首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Competition among plants in extreme environments such as the High Arctic has often been described as unimportant, or even nonexistent; environmental factors are thought to overrule any negative plant–plant interactions. However, few studies have actually addressed this question experimentally in the Arctic, and those that did found only little evidence for competition. Such species interactions will presumably become more important in the future, as Global Climate Change takes effect on terrestrial ecosystems. We investigated plant–plant interactions in the High Arctic, following the growth of Luzula confusa and Salix polaris in pure and mixed stands, and under elevated‐temperature treatment over 2 years. To understand the mechanisms of competition, a parallel experiment was undertaken in phytotrons, manipulating competition, temperature and nutrient availability. Our findings indicate that competition is acting in the natural vegetation, and that climatic warming will alter the balance of interactions in favour of the dwarf shrub S. polaris. The phytotron experiment suggested that the mechanism is a higher responsiveness of Salix to nutrient availability, which increased under warming in the field. While Luzula showed a positive response to higher temperature in the lab, its performance in mixed stands in the field was actually reduced by warming, indicating a competitive repression of growth by Salix. The growth of Salix was also reduced by the presence of Luzula, but it was still able to profit from warming. Our findings suggest that climatic warming will result in greater shrub dominance of High Arctic tundra, but we also conjecture that grazing could reverse the situation to a graminoid‐dominated tundra. These two divergent scenarios would have different implications for ecosystem feedbacks to climatic change.  相似文献   

2.
Both the direct effects of warming on a species’ vital rates and indirect effects of warming caused by interactions with neighboring species can influence plant populations. Furthermore, herbivory mediates the effects of warming on plant community composition in many systems. Thus, determining the importance of direct and indirect effects of warming, while considering the role of herbivory, can help predict long‐term plant community dynamics. We conducted a field experiment in the coastal wetlands of western Alaska to investigate how warming and herbivory influence the interactions and abundances of two common plant species, a sedge, Carex ramenskii, and a dwarf shrub, Salix ovalifolia. We used results from the experiment to model the equilibrium abundances of the species under different warming and grazing scenarios and to determine the contribution of direct and indirect effects to predict population changes. Consistent with the current composition of the landscape, model predictions suggest that Carex is more abundant than Salix under ambient temperatures with grazing (53% and 27% cover, respectively). However, with warming and grazing, Salix becomes more abundant than Carex (57% and 41% cover, respectively), reflecting both a negative response of Carex and a positive response of Salix to warming. While grazing reduced the cover of both species, herbivory did not prevent a shift in dominance from sedges to the dwarf shrub. Direct effects of climate change explained about 97% of the total predicted change in species cover, whereas indirect effects explained only 3% of the predicted change. Thus, indirect effects, mediated by interactions between Carex and Salix, were negligible, likely due to use of different niches and weak interspecific interactions. Results suggest that a 2°C increase could cause a shift in dominance from sedges to woody plants on the coast of western Alaska over decadal timescales, and this shift was largely a result of the direct effects of warming. Models predict this shift with or without goose herbivory. Our results are consistent with other studies showing an increase in woody plant abundance in the Arctic and suggest that shifts in plant–plant interactions are not driving this change.  相似文献   

3.
Our understanding of positive and negative plant interactions is primarily based on vascular plants, as is the prediction that facilitative effects dominate in harsh environments. It remains unclear whether this understanding is also applicable to moss–vascular plant interactions, which are likely to be influential in low-temperature environments with extensive moss ground cover such as boreal forest and arctic tundra. In a field experiment in high-arctic tundra, we investigated positive and negative impacts of the moss layer on vascular plants. Ramets of the shrub Salix polaris, herb Bistorta vivipara, grass Alopecurus borealis and rush Luzula confusa were transplanted into plots manipulated to contain bare soil, shallow moss (3 cm) and deep moss (6 cm) and harvested after three growing seasons. The moss layer had both positive and negative impacts upon vascular plant growth, the relative extent of which varied among vascular plant species. Deep moss cover reduced soil temperature and nitrogen availability, and this was reflected in reduced graminoid productivity. Shrub and herb biomass were greatest in shallow moss, where soil moisture also appeared to be highest. The relative importance of the mechanisms by which moss may influence vascular plants, through effects on soil temperature, moisture and nitrogen availability, was investigated in a phytotron growth experiment. Soil temperature, and not nutrient availability, determined Alopecurus growth, whereas Salix only responded to increased temperature if soil nitrogen was also increased. We propose a conceptual model showing the relative importance of positive and negative influences of the moss mat on vascular plants along a gradient of moss depth and illustrate species-specific outcomes. Our findings suggest that, through their strong influence on the soil environment, mat-forming mosses structure the composition of vascular plant communities. Thus, for plant interaction theory to be widely applicable to extreme environments such as the Arctic, growth forms other than vascular plants should be considered.  相似文献   

4.
Chemical compounds from plants may exhibit stimulatory and/or inhibitory effects on surrounding organisms. However, research on belowground biochemical interactions among plants has focused more effort on elucidating negative effects. Moreover, the effect of shoot litter on belowground plant–plant interactions has remained relatively unexplored. In a field experiment with four target plant species (Artemisia frigida Willd., Solidago missouriensis Nutt.), Bouteloua gracilis (Willd. ex Kunth) Lag. ex Griffiths and Poa pratensis L.) interacting with intact grassland neighbours, we manipulated root competition using PVC tubes and shoot litter, and belowground chemical interaction by adding activated carbon (AC) to the soil. In A. frigida, shoot litter significantly interacted with root competition and root chemicals. Plants grown plus AC were larger than those minus AC when shoot litter was left intact suggesting inhibitory effects from neighbours and/or decomposing products. However, when shoot litter was removed, plants grown minus AC were larger suggesting stimulatory effects of root exudates. B. gracilis showed a similar trend but results were non-significant. Results demonstrate that the effects of neighbours can be inhibitory or facilitative depending on the presence or absence of shoot litter and mediation through AC.  相似文献   

5.
Positive interactions between species are known to play an important role in the structure and dynamics of alpine plant communities. The balance between negative and positive interactions is known to shift along spatial and temporal gradients, with positive effects prevailing over negative ones as the environmental stress increases. Thus, this balance is likely to be affected by climate change. We hypothesized that increases in temperature (a global warming scenario) should decrease the importance of positive interactions for the survival and growth of alpine plant species. To test this hypothesis, we selected individuals of the native grass species Hordeum comosum growing within the nurse cushion species Azorella madreporica at 3,600 m.a.s.l. in Los Andes (Chile), and performed nurse removal and seedling survival experiments under natural and warmer conditions. For warmer conditions, we used open-top chambers, which increased the temperature by 4 °C. After two growing seasons, we compared the effect of nurse removal on the survival, biomass, and photochemical efficiency of H. comosum individuals under warmer and natural conditions. Nurse removal significantly decreased the survival, biomass, and photochemical efficiency of H. comosum, demonstrating the facilitative effects of nurse cushions. Seedling survival was also enhanced by cushions, even under warmer conditions. However, warmer conditions only partially mitigated the negative effects of nurse removal, suggesting that facilitative effects of cushions do not wane under warmer conditions. Thus, facilitative interactions are vital to the performance and survival of alpine species, and these positive interactions will continue to be important in the warmer conditions of the future in high-alpine habitats.  相似文献   

6.
Neighboring plants may have dual roles in relation to focal plants, being both competitors, and mediators of associational resistance (AR), or associational susceptibility (AS) to herbivores. Even though these two roles are played out simultaneously in nature, they have traditionally been studied separately. We conducted a two-by-two factorial experiment by manipulating the occurrence of neighbors (meadowsweet, Filipendula ulmaria) and shared mammal herbivores (moose, Alces alces) to investigate how the two simultaneously affect the performance of focal fireweed (Chamerion angustifolium) plants.We found that interactions between mammal herbivory and neighbors had significant effects on fireweed performance. These effects were explained by two counteracting mechanisms. First, when mammal herbivores were present, fireweed experienced AR such that plants growing outside of meadowsweet patches had an almost tripled risk of being browsed compared to plants growing among meadowsweet, resulting in reduced fireweed reproduction and growth. Second, when mammals were excluded, the association with meadowsweet had a direct negative effect on fireweed growth rates – mainly due to competition for light. Additionally, for the first time, we show that association with neighbors affected mammal-induced branching in fireweed.This study demonstrates that AR mediated by mammal herbivores can flip plant–plant interactions from competitive (−) to facilitative (+), and affect plant architecture. As AR and competition are probably simultaneously co-occurring forces, interactions between the two are likely common and thus of fundamental importance for populations and communities.  相似文献   

7.
Sympatric species are expected to minimize competition by partitioning resources, especially when these are limited. Herbivores inhabiting the High Arctic in winter are a prime example of a situation where food availability is anticipated to be low, and thus reduced diet overlap is expected. We present here the first assessment of diet overlap of high arctic lemmings during winter based on DNA metabarcoding of feces. In contrast to previous analyses based on microhistology, we found that the diets of both collared (Dicrostonyx groenlandicus) and brown lemmings (Lemmus trimucronatus) on Bylot Island were dominated by Salix while mosses, which were significantly consumed only by the brown lemming, were a relatively minor food item. The most abundant plant taxon, Cassiope tetragona, which alone composes more than 50% of the available plant biomass, was not detected in feces and can thus be considered to be non-food. Most plant taxa that were identified as food items were consumed in proportion to their availability and none were clearly selected for. The resulting high diet overlap, together with a lack of habitat segregation, indicates a high potential for resource competition between the two lemming species. However, Salix is abundant in the winter habitats of lemmings on Bylot Island and the non-Salix portion of the diets differed between the two species. Also, lemming grazing impact on vegetation during winter in the study area is negligible. Hence, it seems likely that the high potential for resource competition predicted between these two species did not translate into actual competition. This illustrates that even in environments with low primary productivity food resources do not necessarily generate strong competition among herbivores.  相似文献   

8.
Plant–plant interactions are largely influenced by both environmental stress and ontogeny. Despite the effects of each of these factors on the overall outcome of these interactions has received considerable attention during the last years, the joint effects of both factors as drivers of such outcome are poorly understood. We used the combination of spatial pattern analysis, fruit production surveys, carbohydrate assays, sowing experiments and dendrochronological techniques to explore the interaction between Stipa tenacissima (nurse) and Lepidium subulatum (protégée) in two different slope aspects. This battery of techniques allows us to study the effects of the nurse plant during the whole life cycle of the protégée, and to assess the role of spatio-temporal variability in abiotic stress as a modulator of ontogenetic shifts in plant–plant interactions. Spatial pattern analyses suggested a net facilitative effect of S. tenacissima on L. subulatum. This effect was particularly important during the germination, shifting to competition (growth reduction) early after establishment. Competition was gradually reduced as the shrub aged, suggesting niche differentiation. The magnitude of competition was reduced under low rainfall levels in south-facing slopes, whereas this response was observed due to other abiotic factors in north-facing slopes. Our results highlight the crucial effect that positive interactions at early life-stages have to determine the long-term outcome of a given plant–plant interaction, and the existence of multiple shifts between facilitation and competition along different life-stages of the protégée. They also show how these ontogenetic shifts are modulated by abiotic factors, which differ among slope aspects. These findings may help to refine conceptual and theoretical models about shifts between facilitation and ontogeny under current climate change scenarios.  相似文献   

9.
There has been much debate about the role of plant interactions in the structure and function of vegetation communities. Here the results of a pot experiment with controlled environments are described where three environmental variables (nutrients, sediment type and waterlogging) were manipulated factorially to identify their effects on the growth and intensity of interactions occurring between Spartina anglica and Puccinellia maritima. The two species were grown in split-plot planting treatments, representing intraspecific and interspecific addition series experiments, to determine individual and interactive effects of environmental factors and plant interactions on plant biomass.
Above-ground growth of both species involved interactions between the environmental and planting treatments, while below-ground, environmental factors affected the biomass irrespective of planting treatments. It was suggested that this difference in growth response is evidence that in our experiment plant interactions between the two species occur primarily at the above-ground level.
The intensity of plant interactions varied in a number of ways. First, interactions between Spartina and Puccinellia were distinctly asymmetrical, Puccinellia exerting a competitive effect on Spartina, with no reciprocal effect, and with a facilitative effect of Spartina on Puccinellia in low nutrient conditions. Second, the interactions varied in intensity in different environmental conditions. Interspecific competitive effects of Puccinellia on Spartina were more intense in conditions favourable to growth of Puccinellia and reduced or non-existent in environments with more abiotic stress. Third, intraspecific competition was found to be less intense for both species than interspecific interactions. Finally, the intensity of plant interactions involving both species was more intense above ground than below ground, with a disproportionate reduction in the intensity of interspecific competition below relative to above ground in treatments with less productive sediments and greater immersion. This is interpreted as reflecting a potential mechanism by which Spartina may be able to evade competitive neighbours.  相似文献   

10.
《Acta Oecologica》2006,29(2):214-220
At low altitudes, the interactions between root and shoot competition on plant growth have been extensively studied, and such interaction effects were found to be positive, negative, or neutral. However, little is known about such effects at high altitudes where the environmental conditions are harsher than those at low altitudes. We carried out a field experiment in an alpine meadow in the northeast Tibetan Plateau to test the hypothesis that a negative interaction between root and shoot competition exists for alpine plant species. Root and shoot competition were experimentally manipulated in the four grass species (Kobresia humilis, Saussurea superba, Stipa aliena and Elymus nutans). We found that K. humilis and S. aliena grew better without competition, whereas S. superba grew better with shoot competition and E. nutans grew better with root competition. The interactions between root and shoot competition were negative in K. humilis, positive in S. superba, but neutral in S. aliena and E. nutans, suggesting that the interaction effects are species-specific. This study also suggested that alpine plants may trade off both plant–plant interactions and competition shift between root and shoot to adapt to stressful environments.  相似文献   

11.
Removal of invasive species often benefits biological diversity allowing ecosystems’ recovery. However, it is important to assess the functional roles that invaders may have established in their new areas to avoid unexpected results from species elimination. Invasive animal-pollinated plants may affect the plant–pollination interactions by changing pollinator availability and/or behaviour in the community. Thus, removal of an invasive plant may have important effects on pollinator community that may then be reflected positive or negatively on the reproductive success of native plants. The objective of this study was to assess the effect of removing Oxalis pes-caprae, an invasive weed widely spread in the Mediterranean basin, on plant–pollinator interactions and on the reproductive success of co-flowering native plants. For this, a disturbed area in central Portugal, where this species is highly abundant, was selected. Visitation rates, natural pollen loads, pollen tube growth and natural fruit set of native plants were compared in the presence of O. pes-caprae and after manual removal of their flowers. Our results showed a highly resilient pollination network but also revealed some facilitative effects of O. pes-caprae on the reproductive success of co-flowering native plants. Reproductive success of the native plants seems to depend not only on the number and diversity of floral visitors, but also on their efficiency as pollinators. The information provided on the effects of invasive species on the sexual reproductive success of natives is essential for adequate management of invaded areas.  相似文献   

12.

Aims

We investigated how rhizosphere factors (total rhizosphere, roots, arbuscular mycorrhizal fungal hyphae [AMF], and soil solution) and water availability affect interactions between neighboring Medicago sativa plants.

Methods

A three-compartment mesocosm was used to test the effects of rhizosphere factors on plant–plant interactions. A relative interaction index (RII) was calculated to indicate whether effects of neighbor plant on target plant were positive or negative (facilitative or competitive). Isotope tracers were used to test whether AMF hyphae mediated competition for nitrogen (N) between target and neighbor plants.

Results

The effects of rhizosphere factors on the interactions between neighboring M. sativa plants depended on water availability. The effects of total rhizosphere shifted RII from negative to positive as water availability increased. Interaction with the roots and rhizosphere soil solution of neighbor plants shifted RII from negative to positive as water availability increased but the opposite was true for AMF hyphae. AMF hyphae helped neighbor plants compete for 15N when water was available but not when water was limiting.

Conclusions

The effect of total rhizosphere on plant–plant interaction of M. sativa shifted from competitive to facilitative as water availability increased. Competition was reduced by neighboring soil solution and roots but was increased by AMF hyphae.  相似文献   

13.
AimHow plants cope with increases in population density via root plasticity is not well documented, although abiotic environments and plant ontogeny may have important roles in determining root response to density. To investigate how plant root plasticity in response to density varies with soil conditions and growth stages, we conducted a field experiment with an annual herbaceous species (Abutilon theophrasti).MethodsPlants were grown at low, medium, and high densities (13.4, 36.0, and 121.0 plants m−2, respectively), under fertile and infertile soil conditions, and a series of root traits were measured after 30, 50, and 70 days.ResultsRoot allocation increased, decreased, or canalized in response to density, depending on soil conditions and stages of plant growth, indicating the complex effects of population density, including both competitive and facilitative effects.Main conclusionsRoot allocation was promoted by neighbor roots at early stages and in abundant resource availability, due to low‐to‐moderate belowground interactions among smaller plants, leading to facilitation. As plants grew, competition intensified and infertile soil aggravated belowground competition, leading to decreased root allocation in response to density. Root growth may be more likely restricted horizontally rather than vertically by the presence of neighbor, suggesting a spatial orientation effect in their responses to density. We emphasized the importance of considering effects of abiotic conditions and plant growth stages in elucidating the complexity of density effects on root traits.  相似文献   

14.
Biotic interactions play an important role in ecosystem function and structure in the face of global climate change. We tested how plant–plant interactions, namely competition and facilitation among grassland species, respond to extreme drought and heavy rainfall events. We also examined how the functional composition (grasses, forbs, legumes) of grassland communities influenced the competition intensity for grass species when facing extreme events. We exposed experimental grassland communities of different functional compositions to either an extreme single drought event or to a prolonged heavy rainfall event. Relative neighbour effect, relative crowding and interaction strength were calculated for five widespread European grassland species to quantify competition. Single climatic extremes caused species specific shifts in plant–plant interactions from facilitation to competition or vice versa but the nature of the shifts varied depending on the community composition. Facilitation by neighbouring plants was observed for Arrhenatherum elatius when subjected to drought. Contrarily, the facilitative effect of neighbours on Lotus corniculatus was transformed into competition. Heavy rainfall increased the competitive effect of neighbours on Holcus lanatus and Lotus corniculatus in communities composed of three functional groups. Competitive pressure on Geranium pratense and Plantago lanceolata was not affected by extreme weather events. Neither heavy rainfall nor extreme drought altered the overall productivity of the grassland communities. The complementary responses in competition intensity experienced by grassland species under drought suggest biotic interactions as one stabilizing mechanism for overall community performance. Understanding competitive dynamics under fluctuating resources is important for assessing plant community shifts and degree of stability of ecosystem functions.  相似文献   

15.
We review the distributions and functions of mycorrhizas and dark septate root endophytes in polar regions. Arbuscular mycorrhizas (AM) are present in the Arctic and Antarctic to 82 °N and 63 °S, respectively, with fine endophyte being the dominant form of AM in roots at higher latitudes. Ecto- (ECM) and ericoid (ERM) mycorrhizas both occur in the Arctic to 79 °N, owing to the presence of species of Salix, Dryas, Vaccinium and Cassiope to this latitude. ECM and ERM are not present in Antarctic ecosystems, owing to an absence of suitable hosts. Arbutoid and orchid mycorrhizas are infrequent in the Arctic, whilst the latter are present at one location in the sub-Antarctic. Data from studies of AM, ECM and ERM colonisation along a latitudinal transect through the Arctic indicate that the frequency of plant species not colonised by mycorrhizas increases at higher latitudes, largely owing to an increase in non-mycorrhizal and a decrease in obligately mycorrhizal plant families at more northerly locations. A separate group of root- and rhizoid-associated fungi, the dark septate root endophytes (DSE), are widespread to 82 °N and 77 °S, and are apparently more frequent than mycorrhizal fungi in polar regions. The functions of DSE are largely unclear, but studies suggest beneficial effects on plant growth under defined conditions. We advocate further research into the effects of DSE on their host plants in polar regions.  相似文献   

16.
Allelopathy is recognized as an important process in plant–plant interactions, but how it affects plant communities growing in competitive conditions has not been assessed. This article investigates whether the allelopathic effect of Festuca paniculata is modified by competition between target plants in subalpine grasslands. We hypothesized that plants growing in mixed stands will be more affected by allelochemicals than the same species in monoculture. At Lautaret pass (Northern French Alps), a pot experiment was designed. We used leachates from donor pots (Treatments: 1. Bare soil, 2. F. paniculata clipped, and 3. F. paniculata unclipped) to water target pots (Treatments: 1. Control (soil only), 2. Dactylis glomerata, 3. Agrostis capillaris, and 4. D. glomerata and A. capillaris). Target plants were cultivated during one growing season. The effects of leachates from donor pots and interspecific competition in target pots were evaluated by measuring the final biomass of plants. Soil fertility was controlled in all target pots by measuring NO3 ?, NH4 +, N, and C % of the soil. Effect of target treatment under bare soil : Both D. glomerata and A. capillaris grew better in monocultures than in mixture. Effect of donor treatment on monocultures : Under bare soil, D. glomerata grew better than under F. paniculata leachates. By contrast, A. capillaris did not respond to donor pot treatment. Effect of donor treatment on mixtures: However, when both species were cultivated together under F. paniculata leachates, the biomass of D. glomerata was similar to that in monoculture under bare soil. Differences in sensitivity to allelopathy reversed the impact of interspecific competition: A. capillaris facilitated D. glomerata under allelopathy, which made allelopathy of F. paniculata on D. glomerata inefficient. The complexity of overlapping mechanisms of plant–plant interactions are highlighted by this semi-natural experiment. In subalpine grasslands, allelopathy not only limits the growth of neighboring plants, but it may also modify community assembly by affecting other plant–plant interactions such as competition. This study contributes to explore the way allelopathy interacts with other plant–plant interactions in natural systems.  相似文献   

17.
Recently, there have been several studies using open top chambers (OTCs) or cloches to examine the response of Arctic plant communities to artificially elevated temperatures. Few, however, have investigated multitrophic systems, or the effects of both temperature and vertebrate grazing treatments on invertebrates. This study investigated trophic interactions between an herbivorous insect (Sitobion calvulum, Aphididae), a woody perennial host plant (Salix polaris) and a selective vertebrate grazer (barnacle geese, Branta leucopsis). In a factorial experiment, the responses of the insect and its host to elevated temperatures using open top chambers (OTCs) and to three levels of goose grazing pressure were assessed over two summer growing seasons (2004 and 2005). OTCs significantly enhanced the leaf phenology of Salix in both years and there was a significant OTC by goose presence interaction in 2004. Salix leaf number was unaffected by treatments in both years, but OTCs increased leaf size and mass in 2005. Salix reproduction and the phenology of flowers were unaffected by both treatments. Aphid densities were increased by OTCs but unaffected by goose presence in both years. While goose presence had little effect on aphid density or host plant phenology in this system, the OTC effects provide interesting insights into the possibility of phenological synchrony disruption. The advanced phenology of Salix effectively lengthens the growing season for the plant, but despite a close association with leaf maturity, the population dynamics of the aphid appeared to lack a similar phenological response, except for the increased population observed.  相似文献   

18.
We examined the suitability of two deciduous arctic shrubs (Salix glauca L. and Betula nana L., hereafter Salix and Betula, respectively) for dendroclimatological analysis at two sites in West Greenland. Chronologies were successfully cross-dated, and the oldest covered the period 1954–2010 (Expressed Population Signal [EPS] > 0.85, 1977–2010). Distinctive pointer years, also called micro-rings, including those from a known outbreak of the irruptive moth Eurois occulta L. (Lepidoptera: Noctuidae) that peaked in 2005, assisted in the dating process. Climate-growth analyses were performed in two ways: first, using correlation analysis between residual site-level chronologies and monthly and seasonal climate data, and second, using linear mixed effects models (LMM) with seasonal climate data and standardized chronologies for each individual. We used climate data for the current and previous years for a given growth ring for both analyses. Both analyses revealed differences in climate-growth response among species and among sites of contrasting topography. Salix ring widths from south facing slopes correlated positively with current year’s summer temperatures, while those on gentle slopes associated negatively with current year’s spring precipitation. Betula was only sampled at one site (flat), and displayed associations with temperature and precipitation in spring. Results from the LMM largely corroborated the correlations for Betula and Salix on south facing slopes. Salix at the flat site displayed significant associations with a large number of climate variables, most strongly previous year’s summer and autumn temperatures, though precipitation in multiple seasons of the current and prior year did a better job of accounting for the variation in the data. Many dendrochronological studies in the Arctic illustrate clear summer temperature responses, but the majority were conducted on a single topographic position. Due to the heterogeneity of West Greenland’s landscapes, it is important to examine individuals from varying topographies. We found that samples collected from south facing slopes do appear to respond positively to summer temperatures, while those on shallow slopes respond to a wider array of seasonal temperature and precipitation parameters. Accounting for these species and topographic differences, when sampling, is imperative for improving our understanding of how plant communities in the Arctic will respond to ongoing and expected warming.  相似文献   

19.
Gymnosperms and angiosperms can co-occur within the same habitats but key plant traits are thought to give angiosperms an evolutionary competitive advantage in many ecological settings. We studied ontogenetic changes in competitive and facilitative interactions between a rare gymnosperm (Dioon sonorense, our target species) and different plant and abiotic neighbours (conspecific-cycads, heterospecific-angiosperms, or abiotic-rocks) from 2007 to 2010 in an arid environment of northwestern Mexico. We monitored survival and growth of seedlings, juveniles, and adults of the cycad Dioon sonorense to evaluate how cycad survival and relative height growth rate (RHGR) responded to intra- and interspecific competition, canopy openness, and nearest neighbour. We tested spatial associations among D. sonorense life stages and angiosperm species and measured ontogenetic shifts in cycad shade tolerance. Canopy openness decreased cycad survival while intraspecific competition decreased survival and RHGR during early ontogeny. Seedling survival was higher in association with rocks and heterospecific neighbours where intraspecific competition was lower. Shade tolerance decreased with cycad ontogeny reflecting the spatial association of advanced stages with more open canopies. Interspecific facilitation during early ontogeny of our target species may promote its persistence in spite of increasing interspecific competition in later stages. We provide empirical support to the long-standing assumption that marginal rocky habitats serve as refugia from angiosperm competition for slow-growing gymnosperms such as cycads. The lack of knowledge of plant–plant interactions in rare or endangered species may hinder developing efficient conservation strategies (e.g. managing for sustained canopy cover), especially under the ongoing land use and climatic changes.  相似文献   

20.
Changes in plant–fungal interactions were often suggested as one of possible mechanisms behind facilitative plant–plant effects in harsh environments. We asked how the mycorrhizal and dark septate endophyte (DSE) colonisations of understorey crowberry (Empetrum nigrum ssp. hermaphroditum) are affected by proximity to mature mountain birch trees (Betula pubescens ssp. czerepanovii) along three abiotic stress gradients (pollution, elevation, seashore) in the Kola peninsula, NW Russia. Stress level affected shoot growth and reproduction in crowberry, but had no effect on root fungal colonisation. In contrast, proximity to a mountain birch tree had no effect on either growth or reproduction of crowberry, but changed all characteristics of root colonisation. The mycorrhizal coil colonisation of crowberry was on average 21% higher near a birch tree, whereas other parameters were higher outside of canopy area (hyaline hyphae: 12%; DSE hyphae: 16%; DSE sclerotia: 42%). Effects of birch tree on root fungal colonisation in crowberry did not depend on the level of abiotic stress. Although we detected a weak positive association between growth of crowberry and its mycorrhizal coil colonisation, we conclude that mycorrhizal and DSE colonisations of crowberry are primarily affected by the abiotic environment. None of the detected patterns was consistent with the patterns expected from the theories concerning stress effects on plant–plant interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号