首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Signal transduction during oxidative stress   总被引:55,自引:0,他引:55  
As an unfortunate consequence of aerobic life, active oxygen species (AOS) are formed by partial reduction of molecular oxygen. Plants possess a complex battery of enzymatic and non-enzymatic antioxidants that can protect cells from oxidative damage by scavenging AOS. It is becoming evident that AOS, which are generated during pathogen attack and abiotic stress situations, are recognized by plants as a signal for triggering defence responses. An overview of the literature is presented on the signalling role of AOS in plant defence responses, cell death, and development. Special attention is given to AOS and redox-regulated gene expression and the role of kinases and phosphatases in redox signal transduction.  相似文献   

2.
Active oxygen and cell death in cereal aleurone cells   总被引:17,自引:0,他引:17  
The cereal aleurone layer is a secretory tissue whose function is regulated by gibberellic acid (GA) and abscisic acid (ABA). Aleurone cells lack functional chloroplasts, thus excluding photosynthesis as a source of active oxygen species (AOS) in cell death. Incubation of barley aleurone layers or protoplasts in GA initiated the cell death programme, but incubation in ABA delays programmed cell death (PCD). Light, especially blue and UV-A light, and H(2)O(2) accelerate PCD of GA-treated aleurone cells, but ABA-treated aleurone cells are refractory to light and H(2)O(2) and are not killed. It was shown that light elevated intracellular H(2)O(2), and that the rise in H(2)O(2) was greater in GA-treated cells compared to cells in ABA. Experiments with antioxidants show that PCD in aleurone is probably regulated by AOS. The sensitivity of GA-treated aleurone to light and H(2)O(2) is a result of lowered amounts of enzymes that metabolize AOS. mRNAs encoding catalase, ascorbate peroxidase and superoxide dismutase are all reduced during 6-18 h of incubation in GA, but these mRNAs were present in higher amounts in cells incubated in ABA. The amounts of protein and enzyme activities encoded by these mRNAs were also dramatically reduced in GA-treated cells. Aleurone cells store and metabolize neutral lipids via the glyoxylate cycle in response to GA, and glyoxysomes are one potential source of AOS in the GA-treated cells. Mitochondria are another potential source of AOS in GA-treated cells. AOS generated by these organelles bring about membrane rupture and cell death.  相似文献   

3.
Increasing evidence indicates that postmitotic, terminally differentiated neurons activate the cell cycle before death. The purpose of this cell cycle activation, however, remains elusive. In proliferating cells, cell cycle machinery is a major contributor to the DNA damage response, which is comprised of growth arrest. In quiescent cells such as terminally differentiated neurons, cell cycle-associated events may also be part of the DNA damage response. A link between DNA damage and repair, cell cycle regulation and cell death is becoming increasingly recognized for cycling cells but remains elusive for quiescent cells. Neurons are particularly susceptible to oxidative stress due to the high rate of oxidative metabolism in the brain and the low level of antioxidant enzymes compared to other somatic tissues. This is supported by fact that the intracellular end point of many neurotoxic stimuli is oxidative stress, which also represents a major cause of the neuropathology underlying a variety of neurodegenerative diseases. DNA is perhaps the major target of oxyradicals. Thus, oxidative stress may cause DNA damage, which is countered by a complex defense mechanism, the DNA damage response, which involves not only the elimination of DNA damage, but its coordination with other cellular processes such as cell-cycle progression, together directing to preserve genomic integrity. The function of such response is the removal of DNA damage by DNA repair pathways, or the elimination of damaged cells via apoptosis. The present review discusses the idea that the cell cycle machinery is a critical element of the DNA damage response not only in cycling, but also quiescent cells, and may bear the same function: to repair the damage or initiate apoptosis if the damage is too extensive to be repaired.  相似文献   

4.
Among plant defense responses to pathogen attack, the release of active oxygen species (AOS), termed the oxidative burst, may affect the attacking pathogen and the host plant cells at the infection site, thereby limiting the spread of the pathogen. Plasma membrane-associated NADPH oxidase represents a key enzyme in mediating the oxidative burst. The mechanisms of NADPH oxidase activation, however, remains unclear. Ectopic expression of AK1-6H, an Arabidopsis calmodulin-like domain protein kinase (CDPK) in tomato protoplasts enhanced plasma membrane-associated NADPH oxidase activity. Arabidopsis protein phosphatase 2A abolished this enhancement, whereas Arabidopsis dual-specificity protein tyrosine phosphatase 1 or maize protein phosphatase 1 had no effect tMEK2MUT, a constitutively activated, mitogen-activated protein kinase kinase from tomato, did not enhance NADPH oxidase activity when overexpressed. In a cell-free system, AK1-6H moderately stimulated the NADPH oxidase activity on plasma membrane. AK1-6H, but not tMEK2MUT, also enhanced production of AOS in intact protoplasts. Our results show that ectopic expression of a heterologous CDPK can enhance NADPH oxidase activity and stimulate an oxidative burst in tomato protoplasts.  相似文献   

5.
Our previous results have shown that oxidative stress may reduce the regeneration potential of protoplasts, but only protoplasts that are able to supply extracellularly H(2)O(2) can actually divide (C.I. Siminis, A.K. Kanellis, K.A. Roubelakis-Angelakis [1993] Physiol Plant 87: 263-270; C.I. Siminis, A.K. Kanellis, K.A. Roubelakis-Angelakis [1994] Plant Physiol 1105: 1375-1383; A. de Marco, K.A. Roubelakis-Angelakis [1996a] Plant Physiol 110: 137-145; A. de Marco, K.A. Roubelakis-Angelakis [1996b] J Plant Physiol 149: 109-114). In the present study we have attempted to break down the oxidative burst response into the individual active oxygen species (AOS) superoxide (O(2)(*-)) and H(2)O(2), and into individual AOS-generating systems during the isolation of regenerating tobacco (Nicotiana tabacum L.) and non-regenerating grape (Vitis vinifera L. ) mesophyll protoplasts. Wounding leaf tissue or applying purified cellulase did not elicit AOS production. However, the application of non-purified cellulase during maceration induced a burst of O(2)(*-) and H(2)O(2) accumulation in tobacco leaf, while in grape significantly lower levels of both AOS accumulated. AOS were also generated when protoplasts isolated with purified cellulase were treated with non-purified cellulase. The response was rapid: after 5 min, AOS began to accumulate in the culture medium, with significant quantitative differences between the two species. In tobacco protoplasts and plasma membrane vesicles, two different AOS synthase activities were revealed, one that showed specificity to NADPH and sensitivity to diphenyleneiodonium (DPI) and was responsible for O(2)(*-) production, and a second NAD(P)H activity that was sensitive to KCN and NaN(3), contributing to the production of both AOS. The first activity probably corresponds to a mammalian-like NADPH oxidase and the second to a NAD(P)H oxidase-peroxidase. In grape, only one AOS-generating activity was detected, which corresponded to a NAD(P)H oxidase-peroxidase responsible for the generation of both AOS.  相似文献   

6.
7.
《Cryobiology》1987,24(1):53-57
The possibility that the plant cell wall influences the severity of freezing injury was examined by comparing the freeze stress response of intact cells and protoplasts from four different suspension cultures. In no case did the intact cells suffer more injury than the respective wall-less protoplasts, showing that mechanical strain imposed by the cell wall during freeze-thaw stress is not a major determinant of injury. For three of the four species studied, cells from which the wall was removed showed significantly greater freezing injury, indicating that the plant cell wall may have a protective role. Other researchers have suggested that cell wall rigidity may minimize freezing injury by slowing freeze-induced loss of cell water. We found that decreased enzyme digestibility (perhaps indicating greater rigidity) of cell walls accompanied cold acclimation in various tissues. These results provide impetus to research which will characterize low-temperature-induced cell wall modification in cold acclimating tissues.  相似文献   

8.
The microtubule cytoskeleton and the cell wall both play key roles in plant cell growth and division, determining the plant’s final stature. At near weightlessness, tubulin polymerizes into microtubules in vitro, but these microtubules do not self-organize in the ordered patterns observed at 1g. Likewise, at near weightlessness cortical microtubules in protoplasts have difficulty organizing into parallel arrays, which are required for proper plant cell elongation. However, intact plants do grow in space and therefore should have a normally functioning microtubule cytoskeleton. Since the main difference between protoplasts and plant cells in a tissue is the presence of a cell wall, we studied single, but walled, tobacco BY-2 suspension-cultured cells during an 8-day space-flight experiment on board of the Soyuz capsule and the International Space Station during the 12S mission (March–April 2006). We show that the cortical microtubule density, ordering and orientation in isolated walled plant cells are unaffected by near weightlessness, as are the orientation of the cellulose microfibrils, cell proliferation, and cell shape. Likely, tissue organization is not essential for the organization of these structures in space. When combined with the fact that many recovering protoplasts have an aberrant cortical microtubule cytoskeleton, the results suggest a role for the cell wall, or its production machinery, in structuring the microtubule cytoskeleton.  相似文献   

9.
These special issues of Biological Signals and Receptors are intended to describe mitochondrial DNA damage, oxidative stress and human diseases, including neurodegenerative and neuromuscular diseases, disorders associated with aging, and ischemia-perfusion injury. Traditionally, mitochondria have been viewed as the 'powerhouse' of the cell, i.e., the site of the oxidative phosphorylation machinery involved in adenosine triphosphate (ATP) production. Consequently, much of the research conducted on mitochondria over the past 4 decades has focused on elucidating both those molecular events involved in ATP synthesis by oxidative phosphorylation and those involved in the biogenesis of the oxidative phosphorylation machinery. While monumental achievements have been made, and continue to be made, in the study of these remarkable but extremely complex processes essential for the life of most animal cells, it has been only in recent years that a large body of biological and biomedical scientists have come to recognize that mitochondria participate in other important processes. Two of these are cell death and aging which, not surprisingly, are related processes both involving, in part, the oxidative phosphorylation machinery. This new awareness has sparked a new and growing area of mitochondrial research that has become of great interest to a wide variety of scientists ranging from those involved in elucidating the role of mitochondria in cell death and aging to those interested in either suppressing or facilitating these processes as it relates to identifying new therapies or drugs for human disease.  相似文献   

10.
Oxidative stress in microbial cells shares many similarities with other cell types but it has its specific features which may differe in prokaryotic and eukaryotic cells. We survey here the properties and actions of primary sources of oxidative stress, the role of transition metals in oxidative stress and cell protective machinery of microbial cells, and compare them with analogous features of other cell types. Other features to be compared are the action of reactive oxygen species (ROS) on cell constituents, secondary lipid-or protein-based radicals and other stress products. Repair of oxidative injury by microorganisms and proteolytic removal of irreparable cell constituents are briefly described. Oxidative damage of aerobically growing microbial cells by endogenously formed ROS mostly does not induce changes similar to the aging of multiplying mammalian cells. Rapid growth of bacteria and yeast prevents accumulation of impaired macromolecules which are repaired, diluted or eliminated. During growth some simple fungi, such as yeast orPodospora spp., exhibit aging whose primary cause seems to be fragmentation of the nucleolus or impairment of mitochondrial DNA integrity. Yeast cell aging seems to be accelerated by endogenous oxidative stress. Unlike most growing microbial cells, stationaryphase cells gradually lose their viability because of a continuous oxidative stress, in spite of an increased synthesis of antioxidant enzymes. Unlike in most microorganisms, in plant and animal cells a severe oxidative stress induces a specific programmed death pathway-apoptosis. The scant data on the microbial death mechanisms induced by oxidative stress indicate that in bacteria cell death can result from activation of autolytic enzymes (similarly to the programmed mother-cell death at the end of bacillar sporulation). Yeast and other simple eukaryotes contain components of a proapoptotic pathway which are silent under normal conditions but can be activated by oxidative stress or by manifestation of mammalian death genes, such asbak orbax. Other aspects, such as regulation of oxidative-stress response, role of defense enzymes and their control, acquisition of stress tolerance, stress signaling and its role in stress response, as well as cross-talk between different stress factors, will be the subject of a subsequent review.  相似文献   

11.
Summary Cereal leaf protoplasts are extremely difficult to culture (recalcitrant) in vitro. There have been few reports of division and the protoplasts typically exhibit excessive enlargement and vacuolization with reduced cell wall deposition. Inasmuch as leaf base explants are capable of callus formation in vitro, protoplasts derived from this tissue must have lost the ability to divide as a consequence of changes induced by the wall-digestion process. We review evidence suggesting that the inhibition of mitosis in these protoplasts is a consequence of a cascade of events initiated at the plasma membrane. The enzyme treatment necessary for wall removal triggers membrane depolarization and other changes that can lead to the initiation of lipid peroxidation and oxidative stress. Mitotically inactive cereal leaf protoplasts are unable to mount a protective response to these degradative processes. Consequently, the resulting membrane perturbations and permeabilization give rise to secondary effects on the cytoskeleton and the cell wall. These effects include reduced or absent microtubules as well as reduced and uneven wall deposition. Such abnormalities are observed in cereal leaf protoplasts and are sufficient to account for recalcitrance because the occurrence of mitosis is strongly dependent on a normal cell wall and cytoskeleton. This paper is NRCC number 32475.  相似文献   

12.
Agrobacterium has been used to transform zero to six-day-old cell wall nonregenerating (CWNR) and cell wall regenerating (CWR) leaf protoplasts of tobacco. Transformed cells were selected by phoytohormone autotrophic growth and were verified by detection of the presence of lysopine dehydrogenase. Transformation frequencies in CWNR protoplasts were at least as high as those in CWR protoplasts, indicating that a plant cell wall is not required for the process of crown gall tumorigenesis. Transformation frequencies were highest in two-day-old protoplasts. This age coincides with the onset of DNA synthesis and the first mitosis within the cell populations. We suggest that the initiation of cell cycle activity may be important for the transformation process.  相似文献   

13.
It is known that protoplasts derived from either leaves or suspension cultures of a citrus genotype vary greatly in their regeneration capacities; however, the underlying physiological mechanisms are not well known. In this study, oxidative stress and antioxidant systems during in vitro culture of callus-derived protoplasts and leaf mesophyll-derived protoplasts of Ponkan (Citrus reticulata Blanco) were analyzed to gain insights into observed physiological differences. Morphological observations using light microscopy and scanning microscopy have shown that new cell wall materials appeared within 2–3 days, and the integrate cell walls were regenerated approximately after 6 days of culture of the callus protoplasts, whereas no cell wall formation was observed in the mesophyll protoplasts after culture. During the culture, higher levels of H2O2 and malondialdehyde were detected in the mesophyll protoplasts as compared with the callus ones. On the contrary, the callus protoplasts possessed higher activities of antioxidant enzymes (SOD, POD and CAT) and larger amount of glutathione and ascorbic acid (at one time point) than the mesophyll protoplasts during the culture process. The current data indicate that the mesophyll and callus protoplasts displayed remarkable difference in the degree of oxidative stress and the antioxidant systems, suggesting that high levels of antioxidant activities might play an important role in the regeneration of protoplasts.  相似文献   

14.
Tobacco protoplasts begin to regenerate their own cell walls, the major components of which are β-glucans, soon after they are transferred into an adequate medium. During the cell wall regeneration the protoplasts secrete two isoforms of acid phosphatase (APase) in time-dependent manner. We determined that one of the isoforms, the Brefeldin A (BFA) sensitive one, is the cell wall resident APase (WP-II) by immunoblotting of the isoform with anti-WP-II antibody. We hypothesized that the WP-II may participate in the deposition of β-glucan microfibrils on the protoplast surface during cell wall regeneration. In order to examine this hypothesis, the protoplasts were cultivated in the cell wall regeneration medium containing the same amount of the BFA-sensitive APase (230 µg protein) as is secreted by the observed number of protoplasts (1.4 × 105 protoplasts) per plate (30-mm-diameter) during a 3-h cultivation after transfer to the cell wall regeneration medium. The addition of WP-II to the cell wall regeneration medium stimulated the deposition of β-glucan microfibrils on the surface of the protoplasts during cell wall regeneration. To determine the stimulative effect of the 60 kDa polypeptide of WP-II, protoplasts were cultivated in the medium containing the amount of anti-WP-II IgG (230 µg protein) equivalent to the BFA-sensitive APase. These results suggested that the 60 kDa polypeptide of WP-II is the BFA-sensitive APase which is responsible for the enhanced deposition of β-glucan microfibrils on the surface of the protoplasts.  相似文献   

15.
Programmed cell death (PCD) is a genetically controlled cell death that is regulated during development and activated in response to environmental stresses or pathogen infection. The degree of conservation of PCD across kingdoms and phylum is not yet clear; however, whereas caspases are proteases that act as key components of animal apoptosis, plants have no orthologous caspase sequences in their genomes. The discovery of plant and fungi metacaspases as proteases most closely related to animal caspases led to the hypothesis that metacaspases are the functional homologues of animal caspases in these organisms. Arabidopsis thaliana has nine metacaspase genes, and so far it is unknown which members of the family if any are involved in the regulation of PCD. We show here that metacaspase-8 (AtMC8) is a member of the gene family strongly up-regulated by oxidative stresses caused by UVC, H(2)O(2), or methyl viologen. This up-regulation was dependent of RCD1, a mediator of the oxidative stress response. Recombinant metacaspase-8 cleaved after arginine, had a pH optimum of 8, and complemented the H(2)O(2) no-death phenotype of a yeast metacaspase knock-out. Overexpressing AtMC8 up-regulated PCD induced by UVC or H(2)O(2), and knocking out AtMC8 reduced cell death triggered by UVC and H(2)O(2) in protoplasts. Knock-out seeds and seedlings had an increased tolerance to the herbicide methyl viologen. We suggest that metacaspase-8 is part of an evolutionary conserved PCD pathway activated by oxidative stress.  相似文献   

16.
Plants have to adjust, grow and establish themselves in various changing environmental conditions. Additionally, the sessile life-style of plants requires the development of response mechanisms for their adaptation in such environmental cues. Under biotic and abiotic stress, plant growth is negatively affected mainly as a result of cell cycle inhibition. The perception of stress involves the activation of signaling cascades that result in a prolonged S-phase and delayed entry into mitosis. Although the molecular interactions that link the cell cycle machinery to perception of stress are not fully understood, recent studies indicated the involvement of Cyclin Dependent Kinases (CDKs) in the plant response machinery. CDKs are core cell cycle regulators but their activity has been implicated in additional diverse cellular processes. Here we review the impact of different types of abiotic stress on plant cell cycle progression and CDK activity, and discuss the contribution of CDK function in the signaling control of stress tolerance.Key words: abiotic stress, cell cycle, CDK, cyclin  相似文献   

17.
We studied the perception of plant cells to osmotic stress that leads to the accumulation of abscisic acid (ABA) in stressed Arabidopsis thaliana L. cells. A significant difference was found between protoplasts and cells in terms of their responses to osmotic stress and ABA biosynthesis, implying that cell wall and/or cell wall-plasma membrane interaction are essential in identifying osmotic stress. Western blotting and immunofluorescence localization experiments, using polyclonal antibody against human integrin β1, revealed the existence of a protein similar to the integrin protein of animals in the suspension-cultured cells located in the plasma membrane fraction. Treatment with a synthetic pentapeptide, Gly-Arg-Gly-Asp-Ser (GRGDS), which contains an RGD domain and interacts specifically with integrin protein and thus blocks the cell wall-plasma membrane interaction, significantly inhibited osmotic stress-induced ABA biosynthesis in cells, but not in protoplasts. These results demonstrate that cell wall and/or cell wall-plasma membrane interaction mediated by integrin-Iike proteins played important roles in osmotic stress-induced ABA biosynthesis in Arabidopsis thaliana.  相似文献   

18.
Effect of ethrel on apoptosis in carrot protoplasts   总被引:3,自引:0,他引:3  
In recent years, apoptosis has been reported to exist in plants during normal development and in response to stress. However, little is known about the relation of hormones to this form of programmed cell death. Here, we report examination of characteristics of apoptosis in carrot protoplasts induced by ethylene evolved from ethrel (2-chloroethylphosphonic acid). Nucleus condensation and DNA ladders were observed, and neutral comet assay, which detects DNA cleavage, also provided evidence that ethrel treatment resulted in nuclear DNA fragmentation. Strikingly, a close correlation between the incidence of DNA comets and the percentage of apoptotic protoplasts was shown in ethrel-treated carrot protoplasts. In conclusion, this study demonstrated that ethylene is an active inducer of apoptosis in carrot protoplasts, and that ethylene-induced plant cell death showed characteristics similar to those of apoptosis in animals.  相似文献   

19.
Division of nuclei without cytokinesis proceeds in growing protoplasts ofSchizosaccharomyces pombe. Prior to regeneration of the complete cell wall and reversion the protoplasts contain 1–7 nuclei, protoplasts with 1–2 nuclei are most frequent. When regeneration of the wall is postponed by adding snail enzymes to the growth medium, protoplasts with a higher number of nuclei (2–4) occur. Multinuclear protoplasts can revert to cells. During the first cytokinesis the protoplast with the regenerated cell wall is divided into two cells by a septum, distribution of nuclei between the two cells being probably incidental. More than only a single nucleus can pass to the revertants even during the second cytokinesis. Septation of protoplasts occurs also during a partial blockage of the wall formation by the snail enzyme preparation, however, reversion to cells can never be observed here (it occurs only after transfer of protoplasts to the medium without the enzyme preparation). The growing and reverting protoplasts represent a very good model system for studying relations among individual processes of the cell cycle, primarily growth of the cell, nuclear cycle and cytokinesis. Yeast protoplasts are often utilized as models for studying morphogenic processes, relations among regeneration of the cell wall, including division of the nucleus (karyokinesis) and cytokinesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号