首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tat activates human immunodeficiency type 1 gene expression by binding to TAR RNA. TAR comprises a partially base paired stem and hexanucleotide loop with a tripyrimidine bulge in the upper stem. In vitro, Tat binds to the bulge and upper stem, with no requirement for the loop. However, in vivo, loop sequences are critical for activation, implying that a loop binding cellular factor may be involved in the activation pathway. Given that activation appears to be a two-component system comprising a Tat-bulge interaction and a cellular factor-loop interaction, we considered that it might be possible to spatially separate the two components and retain activation. We have constructed a series of double TAR elements comprising various combinations of mutated TAR structures. Defective TARs with nucleotide substitutions in either the bulge or the loop complemented each other to give wild-type activation. However, the complementation was orientation specific, requiring the intact Tat binding site to reside on the 5'-proximal TAR. These data suggest that provided the wild-type orientation of the bulge and loop elements is retained, there is no requirement for them to coexist on the same TAR structure.  相似文献   

2.
3.
Trans-activation of HIV-1 by the Tat protein is mediated through a cis-acting element (TAR) in the viral RNA. In order to obtain further insight into the molecular interactions for trans-activation, a detailed mutational analysis of TAR RNA was carried out. TAR RNA forms a hairpin structure with important sequence elements in the single-stranded bulge- and loop-domains. We found that the sequence of the base-pairs flanking the bulge is critical for Tat-mediated trans-activation. In addition, Tat-response is reduced when the bulge is forced into a base-paired configuration through the introduction of complementary nucleotides on the opposite side of the stem. Thus, the 3-nucleotide bulge and adjacent base-pairs comprise a recognition domain with both sequence- and structure-elements. Accessibility of the loop sequences is also important for Tat function, since base-pairing through the formation of a pseudoknot-like structure does inhibit Tat action. A third critical parameter that influences the magnitude of Tat response is the number of loop nucleotides. Finally, the relative spacing between the loop and the bulge is also important. We introduced additional base-pairs in the stem connecting the two domains. Such mutations progressively decreased the efficiency of Tat induction. Interestingly, activity of the HIV-2 Tat protein did markedly increase on targets with one or two additional basepairs. These results suggest that Tat interacts with a cellular loop-binding protein(s) to increase HIV gene expression.  相似文献   

4.
5.
Transactivation of human immunodeficiency virus (HIV) gene expression requires binding of the viral Tat protein to a RNA hairpin-loop structure (TAR) which contains a two or three-nucleotide bulge. Tat binds in the vicinity of the bulge and the two adjacent duplex stems, recognising both specific sequence and structural features of TAR. Binding is mediated by an arginine-rich domain, placing Tat in the family of arginine-rich RNA binding proteins that includes other transactivators, virus capsid proteins and ribosome binding proteins. In order to determine what features of TAR allow Tat to bind efficiently to RNA but not DNA forms, we examined Tat binding to a series of RNA-DNA hybrids. We found that only one specific strand in each duplex stem region needs to be RNA, implying that interaction between Tat and a given stem may be solely or predominantly with one of the two strands. However, the essential strand is not the same one for each stem, suggesting a switch in the bound strand on opposing sides of the bulge.  相似文献   

6.
RNA recognition by Tat-derived peptides: interaction in the major groove?   总被引:41,自引:0,他引:41  
K M Weeks  D M Crothers 《Cell》1991,66(3):577-588
Replication of human immunodeficiency virus requires binding of the viral Tat protein to its RNA target sequence TAR; peptides derived from Tat bind to a TAR "contact site" spanning 5 bp and a trinucleotide pyrimidine bulge. We find that high affinity binding requires a U residue in the bulge loop and 2 specific adjacent base pairs. Other bulged RNAs bind in a lower affinity nonspecific manner; sequence-specific binding requires a bulge loop of more than 1 nucleotide. Reaction with diethyl pyrocarbonate indicates that one effect of the bulge is to make the otherwise deep and narrow RNA major groove accessible. A model consistent with these data involves local distortion of A-form geometry at the bulge, which bends the helix and permits protein binding and interactive access in the RNA major groove.  相似文献   

7.
8.
RNA binding by the tat and rev proteins of HIV-1   总被引:3,自引:0,他引:3  
  相似文献   

9.
10.
trans activation of human immunodeficiency virus type 1 (HIV-1) involves the viral trans-activator protein (Tat) and a cellular factor(s) encoded on human chromosome 12 (HuChr12) that targets the trans-activation response element (TAR) in the viral long terminal repeat. Because nascent TAR RNA is predicted to form a secondary structure that specifically binds cellular proteins, we investigated the composition of the TAR RNA-protein complex for HuChr12-specific proteins. UV cross-linking of TAR RNA-nuclear protein complexes formed in vitro identified an 83-kDa protein in human cells and in a human-hamster hybrid cell containing only HuChr12. The 83-kDa TAR RNA-binding protein was absent in the parental hamster cells. TAR RNA mutations that inhibited binding of the 83-kDa protein in vitro also inhibited HuChr12-dependent Tat trans activation. These TAR mutations changed the native sequence or secondary structure of the TAR loop. The TAR RNA binding activity of the 83-kDa protein also correlated with a HuChr12-dependent increase in steady-state HIV-1 RNA expression during Tat trans activation. Our results suggest that either a species-specific 83-kDa TAR RNA loop-binding protein is directly encoded on HuChr12 or a HuChr12 protein(s) induces the expression of an 83-kDa TAR-binding protein in nonprimate cells.  相似文献   

11.
trans activation of the human immunodeficiency virus type 1 long terminal repeat requires that the viral trans activator Tat interact with the trans-acting responsive region (TAR) RNA. Although the N-terminal 47 amino acids represent an independent activation domain that functions via heterologous nucleic acid-binding proteins, sequences of Tat that are required for interactions between Tat and TAR in cells have not been defined. Although in vitro binding studies suggested that the nine basic amino acids from positions 48 to 57 in Tat bind efficiently to the 5' bulge in the TAR RNA stem-loop, by creating several mutants of Tat and new hybrid proteins between Tat and the coat protein of bacteriophage R17, we determined that this arginine-rich domain is not sufficient for interactions between Tat and TAR in vivo. Rather, the activation domain is also required and must be juxtaposed to the basic domain. Thus, in vitro TAR RNA binding does not translate to function in vivo, which suggests that other proteins are important for specific and productive interactions between Tat and TAR.  相似文献   

12.
The trans-activation response element (TAR) of human immunodeficiency virus type 1 is a structured RNA consisting of the first 60 nucleotides of all human immunodeficiency virus type 1 RNAs. Computer analyses and limited structural analyses indicated that TAR consists of a stem-bulge-loop structure. Mutational analyses showed that sequences in the bulge are required for Tat binding, whereas sequences in both the bulge and the loop are required for trans activation. In this study, we probed the structures of TAR and various mutants of TAR with chemical probes and RNases and used these methods to footprint a Tat peptide on TAR. Our data show that the structure of wild-type TAR is different from previously published models. The bulge, a Tat-binding site, consists of four nucleotides. The loop is structured, rather than simply single stranded, in a fashion reminiscent of the structures of the tetraloop 5'-UUCG-3' and the GNRA loop (C. Cheong, G. Varani, and I. Tinoco, Jr., Nature [London] 346:680-682, 1990; H.A. Heus and A. Pardi, Science 253:191-193, 1991). RNA footprint data indicate that three bases in the bulge are protected and suggest that a conformational change occurs upon Tat binding.  相似文献   

13.
14.
15.
TAR, a 59 nt 5′-terminal hairpin in human immunodeficiency virus 1 (HIV-1) mRNA, binds viral Tat and several cellular proteins. We report that eukaryotic translation initiation factor 2 (eIF2) recognizes TAR. TAR and the AUG initiation codon domain, located well downstream from TAR, both contribute to the affinity of HIV-1 mRNA for eIF2. The affinity of TAR for eIF2 was insensitive to lower stem mutations that modify sequence and structure or to sequence changes throughout the remainder that leave the TAR secondary structure intact. Hence, eIF2 recognizes structure rather than sequence in TAR. The affinity for eIF2 was severely reduced by a 3 nt change that converts the single A bulge into a 7 nt internal loop. T1 footprinting showed that eIF2 protects nucleotides in the loop as well as in the strand opposite the A bulge. Thus, eIF2 recognizes the TAR loop and lower part of the sub-apical stem. Though not contiguous, these regions are brought into proximity in TAR by a bend in the helical structure induced by the UCU bulge; binding of eIF2 opens up the bulge context and apical stem. The ability to bind eIF2 suggests a function for TAR in HIV-1 mRNA translation. Indeed, the 3 nt change that reduces the affinity of TAR for eIF2 impairs the ability of reporter mRNA to compete in translation. Interaction of TAR with eIF2 thus allows HIV-1 mRNA to compete more effectively during protein synthesis.  相似文献   

16.
Binding of human immunodeficiency virus type 1 (HIV-1) transactivator (Tat) protein to Tat-responsive RNA (TAR) is essential for viral replication and is considered a promising starting point for the design of anti-HIV drugs. NMR spectroscopy indicated that the aminoglycosides neomycin B and ribostamycin bind to TAR and that neomycin is able to inhibit Tat binding to TAR. The solution structure of the neomycin-bound TAR has been determined by NMR spectroscopy. Chemical shift mapping and intermolecular nuclear Overhauser effects define the binding region of the aminoglycosides on TAR and give strong evidence for minor groove binding. Based on 15 nuclear Overhauser effect-derived intermolecular distance restraints, a model structure of the TAR-neomycin complex was calculated. Neomycin is bound in a binding pocket formed by the minor groove of the lower stem and the uridine-rich bulge of TAR, which adopts a conformation different from those known. The neamine core of the aminoglycoside (rings I and II) is covered with the bulge, explaining the inhibition of Tat by an allosteric mechanism. Neomycin reduces the volume of the major groove in which Tat is bound and thus impedes essential protein-RNA contacts.  相似文献   

17.
Protein kinase C (PKC) is involved in the mitogenic stimulation of cell proliferation and has recently been reported to be essential for Tat-mediated trans activation. We have determined that RNA binding of a cellular factor which specifically interacts with the trans-activation response region (TAR) is blocked in cells depleted of PKC activity by chronic phorbol myristate acetate stimulation. We also show that nuclear extracts can be depleted of the cellular TAR-binding factor by in vitro treatment with purified protein phosphatase 2A. Furthermore, TAR RNA-binding activity can be partially restored to depleted nuclear extracts in vitro by addition of PKC. Chimeric constructs in which the Tat protein is artificially tethered to viral RNA show PKC independence for Tat-mediated trans activation. Specific mutations in the TAR RNA stem region which cause reduced binding of host cell factor in vitro also cause reduced Tat-mediated trans activation in vivo. Together, these results suggest that phosphorylation-dependent binding of a cellular cofactor to TAR RNA is an essential step in Tat-mediated trans activation. Deciphering the regulation of Tat-mediated trans activation by phosphorylation will be critical in fully understanding the regulation of human immunodeficiency virus type 1 activation.  相似文献   

18.
J W Harper  N J Logsdon 《Biochemistry》1991,30(32):8060-8066
Substantial evidence indicates that HIV-1 trans-activation by tat protein is mediated through the TAR RNA element. This RNA forms a stem-loop structure containing a three-nucleotide bulge and a six-nucleotide loop. Previous mutagenic analysis of TAR indicates that the bulge residues and a 4 bp segment of the stem constitute, in part, the tat binding site. However, there appears to be no sequence-specific contribution of the six-base loop. We have employed a ribonuclease protection technique to explore the interaction of tat with single-stranded regions of TAR. The results indicate that tat interacts with both the bulge and loop regions of TAR. Treatment of TAR RNA with RNase A results in cleavage at U23 and U31, located in the bulge and loop regions, respectively. High concentrations (approximately 2 microM) of Escherichia coli derived tat protein, prepared by standard procedures, gave complete protection of TAR RNA from RNase A cleavage. However, under these conditions, truncated TAR derivatives in which no stem-loop structure is expected to form were also protected, indicating nonspecific binding. In order to obtain a tat preparation with enhanced specificity toward TAR RNA, methods were developed for refolding the recombinant protein. This treatment enhanced the affinity of tat for TAR by approximately 30-fold [Kd(apparent) less than 25 nM] and markedly increased its specificity for the TAR. Again, tat protected TAR RNA from RNase A cleavage at both U23 and U31. Protection was also observed with RNase T1 which cleaves TAR RNA at three G residues in the six-base loop.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
R Tan  A D Frankel 《Biochemistry》1992,31(42):10288-10294
Short basic peptides from the HIV Tat protein bind specifically to a bulge region in TAR RNA, with a single arginine residue providing the only sequence-specific contact. The free amino acid arginine also binds specifically to TAR. Previous circular dichroism (CD) experiments suggested that peptide binding induces a conformational change in TAR. Here we confirm this observation using single arginine-containing peptides and show that arginine or guanidine binding also induces a conformational change in TAR. A peptide containing a single arginine within a stretch of histidines (CYHHHRHHHHHA) shows pH-dependent binding and a corresponding change in TAR conformation, as detected by a decrease in the CD signal at 265 nm. Arginine and guanidine, which bind to TAR with apparent Kd's of approximately 1.5 mM, induce similar CD changes. In contrast, lysine, which does not bind specifically to TAR, has no effect. Mutants of TAR that abolish specific binding (a U-->C substitution in the three-nucleotide bulge, a deletion of the bulge, or an A-U to U-A base pair change above the bulge) show no change in the CD signal upon binding of peptides, arginine, or guanidine. The results suggest that binding of a single guanidinium group to a specific site in TAR induces a change in RNA conformation.  相似文献   

20.
Interaction between the human immunodeficiency virus type 1 (HIV-1) trans-activator Tat and its cis-acting responsive RNA element TAR is necessary for activation of HIV-1 gene expression. We investigated the hypothesis that the essential uridine residue at position 23 in the bulge of TAR RNA is involved in intramolecular hydrogen bonding to stabilize an unique RNA structure required for recognition by Tat. Nucleotide substitutions in the two base pairs of the TAR stem directly above the essential trinucleotide bulge that maintain base pairing but change sequence prevent complex formation with Tat in vitro. Corresponding mutations tested in a trans-activation assay strongly affect the biological activity of TAR in vivo, suggesting an important role for these nucleotides in the Tat-TAR interaction. On the basis of these data, a model is proposed which implicates uridine 23 in a stable tertiary interaction with the GC pair directly above the bulge. This interaction would cause widening of the major groove of the RNA, thereby exposing its hydrogen-bonding surfaces for possible interaction with Tat. The model also predicts a gap between uridine 23 and the first base pair in the stem above, which would require one or more unpaired nucleotides to close, but does not predict any other role for such nucleotides. In accordance with this prediction, synthetic propyl phosphate linkers of equivalent length to 1 or 2 nucleotides, were found to be fully acceptable substitutes in the bulge above uridine 23, demonstrating that neither the bases nor the ribose moieties at these positions are implicated in the recognition of TAR RNA by Tat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号