首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The greater incidence of hypertension and coronary artery disease in men and postmenopausal women compared with premenopausal women has been related, in part, to gender differences in vascular tone and possible vascular protective effects of the female sex hormones estrogen and progesterone. However, vascular effects of the male sex hormone testosterone have also been suggested. Estrogen, progesterone, and testosterone receptors have been identified in blood vessels of human and other mammals and have been localized in the plasmalemma, cytosol, and nuclear compartments of various vascular cells, including the endothelium and the smooth muscle. The interaction of sex hormones with cytosolic/nuclear receptors triggers long-term genomic effects that could stimulate endothelial cell growth while inhibiting smooth muscle proliferation. Activation of plasmalemmal sex hormone receptors may trigger acute nongenomic responses that could stimulate endothelium-dependent mechanisms of vascular relaxation such as the nitric oxide-cGMP, prostacyclin-cAMP, and hyperpolarization pathways. Additional endothelium-independent effects of sex hormones may involve inhibition of the signaling mechanisms of vascular smooth muscle contraction such as intracellular Ca2+ concentration and protein kinase C. The sex hormone-induced stimulation of the endothelium-dependent mechanisms of vascular relaxation and inhibition of the mechanisms of vascular smooth muscle contraction may contribute to the gender differences in vascular tone and may represent potential beneficial vascular effects of hormone replacement therapy during natural and surgically induced deficiencies of gonadal hormones.  相似文献   

3.
4.
Neurogenic inflammation, vascular permeability, and mast cells   总被引:6,自引:0,他引:6  
Electrical stimulation (ES) of sensory nerves causes increased vascular permeability and vasodilatation, a process known as neurogenic inflammation. The purpose of this study was to assess the role of mast cells in neurogenic inflammation induced by ES of sensory nerves. ES of the rat saphenous nerve for 1, 3, 5, 15, or 30 min induced a 166 to 436% increase in the amount of 125I-albumin deposited in the skin. Through the initial 15 min of ES, the histamine content of the skin remained unchanged. However, 30 min of ES caused a 22.1% decrease in skin histamine (p less than 0.05). ES for 5 min followed by measurement of vascular permeability from 0 to 30 min thereafter resulted in maximal increases in 125I-albumin in the skin immediately after cessation of the pulse of ES. When skin histamine was measured at various intervals after a 5-min pulse of ES, no change in the histamine content was observed through the subsequent 30 min. When mast cell degranulation was assessed histologically, 5 min of ES failed to stimulate mast cell degranulation. However, 30 min of ES caused a significant increase in the proportion of degranulating mast cells. When draining venous plasma histamine was monitored before, during and after ES, no change in plasma histamine was observed. In contrast, the intradermal injection of 5 micrograms of compound 48/80 produced a significant increase in plasma histamine. In order to examine the possibility that histamine might be released but remain in the skin after ES, skin "blisters" were developed by intradermal injections of saline. There was a significant increase in the amount of 125I-albumin extravasated into blister fluid measured after 3, 5, and 10 min of ES and a significant increase in histamine after 5 or 10 min. Therefore, prolonged ES of sensory nerves can cause mast cell degranulation. However, ES causes increased vascular permeability at times when no mast cell activation can be observed. These data suggest that the initial phases of neurogenic inflammation are independent of mast cell activation.  相似文献   

5.
Vasoactive exposures, vascular events, and hemifacial microsomia   总被引:9,自引:0,他引:9  
BACKGROUND: Based on experimental evidence and clinical observations, hemifacial microsomia (HFM) is one of several structural anomalies that are postulated to result from vascular disruption. We collected data in a case-control study to identify whether vasoactive exposures or vascular events during early pregnancy affect the risk of HFM. METHODS: Cases with a diagnosis of HFM were identified at craniofacial centers in 26 cities across the United States and Canada, from 1996 to 2002. Controls were matched to cases by age and pediatrician practice. Mothers of 230 cases and 678 controls were interviewed about pregnancy events and exposures. Case and control mothers were compared for early pregnancy use of vasoactive medications, cigarettes, and alcohol; singleton or multiple gestation; and diabetes, hypertension, or vaginal bleeding in the first half of pregnancy. RESULTS: Odds ratios (ORs) were significantly increased for vasoactive mediation use (OR, 1.9 overall; OR, 4.2 among smokers), multiple gestations (OR, 10.5), and diabetes (OR, 6.0). Vaginal bleeding in the second trimester and heavy alcohol intake were associated with increased risks, but the estimates were based on small numbers and, therefore, are unstable. No associations were observed for cigarette smoking without vasoactive medication use, hypertension, and vaginal bleeding in the first trimester. CONCLUSIONS: The increased risks of HFM associated with vasoactive medication use, multiple gestations, diabetes, and second trimester vaginal bleeding appear collectively to support the hypothesis that vascular disruption is one etiology for HFM, because each of these factors is related to effects on blood vessels.  相似文献   

6.
7.
8.
Vasoactive mediators play an important role in the control of coronary vascular tone. Arachidonic acid (AA) metabolites and endothelium-derived vasoactive factors have been implicated in coronary vasoregulation. AA can be metabolized via three separate routes in blood vessels, mediated by cyclooxygenase, lipoxygenase, and cytochrome P-450-dependent monooxygenase enzymes. AA can evoke endothelium-dependent relaxations that are due in part to the formation of cytochrome P-450-dependent metabolites, inasmuch as drugs that modify cytochrome P-450 activity produce parallel changes in endothelium-dependent relaxations to AA. Moreover, some cytochrome P-450-derived metabolites formed biologically cause relaxations of isolated blood vessels. A cytochrome P-450-dependent pathway does not appear to contribute to endothelium-dependent relaxations induced by acetylcholine, which suggests that there may be a number of endothelium-derived relaxing factors (EDRFs). In addition, two endothelium-derived contractile factors have been described, including an unidentified cyclooxygenase metabolite of AA and a polypeptide isolated from cultured cells. As both prostaglandin I2 and acetylcholine-induced EDRF also inhibit platelet aggregation, endothelial injury and loss of these factors may predispose to vasospasm precipitated by release of platelet-derived mediators such as thromboxane A2 (TXA2) and 5-hydroxytryptamine. Unstable angina may be a clinical syndrome in which these events occur, which can be alleviated by inhibition of platelet activation and TXA2 formation with aspirin. Attenuation of endothelium-dependent relaxations can also occur without loss of endothelial cells. Neutrophil-endothelium interactions, precipitated by an ischemic episode, may initiate endothelial dysfunction and underlie the development of vasospasm in some conditions. Whether increased production of endothelium-derived contractile factors also occurs in vasospastic conditions remains to be determined.  相似文献   

9.
Hyperhomocysteinemia, thrombosis and vascular biology.   总被引:2,自引:0,他引:2  
Epidemiological evidence suggests that hyperhomocysteinemia (HH) is an independent risk factor for arterial thrombotic diseases such as acute myocardial infarction, stroke, peripheral ischemic occlusive disorders as well as venous thromboembolism. This article presents a hypothesis to explain the pathogenesis of increases in plasma homocysteine level and associated increased risk of thrombotic disease. It is based on the data in the literature and results from our laboratory on the impact of folate induced HH in rats. These results include: a) Effects on whole blood coagulation, which is characterized by increased velocity of coagulation, increased firmness of the formed coagulum and prolonged initiation phase of the coagulation; b) Genetic regulation of blood cells, which is characterized by increased platelet activation, impaired fibrinolysis and impaired function of the contact activation pathway of coagulation, and c) Reduced functional activities of single coagulation factors FXII:C, FX:C and FII:C.  相似文献   

10.
11.
Noradrenaline excitations: neuronal, not vascular   总被引:1,自引:0,他引:1  
  相似文献   

12.
Oxidation-sensitive mechanisms,vascular apoptosis and atherosclerosis   总被引:1,自引:0,他引:1  
Increased generation of oxidants, resulting from disruption of aerobic metabolism and from respiratory burst, is an essential defense mechanism against pathogens and aberrant cells. However, oxidative stress can also trigger and enhance deregulated apoptosis or programmed cell death, characteristic of atherosclerotic lesions. Oxidation-sensitive mechanisms also modulate cellular signaling pathways that regulate vascular expression of cytokines and growth factors, and influence atherogenesis, in particular when increased levels of plasma lipoproteins provide ample substrate for lipid peroxidation and lead to increased formation of adducts with lipoprotein amino acids. In some cases, increased oxidation and apoptosis in a group of cells might be beneficial for survival and function of other groups of arterial cells. However, overall, oxidation and apoptosis appear to promote the progression of diseased arteries towards a lesion that is vulnerable to rupture, and to give rise to myocardial infarction and ischemic stroke. Recent rapid advances in our understanding of the interactions between oxidative stress, apoptosis and arterial gene regulation suggest that selective interventions targeting these biological functions have great therapeutic potential.  相似文献   

13.
Obesity, adiponectin and vascular inflammatory disease   总被引:28,自引:0,他引:28  
PURPOSE OF REVIEW: Obesity is the most common risk factor for cardiovascular diseases in industrial countries. It is now clear that adipose tissue secretes various bioactive substances, conceptualized as adipocytokines, and that dysregulation of adipocytokines directly contributes to obesity-related diseases. Chronic inflammatory processes contribute to the development of atherosclerosis. In this review, the authors focus on the relationship between adiponectin, a recently discovered anti-atherogenic adipocytokine, and vascular inflammation. RECENT FINDINGS: Plasma concentrations of adiponectin, an adipocyte-specific protein, are reduced in obese subjects and in patients with type 2 diabetes and coronary artery disease. Adiponectin inhibits the expression of tumor necrosis factor-alpha-induced endothelial adhesion molecules, macrophage-to-foam cell transformation, tumor necrosis factor-alpha expression in macrophages and adipose tissues, and smooth muscle cell proliferation. In addition, adenovirus-expressed adiponectin reduces atherosclerotic lesions in a mouse model of atherosclerosis, and adiponectin-deficient mice exhibit an excessive vascular remodeling response to injury. Clinically, hypoadiponectinemia is closely associated with increased levels of inflammatory markers such as C-reactive protein and interleukin-6. SUMMARY: Adiponectin acts as an anti-inflammatory and anti-atherogenic plasma protein. Adiponectin is an endogenous biologically relevant modulator of vascular remodeling linking obesity and vascular disease.  相似文献   

14.
R M Nerem 《Biorheology》1984,21(4):565-569
The evidence for a hemodynamic involvement and possible mechanisms by which hemodynamic-related events could influence the arterial wall, and in particular the vascular endothelium, are reviewed and used to speculate on the role of fluid mechanics in atherogenesis and specifically in lesion localization. The evidence presented suggests that it is vascular geometry, and the way it influences the local detailed flow properties, which is the primary determinant of a hemodynamic effect on the arterial wall and in the initiation of atherosclerosis.  相似文献   

15.
Normal angiogenesis is a complex process involving the organization of proliferating and migrating endothelial cells (ECs) into a well-ordered and highly functional vascular network. In contrast, pathological angiogenesis, which is a conspicuous feature of tumor growth, ischemic diseases, and chronic inflammation, is characterized by vessels with aberrant angioarchitecture and compromised barrier function. Herein we review the subject of pathological angiogenesis, particularly that driven by vascular endothelial growth factor (VEGF-A), from a new perspective. We propose that the serious structural and functional anomalies associated with VEGF-A-elicited neovessels, reflect, at least in part, imbalances in the internal molecular cues that govern the ordered assembly of ECs into three dimensional vascular networks and preserve vessel barrier function. Adopting such a viewpoint widens the focus from solely on specific pro-angiogenic stimuli such as VEGF-A to include a key set of cytoskeletal regulatory molecules, the Rho GTPases, which are known to direct multiple aspects of vascular morphogenesis including EC motility, alignment, multi-cellular organization, as well as intercellular junction integrity. We offer this perspective to draw attention to the importance of endothelial cytoskeletal dynamics for proper neovascularization and to suggest new therapeutic strategies with the potential to improve the pathological vascular phenotype.  相似文献   

16.
Stress-modulated growth, residual stress, and vascular heterogeneity.   总被引:9,自引:0,他引:9  
A simple phenomenological model is used to study interrelations between material properties, growth-induced residual stresses, and opening angles in arteries. The artery is assumed to be a thick-walled tube composed of an orthotropic pseudoelastic material. In addition, the normal mature vessel is assumed to have uniform circumferential wall stress, which is achieved here via a mechanical growth law. Residual stresses are computed for three configurations: the unloaded intact artery, the artery after a single transmural cut, and the inner and outer rings of the artery created by combined radial and circumferential cuts. The results show that the magnitudes of the opening angles depend strongly on the heterogeneity of the material properties of the vessel wall and that multiple radial and circumferential cuts may be needed to relieve all residual stress. In addition, comparing computed opening angles with published experimental data for the bovine carotid artery suggests that the material properties change continuously across the vessel wall and that stress, not strain, correlates well with growth in arteries.  相似文献   

17.
Over 1 million people in the United States and 33 million individuals worldwide suffer from HIV/AIDS. Since its discovery, HIV/AIDS has been associated with an increased susceptibility to opportunistic infection due to immune dysfunction. Highly active antiretroviral therapies restore immune function and, as a result, people infected with HIV-1 are living longer. This improved survival of HIV-1 patients has revealed a previously unrecognized risk of developing vascular complications, such as atherosclerosis and pulmonary hypertension. The mechanisms underlying these HIV-associated vascular disorders are poorly understood. However, HIV-induced elevations in reactive oxygen species (ROS), including superoxide and hydrogen peroxide, may contribute to vascular disease development and progression by altering cell function and redox-sensitive signaling pathways. In this review, we summarize the clinical and experimental evidence demonstrating HIV- and HIV antiretroviral therapy-induced alterations in reactive oxygen species and how these effects are likely to contribute to vascular dysfunction and disease.  相似文献   

18.
Lymphatic vascular morphogenesis in development, physiology, and disease   总被引:1,自引:0,他引:1  
The lymphatic vasculature constitutes a highly specialized part of the vascular system that is essential for the maintenance of interstitial fluid balance, uptake of dietary fat, and immune response. Recently, there has been an increased awareness of the importance of lymphatic vessels in many common pathological conditions, such as tumor cell dissemination and chronic inflammation. Studies of embryonic development and genetically engineered animal models coupled with the discovery of mutations underlying human lymphedema syndromes have contributed to our understanding of mechanisms regulating normal and pathological lymphatic morphogenesis. It is now crucial to use this knowledge for the development of novel therapies for human diseases.  相似文献   

19.
Epidemiological and interventional studies have implicated elevated triglyceride-rich lipoprotein (TGRL) levels as a risk factor for cardiovascular disease and vascular inflammation, though the results have not been entirely consistent. This appears particularly relevant in model systems where the lipolysis occurs in the setting of established inflammation (e.g., in pre-existing atherosclerotic plaques), rather than in the tissue capillary beds where lipolysis normally occurs. Two main mechanisms seem to link TGRL lipolysis to vascular inflammation. First, lipolysis of TGRL leaves behind partially lipolyzed remnant particles which are better able to enter the vessel wall than nascent TGRL, have a rate of egress substantially lower than their rate of entry, and contain 5-20 times more cholesterol per particle than LDL. Furthermore, remnants do not require oxidation or other modifications to be phagocytized by macrophages, enhancing foam cell formation. Second, saturated fatty acids and oxidized phospholipids released by lipolysis induce inflammation by activating Toll-like receptors of the innate immune system, via oxidative stress, or by greatly amplifying existing pro-inflammatory signals (caused by subclinical endotoxemia) via mitogen-activated protein kinases. However, n-3 and unbound n-9 unsaturated fatty acids released by lipolysis have anti-inflammatory effects. Thus, the contribution of TGRL lipolysis to inflammation likely depends less on the TGRL concentration than on the balance between pro- and anti-inflammatory factors, and on the setting in which the lipolysis occurs. In the setting of the typical "Western" diet, enriched in saturated and oxidized fatty acids and excessive in size, this balance is likely to be tilted towards increased vascular inflammation and atherosclerosis. This article is part of a Special Issue entitled Triglyceride Metabolism and Disease.  相似文献   

20.
Shear stress,vascular remodeling and neointimal formation   总被引:10,自引:0,他引:10  
The role of shear stress in atherosclerosis has been well documented. However, its role in restenosis was underexposed. In this paper a novel in vivo measuring technique and several of its applications related to restenosis will be described. The technique consists of a combination of 3D reconstruction of blood vessels and computational fluid dynamics (CFD). The 3D imaging techniques use either of 3D intravascular ultrasound (IVUS) as a stand-alone technique or a fusion of biplane angiography and IVUS (ANGUS). CFD is applied in order to relate local shear stress distribution to the morphology of the vessel wall. In the applications of these techniques it will be demonstrated that shear stress plays a role in the prediction of neointimal formation in in-stent restenosis and in vascular remodeling after balloon angioplasty. Attempts to locally increase shear stress by a newly developed flow divider indicate that shear stress reduce in-stent neointimal formation by 50%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号