首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Summary We have investigated transport of the amino acid glutamine across the surface membranes of prophase-arrestedXenopus laevis oocytes. Glutamine accumulation was linear with time for 30 min; it was stereospecific with aK m of 0.12±0.02mm andV max of 0.92±0.17 pmol/oocyte · min forl-glutamine. Transport ofl-glutamine was Na+-dependent, the cation not being replaceable with Li+, K+, choline, tris(hydroxymethyl)-aminomethane (Tris), tetramethylammonium (TMA) or N-methyld-glucamine NMDG); external Cl appeared to be necessary for full activation of Na+-dependent glutamine transport. Two external Na+ may be required for the transport of one glutamine molecule.l-glutamine transport (at 50 m glutamine) was inhibited by the presence of other amino acids:l-alanine,d-alanine,l-leucine,l-asparagine andl-arginine (about 60% inhibition at 1mm);l-histidine,l-valine and glycine (25 to 40% inhibition at 1mm);l-serine,l-lysine,l-phenylalanine andl-glutamate (45 to 55% inhibition at 10mm). N-methylaminoisobutyric acid (meAIB) had no effect at 10mm, but 2-aminobicyclo[2,2,1]heptane-2-carboxylic acid (BCH) inhibited Na+/glutamine transport by about 50% at 10mm.l-glutamine was a competitive inhibitor of the Na+-dependent transport ofl-alanine,d-alanine andl-arginine; this evidence is consistent with the existence of a single system transporting all four amino acids. Glutamine uptake in oocytes appears to be catalyzed by a transport system distinct from the cotransport Systems A, ASC, N and Gly, although it resembles System B0,+.  相似文献   

2.
Summary The experiments reported here evaluate the capability of isolated intestinal epithelial cells to accomplish net H+ transport in response to imposed ion gradients. In most cases, the membrane potential was kept constant by means of a K+ plus valinomycin voltage clamp in order to prevent electrical coupling of ion fluxes. Net H+ flux across the cellular membrane was examined at pH 6.0 (the physiological lumenal pH) and at pH 7.4 using methylamine distribution or recordings of changes in media pH. Results from both techniques suggest that the cells have an Na+/H+ exchange system in the plasma membrane that is capable of rapid and sustained changes in intracellular pH in response to an imposed Na+ gradient. The kinetics of the Na+/H+ exchange reaction at pH 6.0 [K t for Na+=57mm,V max=42 mmol H+/liter 3OMG (3-O-methylglucose) space/min] are dramatically different from those at pH 7.4 (K t for Na+=15mm,V max=1.7 mmol H+/liter 3OMG space/min). Experiments involving imposed K+ gradients suggest that these cells have negligible K+/H+ exchange capability. They exhibit limited but measurable H+ conductance. Anion exchange for base equivalents was not detected in experiments performed in media nominally free of bicarbonate.  相似文献   

3.
We used ion-sensitive, double-barrel microelectrodes to measure changes in hepatocyte transmembrane potential (V m), intracellular K+, Cl-, and Na+ activities (a i k, a Cl i and a Na i ), and water volume during l-alanine uptake. Mouse liver slices were superfused with control and experimental Krebs physiological salt solutions. The experimental solution contained 20 m l-alanine, and the control solution was adjusted to the same osmolality (305 mOsm) with added sucrose. Hepatocytes also were loaded with 50 mm tetramethylammonium ion (TMA+) for 10 min. Changes in cell water volume during l-alanine uptake were determined by changes in intracellular, steady-state TMA+ activity measured with the K+ electrode. Hepatocyte control V m was -33±1 mV. l-alanine uptake first depolarized V m by 2±0.2 mV and then hyperpolarized V m by 5 mV to-38±1 mV (n = 16) over 6 to 13 min. During this hyperpolarization, a Na i increased by 30% from 19±2 to 25±3 mm (P < 0.01), and a K i did not change significantly from 83±3 mm. However, with added ouabain (1 mm) l-alanine caused only a 2-mV increase in V m, but now a K i decreased from 61±3 to 54±5 mm (P < 0.05). Hyperpolarization of V m by l-alanine uptake also resulted in a 38% decrease of a Cl i from 20±2 to 12±3 mm (P < 0.001). Changes in V m and V ClV m voltage traces were parallel during the time of l-alanine hyperpolarization, which is consistent with passive distribution of intracellular Cl with the V m in hepatocytes. Added Ba2+ abolished the l-alanineinduced hyperpolarization, and a Cl i remained unchanged. Hepatocyte water volume during l-alanine uptake increased by 12±3%. This swelling did not account for any changes in ion activities following l-alanine uptake. We conclude that hepatocyte a K i is regulated by increased Na+-K+ pump activity during l-alanine uptake in spite of cell swelling and increased V m due to increased K+ conductance. The hyperpolarization of V m during l-alanine uptake provides electromotive force to decrease a Cl i . The latter may contribute to hepatocyte volume regulation during organic solute transport.This work was supported by grant AA-08867 from the Alcohol, Drug Abuse, and Mental Health Association.  相似文献   

4.
Summary kinetics of intestinal transport of l-alanine and l-valine (substrates of the A-system and the L-system, respectively, in mammals) across the brush-border membrane in sea bass, Dicentrarchus labrax, were studied on intact mucosa using a short-term uptake technique. When fish were starved for 4–8 weeks, total influx (mucosa-to-cell) of valine fell owing to disappearance or modification of the diffusion component. The maximum influx rate of saturable component increased but its affinity (reflected by the Michaelis constant) decreased. Alanine transport by Na+-dependent and diffusion pathways was unchanged after starvation Fasting also induced an almost 20% decrease in the length of intestinal microvilli.Abbreviations K d diffusional constant - K m Michaelis constant - V max maximum influx rate  相似文献   

5.
Summary We have investigated the effect of a purified preparation of Charybdotoxin (CTX) on the Ca-activated K+ (Ca–K) channel of human red cells (RBC). Cytosolic Ca2+ was increased either by ATP depletion or by the Ca ionophore A23187 and incubation in Na+ media containing CaCl2. The Ca–K efflux activated by metabolic depletion was partially (77%) inhibited from 15.8±2.4 mmol/liter cell · hr, to 3.7±1.0 mmol/liter cell · hr by 6nm CTX (n=3). The kinetic of Ca–K efflux was studied by increasing cell ionized Ca2+ using A23187 (60 mol/liter cell), and buffering with EGTA or citrate; initial rates of net K+ efflux (90 mmol/liter cell K+) into Na+ medium containing glucose, ouabain, bumetanide at pH 7.4 were measured. Ca–K efflux increased in a sigmoidal fashion (n of Hill 1.8) when Ca2+ was raised, with aK m of 0.37 m and saturating between 2 and 10 m Ca2+. Ca–K efflux was partially blocked (71±7.8%, mean ±sd,n=17) by CTX with high affinity (IC500.8nm), a finding suggesting that is a high affinity ligand of Ca–K channels. CTX also blocked 72% of the Ca-activated K+ efflux into 75mm K+ medium, which counteracted membrane hyperpolarization, cell acidification and cell shrinkage produced by opening of the K+ channel in Na+ media. CTX did not block Valinomycin-activated K+ efflux into Na+ or K+ medium and therefore it does not inhibit K+ movement coupled to anion conductive permeability.TheV max, but not theK m–Ca of Ca–K efflux showed large individual differences varying between 4.8 and 15.8 mmol/liter cell · min (FU). In red cells with Hb A,V max was 9.36±3.0 FU (mean ±sd,n=17). TheV max of the CTX-sensitive, Ca–K efflux was 6.27±2.5 FU (range 3.4 to 16.4 FU) in Hb A red cells and it was not significantly different in Hb S (6.75±3.2 FU,n=8). Since there is larger fraction of reticulocytes in Hb S red cells, this finding indicates that cell age might not be an important determinant of theV max of Ca–K+ efflux.Estimation of the number of CTX-sensitive Ca-activated K+ channels per cell indicate that there are 1 to 3 channels/per cell either in Hb A or Hb S red cells. The CTX-insensitive K+ efflux (2.7±0.9 FU) may reflect the activity of a different channel, nonspecific changes in permeability or coupling to an anion conductive pathway.  相似文献   

6.
Summary Transport of alanine was studied in isolated plasma membrane vesicles from cat pancreas using a rapid filtration technique. The uptake is osmotically sensitive and the kinetics ofl-alanine transport are biphasic showing a saturable and a nonsaturable component. The saturable component is seen only when a sodium gradient directed from the medium to the vesicular space is present. Under this condition an overshooting uptake ofl-but not ofd-alanine occurs. The Na+ gradient stimulated uptake ofl-alanine is inhibited byl-serine andl-leucine and stimulated when the membrane vesicles had been preloaded withl-alanine,l-serine orl-leucine.The ionophore monensin inhibits stimulation of uptake caused by a sodium gradient. In the presence of valinomycin or carbonyl cyanidep-trifluoromethoxyphenylhydrazone (CFCCP), the sodium-dependent transport is augmented in vesicles preloaded with K2SO4 or H+ ions (intravesicular pH 5.5), respectively. In the presence of different anions, the Na+-dependent transport is stimulated according to increasing anionic penetration through membranes (lipid solubility). We conclude that a sodium dependent electrogenic amino acid transport system is present in pancreatic plasma membranes.  相似文献   

7.
Summary The sodium-dependentl-alanine transport across the plasma membrane of oocytes ofXenopus laevis was studied by means of [14C]-l-alanine,22Na+ and electrophysiological measurements. At fixed sodium concentrations, the dependence of alanine transport on alanine concentration follows Michaelis-Menten kinetics; at fixed alanine concentrations, the transport varies with sodium concentration with a Hill coefficient of 2. In the presence of sodium the uptake of alanine is accompanied by a depolarization of the membrane. Under voltage-clamp conditions this depolarization can be compensated by an inward-directed current. Assuming that this current is carried by sodium we arrive at a 21 stoichiometry for the sodium-alanine cotransport. The assumption was confirmed by direct measurements of both sodium and alanine fluxes at saturating concentrations of the two substrates, which also yielded a stoichiometry close to 21. The sodium-l-alanine cotransport is neither inhibited by furosemide (0.5 mmol/liter) nor by N-methyl amino isobutyric acid (5 mmol/liter). A 20-fold excess ofd-alanine overl-alanine caused about 60% inhibition.  相似文献   

8.
Summary The transport ofl-histidine has been characterized in skin derived diploid human fibroblasts, cultured under strictly controlled conditions. The transport measurements were made on cells grown to subconfluency after 60 to 90 min timed preincubation. The data, at substrate concentrations ranging from 0.050 to 10 mmol/l, were analyzed by a computer program. A saturable transport system (K m =0.25 mmol/l, V max =17 nmol/mg protein per min) and a nonsaturable component of influx (K d =1.6±0.4 nmol/mg protein/min per mmol) were found.l-Histidine displayed no Na+ requirement at either low or high concentrations. Inhibition analysis demonstrated thatl-histidine uptake at low concentration was poorly inhibited by amino acids known to be effective inhibitors of system A. The largest fraction ofl-histidine uptake was inhibited by 2-amino-bicyclo (2,2,1)-heptane-2-carboxylic acid (BCH), leucine, and tryptophan. These results indicated thatl-histidine is transported in human fibroblasts, mainly by the Na+ independent system L. The differences between this cell type and others studied previously are discussed. This work was supported in part by Grant 773 from UER de Médecine, Université Paris XI (France).  相似文献   

9.
Summary We have investigated the kinetic properties of the human red blood cell Na+/H+ exchanger to provide a tool to study the role of genetic, hormonal and environmental factors in its expression as well as its functional properties in several clinical conditions. The present study reports its stoichiometry and the kinetic effects of internal H+ (H i ) and external Na+ (Na o ) in red blood cells of normal subjects.Red blood cells with different cell Na+ (Na i ) and pH (pH i ) were prepared by nystatin and DIDS treatment of acid-loaded cells. Unidirectional and net Na+ influx were measured by varying pH i (from 5.7 to 7.4), external pH (pH o ), Na i and Na o and by incubating the cells in media containing ouabain, bumetanide and methazolamide. Net Na+ influx (Na i <2.0 mmol/liter cell, Na o = 150mm) increased sigmoidally (Hill coefficient 2.5) when pH i fell below 7.0 and the external pH o was 8.0, but increased linearly at pH o 6.0. The net Na+ influx driven by an outward H+ gradient was estimated from the difference of Na+ influx at the two pH o levels (pH o 8 and pH o 6). The H+-driven Na+ influx reached saturation between pH i 5.9 and 6.1. TheV max had a wide interindividual variation (6 to 63 mmol/liter cell · hr, 31.0±3, mean±sem,n=20). TheK m for H i to activate H+-driven Na+ influx was 347±30nm (n=7). Amiloride (1mm) or DMA (20 m) partially (59±10%) inhibited red cell Na+/H+ exchange. The stoichiometric ratio between H+-driven Na+ influx and Na+-driven H+ efflux was 11. The dependence of Na+ influx from Na o was studied at pH i 6.0, and Na i lower than 2 mmol/liter cell at pH o 6.0 and 8.0. The meanK m for Na o of the H+-gradient-driven Na+ influx was 55±7mm.An increase in Na i from 2 to 20 mmol/liter cell did not change significantly H+-driven net Na+ influx as estimated from the difference between unidirectional22Na influx and efflux. Na+/Na+ exchange was negligible in acid-loaded, DIDS-treated cells. Na+ and H+ efflux from acid-loaded cells were inhibited by amiloride analogs in the absence of external Na+ indicating that they may represent nonspecific effects of these compounds and/or uncoupled transport modes of the Na+/H+ exchanger.It is concluded that human red cell Na+/H+ exchange performs 11 exchange of external Na+ for internal protons, which is partially amiloride sensitive. Its kinetic dependence from internal H+ and external Na+ is similar to other cells, but it displays a larger variability in theV max between individuals.  相似文献   

10.
Summary Cells ofCandida shehatae repressed by growth in glucose- or D-xylose-medium produced a facilitated diffusion system that transported glucose (K s±2 mM,V max±2.3 mmoles g−1 h−1),d-xylose (K s±125 mM,V max±22.5 mmoles g−1 h−1) and D-mannose, but neither D-galactose norl-arabinose. Cells derepressed by starvation formed several sugar-proton symports. One proton symport accumulated 3-0-methylglucose about 400-fold and transported glucose (K s±0.12 mM,V max ± 3.2 mmoles g−1 h−1) andd-mannose, a second proton symport transportedd-xylose (K s± 1.0 mM,V max 1.4 mmoles g−1 h−1) andd-galactose, whilel-arabinose apparently used a third proton symport. The stoicheiometry was one proton for each molecule of glucose or D-xylose transported. Substrates of one sugar proton symport inhibited non-competitively the transport of substrates of the other symports. Starvation, while inducing the sugar-proton symports, silenced the facilitated diffusion system with respect to glucose transport but not with respect to the transport of D-xylose, facilitated diffusion functioning simultaneously with thed-xylose-proton symport.  相似文献   

11.
This study utilised an in vitro technique to characterise absorption of two amino acids across the intestinal epithelium of Pacific hagfish, Eptatretus stoutii. Uptake of l-alanine and glycine conformed to Michaelis–Menten kinetics. An uptake affinity (K m; substrate concentration required to attain a 50% uptake saturation) of 7.0 mM and an uptake capacity (J max) of 83 nmol cm−2 h−1 were described for l-alanine. The K m and J max for glycine were 2.2 mM and 11.9 nmol cm−2 h−1, respectively. Evidence suggested that the pathways of l-alanine and glycine absorption were shared, and sodium dependent. Further analysis indicated that glycine uptake was independent of luminal pH and proline, but a component of uptake was significantly impaired by 100-fold excesses of threonine or asparagine. The presence of a short-term (24 h) exposure to waterborne glycine, similar in nature to that which may be expected to occur when feeding inside an animal carcass, had no significant impact on gastrointestinal glycine uptake. This may indicate a lack of cross talk between absorptive epithelia. These results are the first published data to describe gastrointestinal uptake of an organic nutrient in the oldest extant vertebrate and may provide potential insight into the evolution of nutrient transport systems.  相似文献   

12.
When expressed in Xenopus oocytes KAAT1 increases tenfold the transport of l-leucine. Substitution of NaCl with 100 mm LiCl, RbCl or KCl allows a reduced but significant activation of l-leucine uptakes. Chloride-dependence is not strict since other pseudohalide anions such as thyocyanate are accepted. KAAT1 is highly sensitive to pH. It can transport l-leucine at pH 5.5 and 8, but the maximum uptake has been observed at pH 10, near to the physiological pH value, when amino and carboxylic groups are both deprotonated. The pH value mainly influences the V max in Na+ activation curves and l-leucine kinetics. The kinetic parameters are K mNa = 4.6 ± 2 mm, V maxNa = 14.8 ± 1.7 pmol/oocyte/5 min for pH 8.0 and K mNa = 2.8 ± 0.7 mm, V maxNa = 31.3 ± 1.9 pmol/oocyte/5 min for pH 10.0. The kinetic parameters of l-leucine uptake are: K m = 120.4 ± 24.2 μm, V max = 23.2 ± 1.4 pmol/oocyte/5 min at pH 8.0 and K m = 81.3 ± 24.2 μm, V max = 65.6 ± 3.9 pmol/oocyte/5 min at pH 10.0. On the basis of inhibition experiments, the structural features required for KAAT1 substrates are: (i) a carboxylic group, (ii) an unsubstituted α-amino group, (iii) the side chain is unnecessary, if present it should be uncharged regardless of length and ramification. Received: 27 April 1999/Revised: 10 January 2000  相似文献   

13.
Summary Brush border membrane vesicles (BBMV) purified from steer jejunum were used to study the kinetics of sodiumd-glucose cotransport under voltage clamped, zero-trans conditions. When the initial rate of glucose transport (J gluc) was measured over a wide range of glucose concentrations ([S]=0.01–20mm), curvature of the Woolf-Augustinsson-Hofstee plots was seen, compatible with a diffusional and one major, high capacity (maximal transport rateJ max=5.8–8.8 nmol/mg·min) saturable system. Further studies indicated that changes incis [Na] altered theK t , but not theJ max, suggesting the presence of a rapid-equilibrium, ordered bireactant system with sodium adding first.Trans sodium inhibitedJ gluc hyperbolically. KCl-valinomycin diffusion potentials, inner membrane face positive, loweredJ gluc, while potentials of the opposite polarity raiseJ gluc. At low glucose concentrations ([S]<0.05mm), a second, minor, high affinity transport system was indicated. Further evidence for this second saturable system was provided by sodium activation curves, which were hyperbolic when [S]=0.5mm, but were sigmoidal when [S]=.0.01mm. Simultaneous fluxes of22Na and [3H]glucose at 1mm glucose and 30mm NaCl yielded a cotransport-dependent flux ratio of 21 sodium/glucose, suggestive of 11 (Na/glucose) high capacity, low affinity system and a 31 (Na/glucose) high affinity, low capacity system. Kinetic experiments with rabbit jejunal brush borders revealed two major Na-dependent saturable systems. Extravesicular (cis) Na changed theK t , but not theJ max of the major system.  相似文献   

14.
L-lysine Transport in Chicken Jejunal Brush Border Membrane Vesicles   总被引:2,自引:0,他引:2  
The properties of l-lysine transport in chicken jejunum have been studied in brush border membrane vesicles isolated from 6-wk-old birds. l-lysine uptake was found to occur within an osmotically active space with significant binding to the membrane. The vesicles can accumulate l-lysine against a concentration gradient, by a membrane potential-sensitive mechanism. The kinetics of l-lysine transport were described by two saturable processes: first, a high affinity-transport system (K mA= 2.4 ± 0.7 μmol/L) which recognizes cationic and also neutral amino acids with similar affinity in the presence or absence of Na+ (l-methionine inhibition constant KiA, NaSCN = 21.0 ± 8.7 μmol/L and KSCN = 55.0 ± 8.4 μmol/L); second, a low-affinity transport mechanism (KmB= 164.0 ± 13.0 μmol/L) which also recognizes neutral amino acids. This latter system shows a higher affinity in the presence of Na+ (KiB for l-methionine, NaSCN = 1.7 ± 0.3 and KSCN = 3.4 ± 0.9 mmol/L). l-lysine influx was significantly reduced with N-ethylmaleimide (0.5 mmol/L) treatment. Accelerative exchange of extravesicular labeled l-lysine was demonstrated in vesicles preloaded with 1 mmol/L l-lysine, l-arginine or l-methionine. Results support the view that l-lysine is transported in the chicken jejunum by two transport systems, A and B, with properties similar to those described for systems b 0,+ and y+, respectively. Received: 14 August 1995/Revised: 2 April 1996  相似文献   

15.
The chemoautotrophic symbiont-bearing clam Lucinoma aequizonata contains very high levels of free d-alanine in all tissues. The possible sources for this amino acid and its involvement in the clams' metabolism were investigated. Very low levels of d-alanine (generally below 1 mol·l-1) were measured in the sediment porewaters from the habitat of the clams. Experiments with 14C-labeled tracers demonstrate an active metabolism of d-alanine in the clams rather than a role as inert waste product. d-alanine is metabolized at about 0.12 mol·g fw-1·h-1. Label from aspartate, but not glucose and CO2, is incorporated into d-alanine. Incubation with labeled d-alanine did not result in formation of radioactive l-alanine. Tests for alanine racemase (EC 5.1.1.1) and d-amino acid oxidase (EC 1.4.3.3.) did not show activity in either gill, i.e. symbiont and host, or foot tissue. d-Alanine amino transferase (EC 2.6.1.b.) was demonstrated in gill and foot tissues. Two sources for d-alanine are proposed: a degradation of cell walls of symbiotic bacteria and production by the host using a d-specific alanine transaminase.Abbreviations aa amino acid(s) - fw fresh weight - HPLC high-performance liquid chromatography - MBH methyl benzethonium hydroxyde - NAC N-acetyl-l-cysteine - OPA ortho-phthaldialdehyde - TCA tricarbonic acid  相似文献   

16.
Summary Cl transport in apical membrane vesicles derived from bovine tracheal epithelial cells was studied using the Cl-sensitive fluorescent indicator 6-methoxy-N-(3-sulfopropyl) quinolinium. With an inwardly directed 50 mM Cl gradient at 23°C, the initial rate of Cl entry (J Cl) was increased significantly from 0.32±0.12 nmol · sec–1 · mg protein–1 (mean±sem) to 0.50±0.07 nmol · sec–1 · mg protein–1 when membrane potential was changed from 0 to +60 mV with K/valinomycin. At 37°C, with membrane potential clamped at 0 mV, there was a 34±7% (n=5) decrease inJ Cl from a control value of 0.37±0.03 nmol · sec–1 · mg protein–1 upon addition of 0.2mm diphenylamine-2-carboxylate. The following did not alterJ Cl significantly (J Cl values gives as percent change from control): 50mm cis Na (–1±5%), 0.1mm furosemide (–3±4%), 0.1mm furosemide in the presence of 50mm cis Na (–5±2%), 0.1mm H2DIDS (–18±9%), a 1.5 pH unit inwardly directed H gradient (–7±7%), and 0.1mm H2DIDS in the presence of a 1.5 unit pH gradient (4±18%). With inward 50mm anion gradients, the initial rates of Br and I entry (J Br andJ 1, respectively) were not significantly different fromJ Cl.J Cl was a saturable function of Cl concentration with apparentK d of 24mm and apparentV max of 0.54 nmol · sec–1 · mg protein–1. Measurement of the temperature dependence ofJ Cl yielded an activation energy of 5.0 kcal/mol (16–37°C). These results demonstrate that Cl transport in tracheal apical membrane vesicles is voltage-dependent and inhibited by diphenylamine-2-carboxylate. There is no significant contribution from the Na/K/2Cl, Na/Cl, or Cl/OH(H) transporters. The conductive pathway does not discriminate between Cl, Br, and I and is saturable. The low activation energy supports a pore-type mechanism for the conductance.  相似文献   

17.
Summary Microplasmodia ofPhysarum polycephalum have been investigated by conventional electrophysiological techniques. In standard medium (30mm K+, 4mm Ca++, 3mm Mg++, 18mm citrate buffer, pH 4.7, 22°C), the transmembrane potential differenceV m is around –100 mV and the membrane resistance about 0.25 m2.V m is insensitive to light and changes of the Na+/K+ ratio in the medium. Without bivalent cations in the medium and/or in presence of metabolic inhibitors (CCCP, CN, N 3 ),V m drops to about 0 mV. Under normal conditions,V m is very sensitive to external pH (pH o ), displaying an almost Nernstian slope at pH o =3. However, when measured during metabolic inhibition,V m shows no sensitivity to pH o over the range 3 to 6, only rising (about 50 mV/pH) at pH o =6. Addition of glucose or sucrose (but not mannitol or sorbitol) causes rapid depolarization, which partially recovers over the next few minutes. Half-maximal peak depolarization (25 mV with glucose) was achieved with 1mm of the sugar. Sugar-induced depolarization was insensitive to pH o . The results are discussed on the basis of Class-I models of charge transport across biomembranes (Hansen, Gradmann, Sanders and Slayman, 1981,J. Membrane Biol. 63:165–190). Three transport systems are characterized: 1) An electrogenic H+ extrusion pump with a stoichiometry of 2 H+ per metabolic energy equivalent. The deprotonated form of the pump seems to be negatively charged. 2) In addition to the passive K+ pathways, there is a passive H+ transport system; here the protonated form seems to be positively charged. 3) A tentative H+-sugar cotransport system operates far from thermodynamic equilibrium, carrying negative charge in its deprotonated states.  相似文献   

18.
The initial rate ofd-glucosamine uptake by the non-halotolerant yeastSaccharomyces cerevisiae was approximately halved as the apparent half saturation constant (Km) and the apparent maximum velocity (Vmax) changed from 6.6mm to 16.4mm and from 22 μmol · g−1 · min−1 to 16 μmol · g−1 · min−1, respectively, when the salinity in the medium was increased from zerom to 0.68m NaCl. Corresponding changes in a high affinity transport system in the halotolerant yeastDebaryomyces hansenii were from 1.1mm to 4.6mm and from 3.1 μmol · g−1 · min−1 to 4.5 μmol · g−1 · min−1, implying a practically unchanged transport capacity. In 2.7m NaCl, Km and Vmax in this system were 24.5mm and 1.1 μmol · g−1 · min−1, respectively, representing a marked decrease in transport capability. Nevertheless, the degree of affinity in this extreme salinity must still be regarded as noteworthy. In addition to the high affinity transport system inD. hansenii, a low affinity system, presumably without relevance ind-glucosamine transport, was observed.  相似文献   

19.
The concentration dependence of the influx ofl-lysine in excised roots ofArabidopsis thaliana seedlings was analyzed for the wild-type (WT) and two mutants,rlt11 andraec1, which had been selected as resistant to lysine plus threonine, and to S-2-aminoethyl-l-cysteine, respectively. In the WT three components were resolved: (i) a high-affinity, low-capacity component [K m = 2.2 M;V max = 23 nmol·(g FW)–1·h–1]; (ii) a low-affinity, high-capacity component [K m = 159 M;V max = 742 nmol·(g FW)–1·h–1]; (iii) a component which is proportional to the external concentration, with a constant of proportionalityk = 104 nmol·(g FW)–1 h–1];·mM–1. The influx ofl-lysine in the mutants was lower than in the WT, notably in the concentration range 0.1–0.4 mM, where it was only 7% of that in the WT. In both mutants the reduced influx could be fully attributed to the absence of the low-affinity (high-K m ) component. This component most likely represents the activity of a specific basic-amino-acid transporter, since it was inhibited by several other basic amino acids (arginine, ornithine, hydroxylysine, aminoethylcysteine) but not byl-valine. The high-affinity uptake ofl-lysine may be due to the activity of at least two general amino acid transporters, as it was inhibitable byl-valine, and could be further dissected into two components with a high affinity (K i = 1–5 M; and a low affinity (K i = 0.5–1mM) forl-valine, respectively. Therlt11 andraecl mutant have the same phenotype and the corresponding loci were mapped on chromosome 1, but it is not yet clear whether they are allelic.Abbreviations AEC S-2-aminoethyl-l-cysteine - K i equilibrium constant - WT wild-type  相似文献   

20.
Bacillus coagulans has been of great commercial interest over the past decade owing to its strong ability of producing optical pure l-lactic acid from both hexose and pentose sugars including l-arabinose with high yield, titer and productivity under thermophilic conditions. The l-arabinose isomerase (L-AI) from Bacillus coagulans was heterologously over-expressed in Escherichia coli. The open reading frame of the L-AI has 1,422 nucleotides encoding a protein with 474 amino acid residues. The recombinant L-AI was purified to homogeneity by one-step His-tag affinity chromatography. The molecular mass of the enzyme was estimated to be 56 kDa by SDS-PAGE. The enzyme was most active at 70°C and pH 7.0. The metal ion Mn2+ was shown to be the best activator for enzymatic activity and thermostability. The enzyme showed higher activity at acidic pH than at alkaline pH. The kinetic studies showed that the K m, V max and k cat/K m for the conversion of l-arabinose were 106 mM, 84 U/mg and 34.5 mM−1min−1, respectively. The equilibrium ratio of l-arabinose to l-ribulose was 78:22 under optimal conditions. l-ribulose (97 g/L) was obtained from 500 g/l of l-arabinose catalyzed by the enzyme (8.3 U/mL) under the optimal conditions within 1.5 h, giving at a substrate conversion of 19.4% and a production rate of 65 g L−1 h−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号