首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The transport of oleanolic acid and its glycosides (3-O-monoglucuronide F and 3-O-monoglucoside I) into the vacuoles of C. officinalis leaves was studied. It was found that these monoglycosides are transported into the vacuolar space whereas free oleanolic acid only binds with the tonoplast. The transport of monoglycosides depends on pH of the medium, the optimum pH for monoglucoside I and monoglucuronide F being 6.0 and 7.0, respectively. Moreover, it was demonstrated that the transport of monoglucoside I, in contrast to that of monoglucuronide F, depends on ATP at 0.5-2.0 mM concentrations. The presented results indicate that different mechanisms underlie the transport of these two compounds into vacuoles.  相似文献   

2.
Joachim Preisser  Ewald Komor 《Planta》1991,186(1):109-114
Uptake of sucrose into vacuoles of suspension cells of Saccharum sp. (sugarcane) was investigated using a vacuole-isolation method based on osmotic- and pH-dependent lysis of protoplasts. Vacuoles took up sucrose at high rates without the influence of tonoplast energization on sucrose transport. Neither addition of ATP or pyrophosphate nor dissipation of the membrane potential or the pH gradient by ionophores changed uptake rates appreciably. Generation of an ATP-dependent pH gradient across the tonoplast was measured in vacuoles and tonoplast vesicles by fluorescence quenching of quinacrine. No H+ efflux could be measured by addition of sucrose to energized vacuoles or vesicles so that there was no evidence for a sucrose/H+ antiport system. Uptake rates of glucose and other sugars were similar to those of sucrose indicating a relatively non-specific sugar uptake into the vacuoles. Sucrose uptake was concentration-dependent, but no clear saturation kinetics were found. Strict dependence on medium pH and inhibition of sucrose transport by p-chloromercuriphenylsulfonic acid (PCMBS) indicate that sucrose uptake into sugarcane vacuoles is a passive, carrier-mediated process.Abbreviations FCCP carbonylcyanide-p-trifluoromethoxyphenylhydrazone - Mes 2-(N-morpholino)ethanesulfonic acid - Mops 3-(N-morpholino)propanesulfonic acid - PCMBS p-chloromercuriphenylsulfonic acid - PPi pyrophosphate This research was supported by the Deutsche Forschungsgemeinschaft. The technical assistance of H. Schroer is gratefully acknowledged.  相似文献   

3.
Wagner GJ 《Plant physiology》1981,68(2):499-503
The membrane of anthocyanin containing Hippeatrum petal vacuoles was examined for protein and enzyme content after purification by equilibrium density centrifugation. Light scattering, protein, and a Mg2+-dependent nucleotide specific ATPase were associated with membrane having a density of 1.08 to 1.12 grams per cubic centimeter. A small amount of acid phosphatase was also present in this region of the gradient, but this activity peaked at about 1.12 grams per cubic centimeter. A component of yeast tonoplast, α-mannosidase, was not significantly present. UDP-glucose, anthocyanidin-3-O-glucosyltransferase, thought to be a cytosol enzyme in Hippeastrum, was absent from tonoplast of vacuoles isolated by osmotic shock in 0.2 molar K2HPO4 or 0.35 molar mannitol. Vacuolar acid phosphatase was insensitive to ethylenediaminetetraacetate but was 80% inhibited by 10 millimolar KF, while ATPase was inactivated by 2 millimolar ethylenediaminetetraacetate and only 50% inhibited by 10 millimolar KF. Five major and about 9 minor polypeptides were detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of membrane protein on 5 to 30 and 6 to 16% gradient gels.  相似文献   

4.
Proton transport in isolated vacuoles from corn coleoptiles   总被引:7,自引:4,他引:3       下载免费PDF全文
Mandala S  Taiz L 《Plant physiology》1985,78(1):104-109
Vacuoles were isolated from corn coleoptile protoplasts and ATP-dependent proton transport was measured by quinacrine fluorescence quenching or by the uptake of [14C]methylamine. Intact vacuoles were judged to be free of a surrounding plasma membrane based on fluorescent staining with fluoroscein-diacetate. Essentially all of the detectable ATP-stimulated methylamine uptake and α-mannosidase activities present in intact protoplasts were recovered in isolated vacuoles. In contrast, the activities of marker enzymes for plasma membranes, Golgi, endoplasmic reticulum, and mitochondria were reduced to 5 to 17% in vacuolar preparations. The characteristics of proton pumping by isolated vacuoles were compared to those of light microsomal membranes possibly derived from the tonoplast. ATP-dependent proton pumping by both isolated vacuoles and light microsomal vesicles was stimulated by Cl, and inhibited by NO3, carbonyl cyanide-m-chlorophenylhydrazone, N,N′-dicyclohexylcarbodiimide, N-ethylmaleimide, 4,4′-diisothiocyano-2,2′-stilbene disulfonic acid, diethylstilbestrol, and 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole, but not by vanadate. Both activities also showed substrate specificity for Mg-ATP. Finally, proton transport activities of vacuolar and microsomal fractions exhibited similar profiles after flotation in linear dextran gradients. We conclude that the microsomal proton pump previously characterized in corn coleoptiles (Mettler et al. 1982 Plant Physiol 70: 1738-1742) is derived from the tonoplast.  相似文献   

5.
Putrescine and spermidine uptake in carrot (Daucus carota L., cv “Tip top”) protoplasts and isolated vacuoles was studied. Protoplasts and vacuoles accumulated polyamines very quickly, with maximum absorption within 1 to 2 minutes. The insertion of a washing layer containing 100 millimolar unlabeled putrescine or spermidine did not change this pattern, but strongly reduced the uptake of putrescine and spermidine in protoplasts and in vacuoles. The dependence of spermidine uptake on the external concentration was linear up to the highest concentrations tested in protoplasts, while that in vacuoles showed saturation kinetics below 1 millimolar (Km = 61.8 micromolar) and a linear component from 1 to 50 millimolar. Spermidine uptake in protoplasts increased linearly between pH 5.5 and 7.0, while there was a distinct optimum at pH 7.0 for vacuoles. Preincubation of protoplasts with 1 millimolar Ca2+ affected only surface binding but not transport into the cells. Nonpermeant polycations such as La3+ and polylysine inhibited spermidine uptake into protoplasts. Compartmentation studies showed that putrescine and spermidine were partly vacuolar in location and that exogenously applied spermidine could be recovered inside the cells. The characteristics of the protoplast and vacuolar uptake system induce us to put forward the hypothesis of a passive influx of polyamines through the plasmalemma and of the presence of a carrier-mediated transport system localized in the tonoplast.  相似文献   

6.
Evidence is presented for the proton-coupled transport of sucrose and glutamine in purified plasma membrane vesicles isolated from cotyledons ofRicinus communis. Imposition of a pH gradient (internal alkaline) across the plasma membrane resulted in a rapid uptake of sucrose and glutamine which was inhibited in the presence of carbonyl cyanide-m-chlorophenyl hydrazone. Imposition of a pH gradient plus an internal negative membrane potential stimulated uptake further. Glucose and fructose uptakes were negligible under these conditions. Sucrose uptake into the vesicles demonstrated saturation kinetics with a Km of 0.87 mol·m-3, indicating carrier-mediated transport. In support of this, uptake was very sensitive to the protein-modifying reagentp-chloromercuribenzenesulphonic acid. N-Ethylmaleimide, another sulphydryl reagent, was only slightly inhibitory. However, both reagents strongly inhibited sucrose uptake into intact cotyledons; the possible reasons for the difference between the intact and isolated systems are assessed. The value of this system for the study of sucrose and amino acid carriers is discussed.  相似文献   

7.
Georg Kaiser  Ulrich Heber 《Planta》1984,161(6):562-568
Sucrose transport has been investigated in vacuoles isolated from barley mesophyll protoplasts. Rates of sucrose transfer across the tonoplast were even higher in vitro than in vivo indicating that the sucrose transport system had not suffered damage during isolation of the vacuoles. Sucrose transport is carrier-mediated as shown by substrate saturation of transport and sensitivity to a metabolic inhibitor and to competitive substrates. A number of sugars, in particular maltose and raffinose, decreased uptake of sucrose. Sorbitol was slowly taken up but had no effect on sucrose transport. The SH-reagent p-chloromercuribenzene sulfonate inhibited sucrose uptake completely. The apparent Km of the carrier for sucrose uptake was 21 mM. Transport was neither influenced by ATP and pyrophosphate, with or without Mg2+ present, nor by protonophores and valinomycin (with K+ present). Apparently uptake was not energy dependent. Efflux experiments with preloaded vacuoles indicated that sucrose unloading from the isolated vavuoles is mediated by the same carrier which catalyses uptake. The vacuole of mesophyll cells appears to represent an intermediary storage compartment. Uptake of photosynthetic products into the vacuole during the light apparently minimizes osmotic swelling of the small cytosolic compartment of vacuolated leaf cells when photosynthetic productivity exceeds the capacity of the phloem for translocation of sugars.Abbreviations Hepes 4-(2-hydroxyethyl)-1-piperazincethane-sulfonic acid - pCMBS p-chloromercuribenzene sulfonate Dedicated to Professor Dr. W. Simonis on the occasion of his 75th birthday  相似文献   

8.
Thom M  Komor E  Maretzki A 《Plant physiology》1982,69(6):1320-1325
Vacuoles, isolated from sugarcane (Saccharum sp.) cells, took up 3-O methylglucose and sucrose and the evidence suggests specific transport systems for these sugars. There was no evidence of sugar efflux from preloaded vacuoles. Vacuoles in situ accumulated 3-O methylglucose, sucrose, glucose, and fructose, as shown by incubation of protoplasts with labeled sugar and subsequent analysis of vacuolar and cytoplasmic radio-activity. During the initial minutes of incubation, the amount and concentration of labeled sugar was higher in the cytoplasm than in the vacuole, but subsequently there was active uptake and accumulation into the vacuole. The rate of hexose transfer into the vacuole in situ approached that of hexose uptake by isolated vacuoles; however, the rate of sucrose uptake by isolated vacuoles was below the in situ rate. The site of sucrose synthesis was in the cytoplasm.  相似文献   

9.
Komor E  Thom M  Maretzki A 《Plant physiology》1982,69(6):1326-1330
The electrochemical proton gradient across the tonoplast of isolated (Saccharum sp.) vacuoles and vacuoles in situ was measured. The isolated vacuoles show no significant protonmotive potential difference, the pH gradient of 0.8 (inside acid) was balanced by a membrane potential of about −80 mv (inside negative). From pH and uncoupler insensitivity and K+ sensitivity, it was concluded that the experimentally caused K+ gradient created the electric potential.  相似文献   

10.
Citrate uptake into barley (Hordeum vulgare L.) mesophyll vacuoles was found to be saturable with a K m of about 200 M. Uptake appears to occur via the citrate3- form, as indicated by concentration-dependent uptake studies at different pHs. Free citrate and not the Mg-citrate complex was taken up by the vacuoles, even though slow transport of the Mg complex could not be excluded. Citrate transport into vacuoles was competitively inhibited by malate (K i=0.68 mM). Various organic acids and protein-modifying agents affected the uptake of malate and citrate to a similar extent. These results indicate that both organic acids cross the tonoplast by means of the same carrier. Accumulation of citrate was ATP-dependent and could be inhibited by ionophores. Bovine serum albumin strongly stimulated citrate uptake, but other proteins tested did not show a similar stimulatory effect.Abbreviation BSA bovine serum albumin We wish to thank Esther Vogt for her help with the experiments and Professor N. Amrhein (ETH, Zürich, Switzerland) and Dr. Michael Kertesz (ETH, Zürich) for helpful discussions. This work was supported by the Swiss National Foundation grant No. 31-25196.88.  相似文献   

11.
The effect of channel opening in the tonoplast by d-myo-inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] has been examined on red beet (Beta vulgaris) vacuoles. Patch-clamp measurements of the vacuolar potential and current were performed on vacuoles isolated in 0.1 micromolar free Ca2+ medium. With vacuoles clamped at +30 millivolts, the Ins(1,4,5)P3 induced changes in current were depending on the Ca2+ buffer strength in the external medium. The spontaneous depolarization of vacuoles in which H+-pumps were activated by 5 millimolar MgATP was increased from +6 to +18 millivolts by 1 micromolar Ins(1,4,5)P3. We have interpreted our data by assuming that even with 2 millimolar EGTA to buffer Ca2+ at 0.1 micromolar in the external medium, Ins(1,4,5)P3 released enough Ca2+ from the vacuole to produce an accumulation of this ion near the tonoplast. Apart from their dependency with free Ca2+ in the cytoplasm, the electrical properties of the tonoplast could be depending on the Ins(1,4,5)P3 and Ca2+ buffer values in the cytoplasm.  相似文献   

12.
Adenosine-triphosphatase activity on the plasmalemma and tonoplast of isolated mesophyll protoplasts, isolated vacuoles and tonoplast-derived microsomes of the Crassulacean-acid-metabolism plant Kalanchoe daigremontiana Hamet et Perr., was localized by a cytochemical procedure using lead citrate. Enzyme activity was detected on the cytoplasmic surfaces of the plasmalemma and tonoplast. The identity of the enzymes was confirmed by various treatments differentiating the enzymes by their sensitivity to inhibitors of plasmalemma and tonoplast H+-ATPase. Isolated vacuoles and microsomes prepared from isolated vacuoles clearly exhibited single-sided deposition on membrane surfaces.Abbveviations CAM Crassulacean acid metabolism - H+-ATPase proton-translocating ATPase  相似文献   

13.
A new phenolic ester was isolated from unroasted robusta coffee beans (Coffea canephora) by HPLC. The isolated compound was identified as an ester of caffeic acid and ferulic acid with quinic acid (3-O-feruloyl-4-O-caffeoylquinic acid) using 1H NMR and mass spectroscopy.  相似文献   

14.
The mechanism of sucrose transport into vacuoles isolated from leaf tissue has been studied only in barley (Hordeum vulgare) mesophyll cells. In this tissue, sucrose transport was reported to be a facilitated diffusion. We have observed a facilitated diffusion of sucrose into vacuoles isolated from this tissue. However, no pH dependence was observed. Evidence is presented indicating that the pH dependence of sucrose uptake into vacuoles may be an artifact, reflecting tonoplast instability and survival of isolated vacuoles in different buffers. Apparently vacuoles do not withstand exposure to some commonly used buffers.  相似文献   

15.
Often, nitrate is the major source of available nitrogen for plants. Nitrate can accumulate in central vacuoles via tonoplast transporters. In the present study, a gene termed ThCLC-a that encodes a chloride channel protein was isolated from Thellungiella halophila. Deduced amino acid sequence analysis revealed high identity with AtCLC-a. RT-PCR analysis showed that the ThCLC-a gene was expressed ubiquitously in all major organs and its expression was induced by nitrate treatment. Confocal microscopy using green fluorescent fusion proteins revealed that ThCLC-a was localized specifically to the tonoplast membrane. Furthermore, an RNAi construct expressing a ThCLC-a cDNA fragment was used to silence the endogenous ThCLC-a in T. halophila. HPLC analysis showed that the nitrate content in shoots or roots of silenced plants was 19–36 % lower than in wild-type plants. Transgenic Arabidopsis plants ectopically expressing the ThCLC-a gene could accumulate 15–21 % more nitrate content than wild type plants under limited nitrogen conditions. Finally, our results suggest ThCLC-a may play an important role in the transport of nitrate via the vacuolar membrane.  相似文献   

16.
Protoplasts and vacuoles were isolated and purified in large numbers from the CAM plants Ananas comosus (pineapple) and Sedum telephium for protein characterization. Vacuoles were further fractionated to yield a tonoplast vesicle preparation. Polypeptides of protoplasts, vacuoles, and tonoplast vesicles were compared to whole leaf polypeptides from both plants by one-dimensional sodium dodecylsulfate-polyacrylamide gel electrophoresis. Approximately 100 vacuole polypeptides could be resolved of which 25 to 30% were enriched in the tonoplast vesicles. The proteins of protoplasts, vacuoles, and tonoplast vesicles from A. comosus were analyzed further by two-dimensional gel electrophoresis. When one-dimensional electrophoretograms of A. comosus polypeptides were stained with a glycoprotein-specific periodic acid Schiff stain, very few polypeptides appeared to be glycosylated, whereas a large number of glycosylated polypeptides were detected with a silver-based glycoprotein stain particularly in tonoplast vesicles. Analysis of the enzymic content of vacuoles from both plants indicated the presence of a variety of hydrolases, including bromelain as a major constituent of A. comosus. No substrate-specific ATPase, however, could be detected in vacuoles or tonoplast vesicles from either plant.  相似文献   

17.
A tonoplast enriched fraction was obtained from Zea mays L. coleoptiles by isopycnic centrifugation of microsomal membranes in a sucrose step gradient. At the 18/26% interface chloride-stimulated and nitrate-inhibited proton pumping activity coincided with a Mg2+-ATP dependent accumulation of 3-O-methyl-d-glucose (OMG) as determined by a membrane filtration technique using 14C-labeled substrate. OMG transport showed an apparently saturable component with a Km of 110 micromolar, and was completely inhibited by 10 micromolar carbonyl cyanide m-chlorophenylhydrazone. Polyclonal antibodies against solubilized native tonoplast H+-ATPase and its 62 and 72 kilodalton subunits were assayed for their ability to inhibit proton pumping and OMG accumulation. Antibodies against both the native enzyme and the putative catalytic subunit (72 kilodalton) strongly inhibited proton pumping and OMG transport whereas antibodies against the 62 kilodalton subunit had only a slight effect on both processes.  相似文献   

18.
The mechanisms involved in the transport of malate into isolated vacuoles of Catharanthus roseus (L.) cells were investigated with special reference to the effects of induced changes in membrane potential and surface charges of the tonoplast. For this purpose, thiocyanate (SCN?), a highly permeant anion often used as a membrane potential probe, was extensively exploited. In the absence of Mg-ATP, the low accumulation ratio of 14C SCN? could be related to the presence of negative charges at the outer surface of the tonoplast exerting a screening effect on the displacement of lipophilic anionic species. Nevertheless, malate was taken up continuously by vacuoles supporting the concept of a transport component which facilitates its transfer through the tonoplast. From experiments showing the pH dependence of malata uptake, it is suggested that the protonated form of the transporter is implicated in this process. Moreover, when the vacuoles are energized by Mg-ATP, the study of the equilibrium distribution of 14C SCN? indicated an inside positive membrane potential difference. Advantage was taken of these results to modulate the membrane potential with high levels of thiocyanate. The data obtained demonstrate that malate uptake results from electrophoretic movement in response to the positive potential difference.  相似文献   

19.
The effects of 5-(N-methyl-N-isobutyl)-amiloride (MIA), an amiloride analog, was tested on the Na+/H+ antiport activity of intact vacuoles and tonoplast vesicles isolated from sugar beet (Beta vulgaris L.) cell suspension cultures. MIA inhibited Na+/H+ exchange in a competitive manner with a Ki of 2.5 and 5.9 micromolar for ΔpH-dependent 22Na+ influx in tonoplast vesicles and Na+-dependent H+ efflux in intact vacuoles, respectively. Scatchard analysis of the binding of [3H]MIA to tonoplast membranes revealed a high affinity binding component with a Kd of 1.3 micromolar. The close relationship between the dissociation constant value obtained and the constants of inhibition for MIA obtained by fluorescence quenching and isotope exchange suggests that the high affinity component represents a class of sites associated with the tonoplast Na+/H+ antiport. Photolabeling of the tonoplast with [3H]MIA revealed two sets of polypeptides with a different affinity to amiloride and its analog.  相似文献   

20.
Following assimilation of 14CO2 by leaves of Stachys sieboldii, 14C-stachyose is translocated into the tubers. Stachyose is accumulated and stored in the vacuoles of the pith parenchyma. Protoplasts and vacuoles were isolated and the uptake of sugars was examined. Uptake of sucrose and sucrosyl oligosaccharides of the raffinose family by protoplasts was very low compared to glucose. Transport parameters for glucose indicated a carrier mediated transport in the lower concentration range which was superimposed by diffusion at higher concentrations (> 10 mM). The very low sugar uptake by protoplasts and the sparse enzyme activities of stachyose synthase in the storage parenchyma as well as acid invertase and α-galactosidase in the cell walls indicated symplastic unloading of stachyose in the tubers. Experiments on 14C-stachyose uptake by isolated vacuoles confirmed previous observations by Keller (1992). Isolated vacuoles exhibited ATP and PP hydrolysis and were capable of generating a proton gradient across the tonoplast by a V-type H+-ATPase and H+-PPase. This was demonstrated by fluorescence quenching of quinacrine. Fluorescence could be restored by the addition of gramicidin and partly recovered by the addition of stachyose; mannitol, sorbitol and glucose had no effect. Fluorescence recovery depended on the concentration of stachyose and revealed saturation kinetics (Km = 28 mM). Comparable results have been obtained with tonoplast vesicles by Greutert and Keller (1993). Experimental data presented here provide circumstantial evidence for symplastic unloading of stachyose in the tubers of Stachys sieboldii and demonstrate that the stachyose concentration in the cytoplasm of storage parenchyma cells is kept low by active stachyose transport into the vacuoles. The results suggest a stachyose/H+-antiport system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号