, binds to the 3′ oligo(U) tract of the U6 snRNA in the nucleus (1, 15, 24). Finally, in the U7 snRNP, which is involved in histone mRNA 3′-end processing, the Sm proteins SmD1 and SmD2 are replaced by U7-specific LSm10 and LSm11 proteins, respectively (20, 21; reviewed in reference 28).This knowledge is based primarily on the mammalian system, where spliceosomal snRNPs are biochemically well characterized (34). In contrast, for trypanosomes, comparatively little is known about the components of the splicing machinery and their assembly and biogenesis. In trypanosomes, the expression of all protein-encoding genes, which are arranged in long polycistronic units, requires trans splicing. Only a small number of genes are additionally processed by cis splicing (reviewed in reference 11). During trans splicing, a short noncoding miniexon, derived from the spliced leader (SL) RNA, is added to each protein-encoding exon. Regarding the trypanosomal splicing machinery, the U2, U4/U6, and U5 snRNPs are considered to be general splicing factors, whereas the U1 and SL snRNPs represent cis- and trans-splicing-specific components, respectively. In addition to the snRNAs, many protein splicing factors in trypanosomes have been identified based on sequence homology (for example, see references 14 and 19).Recent studies revealed variations in the Sm core compositions of spliceosomal snRNPs from Trypanosoma brucei. Specifically, in the U2 snRNP, two of the canonical Sm proteins, SmD3 and SmB, are replaced by two novel, U2 snRNP-specific proteins, Sm16.5K and Sm15K (33). In this case, an unusual purine nucleotide, interrupting the central uridine stretch of the U2 snRNA Sm site, discriminates between the U2-specific and the canonical Sm cores. A second case of Sm core variation was reported for the U4 snRNP, in which a single protein, SmD3, was suggested to be replaced by the U4-specific LSm protein initially called LSm2, and later called SSm4, based on a U4-specific destabilization after SSm4 knockdown (30). A U4-specific Sm core variation was also previously suggested and discussed by Wang et al. (33), based on the inefficient pulldown of U4 snRNA through tagged SmD3 protein. However, neither of these two studies conclusively demonstrated by biochemical criteria that the specific Sm protein resides in the U4 Sm core; a copurification of other snRNPs could not be unequivocally ruled out.By using a combination of RNase H cleavage, tandem affinity purification, and mass spectrometry, we provide here direct biochemical evidence that in the variant Sm core of the U4 snRNP, only SmD3 is replaced by the U4-specific SSm4. SSm4 is nuclear localized, and the silencing of SSm4 leads to a characteristic phenotype: dramatic growth inhibition, general trans- and cis-splicing defects, a loss of the integrity of the U4 snRNA, as well as a destabilization of the U4/U6 di-snRNP. Furthermore, in vitro reconstitution assays revealed that under stringent conditions, SSm4 is sufficient to specify U4-specific Sm core assembly. In sum, our data establish SSm4 as a specific component of the U4 Sm core and demonstrate its importance in U4/U6 di-snRNP biogenesis, splicing function, and cell viability.  相似文献   

10.
Yhc1 and U1-C are essential subunits of the yeast and human U1 snRNP, respectively, that stabilize the duplex formed by U1 snRNA at the pre-mRNA 5′ splice site (5′SS). Mutational analysis of Yhc1, guided by the human U1 snRNP crystal structure, highlighted the importance of Val20 and Ser19 at the RNA interface. Though benign on its own, V20A was lethal in the absence of branchpoint-binding complex subunit Mud2 and caused a severe growth defect in the absence of U1 subunit Nam8. S19A caused a severe defect with mud2▵. Essential DEAD-box ATPase Prp28 was bypassed by mutations of Yhc1 Val20 and Ser19, consistent with destabilization of U1•5′SS interaction. We extended the genetic analysis to SmD3, which interacts with U1-C/Yhc1 in U1 snRNP, and to SmB, its neighbor in the Sm ring. Whereas mutations of the interface of SmD3, SmB, and U1-C/Yhc1 with U1-70K/Snp1, or deletion of the interacting Snp1 N-terminal peptide, had no growth effect, they elicited synthetic defects in the absence of U1 subunit Mud1. Mutagenesis of the RNA-binding triad of SmD3 (Ser-Asn-Arg) and SmB (His-Asn-Arg) provided insights to built-in redundancies of the Sm ring, whereby no individual side-chain was essential, but simultaneous mutations of Asn or Arg residues in SmD3 and SmB were lethal. Asn-to-Ala mutations SmB and SmD3 caused synthetic defects in the absence of Mud1 or Mud2. All three RNA site mutations of SmD3 were lethal in cells lacking the U2 snRNP subunit Lea1. Benign C-terminal truncations of SmD3 were dead in the absence of Mud2 or Lea1 and barely viable in the absence of Nam8 or Mud1. In contrast, SMD3-E35A uniquely suppressed the temperature-sensitivity of lea1▵.  相似文献   

11.
The survival of motor neurons (SMN) gene is the disease gene of spinal muscular atrophy (SMA), a common motor neuron degenerative disease. The SMN protein is part of a complex containing several proteins, of which one, SIP1 (SMN interacting protein 1), has been characterized so far. The SMN complex is found in both the cytoplasm and in the nucleus, where it is concentrated in bodies called gems. In the cytoplasm, SMN and SIP1 interact with the Sm core proteins of spliceosomal small nuclear ribonucleoproteins (snRNPs), and they play a critical role in snRNP assembly. In the nucleus, SMN is required for pre-mRNA splicing, likely by serving in the regeneration of snRNPs. Here, we report the identification of another component of the SMN complex, a novel DEAD box putative RNA helicase, named Gemin3. Gemin3 interacts directly with SMN, as well as with SmB, SmD2, and SmD3. Immunolocalization studies using mAbs to Gemin3 show that it colocalizes with SMN in gems. Gemin3 binds SMN via its unique COOH-terminal domain, and SMN mutations found in some SMA patients strongly reduce this interaction. The presence of a DEAD box motif in Gemin3 suggests that it may provide the catalytic activity that plays a critical role in the function of the SMN complex on RNPs.  相似文献   

12.
13.
14.
核糖体蛋白L6/Taxreb107的核定位信号的分析   总被引:3,自引:0,他引:3  
核糖体蛋白L6(RpL6,Taxreb107)含有三个具有核定位信号特征的基序.用作者构建的核定位信号捕获系统分析了这些核定位信号是否具有介导蛋白质进行核转位的功能.将RpL6/Taxreb107分段插入核定位信号捕获载体的克隆位点后转化宿主酵母,发现其前两个核定位信号可以介导融合蛋白进入细胞核,而第三个核定位信号无此作用.将RpL6/Taxreb107分段与绿色荧光蛋白融合后转染培养的哺乳类细胞,证实了以上在酵母中所得的结果.进一步发现RpL6/Taxreb107的前两个核定位信号同时具有核仁定位的功能.当在细胞中表达的早期,进入核内的融合蛋白优先定位于核仁.这些结果一方面有助于理解RpL6/Taxreb107核转位的机理,同时说明作者构建的核定位信号捕获系统也可用在蛋白质中寻找核定位信号.  相似文献   

15.
Zhang R  So BR  Li P  Yong J  Glisovic T  Wan L  Dreyfuss G 《Cell》2011,146(3):384-395
The SMN complex mediates the assembly of heptameric Sm protein rings on small nuclear RNAs (snRNAs), which are essential for snRNP function. Specific Sm core assembly depends on Sm proteins and snRNA recognition by SMN/Gemin2- and Gemin5-containing subunits, respectively. The mechanism by which the Sm proteins are gathered while preventing illicit Sm assembly on non-snRNAs is unknown. Here, we describe the 2.5?? crystal structure of Gemin2 bound to SmD1/D2/F/E/G pentamer and SMN's Gemin2-binding domain, a key assembly intermediate. Remarkably, through its extended conformation, Gemin2 wraps around the crescent-shaped pentamer, interacting with all five Sm proteins, and gripping its bottom and top sides and outer perimeter. Gemin2 reaches into the RNA-binding pocket, preventing RNA binding. Interestingly, SMN-Gemin2 interaction is abrogated by a spinal muscular atrophy (SMA)-causing mutation in an SMN helix that mediates Gemin2 binding. These findings provide insight into SMN complex assembly and specificity, linking snRNP biogenesis and SMA pathogenesis.  相似文献   

16.
Anti-Sm antibodies, identified in 1966 by Tan and Kunkel, are highly specific serological markers for systemic lupus erythrematosus (SLE). Anti-Sm reactivity is found in 5–30% of SLE patients, depending on the autoantibody detection system and the racial background of the SLE population. The Sm autoantigen complex comprises at least nine different polypeptides. All of these core proteins can serve as targets of the anti-Sm B-cell response, but most frequently the B and D polypeptides are involved. Because the BB'Sm proteins share cross-reactive epitopes (PPPGMRPP) with U1 specific ribonucleoproteins, which are more frequently targeted by antibodies that are present in patients with mixed connective tissue disease, the SmD polypeptides are regarded as the Sm autoantigens that are most specific to SLE. It was recently shown that the polypeptides D1, D3 and BB' contain symmetrical dimethylarginine, which is a component of a major autoepitope within the carboxyl-terminus of SmD1. In one of those studies, a synthetic dimethylated peptide of SmD1 (amino acids 95–119) exhibited significantly increased immunoreactivity as compared with unmodified SmD1 peptide. Using immobilized peptides, we confirmed that the dimethylated arginine residues play an essential role in the formation of major SmD1 and SmD3 autoepitopes. Moreover, we demonstrated that one particular peptide of SmD3 represents a more sensitive and more reliable substrate for the detection of a subclass of anti-Sm antibodies. Twenty-eight out of 176 (15.9%) SLE patients but only one out of 449 (0.2%) control individuals tested positive for the anti-SmD3 peptide (SMP) antibodies in a new ELISA system. These data indicate that anti-SMP antibodies are exclusively present in sera from SLE patients. Thus, anti-SMP detection using ELISA represents a new serological marker with which to diagnose and discriminate between systemic autoimmune disorders.  相似文献   

17.
Anti-Sm antibodies, identified in 1966 by Tan and Kunkel, are highly specific serological markers for systemic lupus erythrematosus (SLE). Anti-Sm reactivity is found in 5-30% of SLE patients, depending on the autoantibody detection system and the racial background of the SLE population. The Sm autoantigen complex comprises at least nine different polypeptides. All of these core proteins can serve as targets of the anti-Sm B-cell response, but most frequently the B and D polypeptides are involved. Because the BB'Sm proteins share cross-reactive epitopes (PPPGMRPP) with U1 specific ribonucleoproteins, which are more frequently targeted by antibodies that are present in patients with mixed connective tissue disease, the SmD polypeptides are regarded as the Sm autoantigens that are most specific to SLE. It was recently shown that the polypeptides D1, D3 and BB' contain symmetrical dimethylarginine, which is a component of a major autoepitope within the carboxyl-terminus of SmD1. In one of those studies, a synthetic dimethylated peptide of SmD1 (amino acids 95-119) exhibited significantly increased immunoreactivity as compared with unmodified SmD1 peptide. Using immobilized peptides, we confirmed that the dimethylated arginine residues play an essential role in the formation of major SmD1 and SmD3 autoepitopes. Moreover, we demonstrated that one particular peptide of SmD3 represents a more sensitive and more reliable substrate for the detection of a subclass of anti-Sm antibodies. Twenty-eight out of 176 (15.9%) SLE patients but only one out of 449 (0.2%) control individuals tested positive for the anti-SmD3 peptide (SMP) antibodies in a new ELISA system. These data indicate that anti-SMP antibodies are exclusively present in sera from SLE patients. Thus, anti-SMP detection using ELISA represents a new serological marker with which to diagnose and discriminate between systemic autoimmune disorders.  相似文献   

18.
The spliceosomal small nuclear ribonucleoproteins (snRNPs) U1, U2, U4/U6 and U5 share eight proteins B', B, D1, D2, D3, E, F and G which form the structural core of the snRNPs. This class of common proteins plays an essential role in the biogenesis of the snRNPs. In addition, these proteins represent the major targets for the so-called anti-Sm auto-antibodies which are diagnostic for systemic lupus erythematosus (SLE). We have characterized the proteins F and G from HeLa cells by cDNA cloning, and, thus, all human Sm protein sequences are now available for comparison. Similar to the D, B/B' and E proteins, the F and G proteins do not possess any of the known RNA binding motifs, suggesting that other types of RNA-protein interactions occur in the snRNP core. Strikingly, the eight human Sm proteins possess mutual homology in two regions, 32 and 14 amino acids long, that we term Sm motifs 1 and 2. The Sm motifs are evolutionarily highly conserved in all of the putative homologues of the human Sm proteins identified in the data base. These results suggest that the Sm proteins may have arisen from a single common ancestor. Several hypothetical proteins, mainly of plant origin, that clearly contain the conserved Sm motifs but exhibit only comparatively low overall homology to one of the human Sm proteins, were identified in the data base. This suggests that the Sm motifs may also be shared by non-spliceosomal proteins. Further, we provide experimental evidence that the Sm motifs are involved, at least in part, in Sm protein-protein interactions. Specifically, we show by co-immunoprecipitation analyses of in vitro translated B' and D3 that the Sm motifs are essential for complex formation between B' and D3. Our finding that the Sm proteins share conserved sequence motifs may help to explain the frequent occurrence in patient sera of anti-Sm antibodies that cross-react with multiple Sm proteins and may ultimately further our understanding of how the snRNPs act as auto-antigens and immunogens in SLE.  相似文献   

19.
The HIV-1 auxiliary protein Vif contains a basic domain within its sequence. This basic region,90RKKR93, is similar to the prototypic nuclear localization signal (NLS). However, Vif is not a nuclear protein and does not function in the nucleus. Here we have studied the karyophilic properties of this basic region. We have synthesized peptides corresponding to this positively charged NLS-like region and observed that these peptides inhibited nuclear transport via the importin pathway in vitro with IC50values in the micromolar range. Inhibition was observed only with peptides derived from the positively charged region, but not from other regions of the Vif protein, showing sequence specificity. On the other hand, the Vif inhibitory peptide Vif88-98 did not confer karyophilic properties when conjugated to BSA. The inactive Vif conjugate and the active SV40-NLS-BSA conjugate both contained a similar number of peptides conjugated to each BSA molecule, as was determined by amino acid analysis of the peptide-BSA conjugates. Thus, the lack of nuclear import of the Vif peptide-BSA conjugate cannot be attributed to insufficient number of conjugated peptide molecules per BSA molecule. Our results suggest that the HIV-1 Vif protein carries an NLS-like sequence that inhibits, but does not mediate, nuclear import via the importin pathway. We have termed such signals as nuclear transport inhibitory signals (NTIS). The possible role of NTIS in controlling nuclear uptake, and specifically during virus infection, is discussed herein. Our results raise the possibility that NLS-like sequences of certain low molecular weight viral proteins may serve as regulators of nucleocytoplasmic trafficking and not neccessarily as mediators of nuclear import.  相似文献   

20.
Mono-ADP-ribosyltransferases (ART1-7) transfer ADP-ribose from NAD+ to proteins (transferase activity) or water (NAD glycohydrolase activity). The mature proteins contain two domains, an alpha-helical amino terminus and a beta-sheet-rich carboxyl terminus. A basic region in the carboxyl termini is encoded in a separate exon in ART1 and ART5. Structural motifs are conserved among ART molecules. Successive amino- or carboxyl-terminal truncations of ART1, an arginine-specific transferase, identified regions that regulated transferase and NAD glycohydrolase activities. In mouse ART1, amino acids 24-38 (ART-specific extension) were needed to inhibit both activities; amino acids 39-45 (common ART coil) were required for both. Successive truncations of the alpha-helical region reduced transferase and NAD glycohydrolase activities; however, truncation to residue 106 enhanced both. Removal of the carboxyl-terminal basic domain decreased transferase, but enhanced NAD glycohydrolase, activity. Thus, amino- and carboxyl-terminal regions of ART1 are required for transferase activity. The enhanced glycohydrolase activity of the shorter mutants indicates that sequences, which are not part of the NAD binding, core catalytic site, exert structural constraints, modulating substrate specificity and catalytic activity. These functional domains, defined by discrete exons or structural motifs, are found in ART1 and other ARTs, consistent with conservation of structure and function across the ART family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号