首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stilbene synthases (STSs) are enzymes that play a critical role in the biosynthesis of stilbene, phytoalexins in a small number of unrelated plant species, and are induced by various biotic and abiotic stressors like pathogen attack, UV-irradiation or ozone exposure. To investigate the molecular basis for ozone-induced plant stress responses, we have examined the promoter of the grapevine resveratrol synthase (Vst1). In this report we summarize the influence of ozone on gene regulation. In transgenic tobacco a chimeric gene construct, containing the Vst1 promoter combined with the β-glucuronidase (GUS) reporter gene, is rapidly induced by ozone (0.1 μl·l−1, 12 h). The same construct is also strongly induced by ethylene (20 μl·l−1, 12 h). Promoter deletion analysis of the 5′ flanking sequence identified a positive regulatory element between −430 bp and −280 bp. This region contains ethylene-responsive enhancer elements, as well as an elicitor-responsive sequence in inverse orientation.  相似文献   

2.
Recent studies suggest that ethylene is involved in signalling ozone-induced gene expression. We show here that application of ozone increased glucuronidase (GUS) expression of chimeric reporter genes regulated by the promoters of the tobacco class I -1,3-glucanases (GLB and Gln2) and the grapevine resveratrol synthase (Vst1) genes in transgenic tobacco leaves. 5-deletion analysis of the class I -1,3-glucanase promoter revealed that ozone-induced gene regulation is mainly mediated by the distal enhancer region containing the positively acting ethylene-responsive element (ERE). In addition, application of 1-methylcyclopropene (1-MCP), an inhibitor of ethylene action, blocked ozone-induced class I -1,3-glucanase promoter activity. Enhancer activity and ethylene-responsiveness depended on the integrity of the GCC boxes, cis-acting elements present in the ERE of the class I -1,3-glucanase and the basic-type pathogenesis-related PR-1 protein (PRB-1b) gene promoters. The minimal PRB-1b promoter containing only the ERE with intact GCC boxes, was sufficient to confer 10-fold ozone inducibility to a GUS-reporter gene, while a substitution mutation in the GCC box abolished ozone responsiveness. The ERE region of the class I -1,3-glucanase promoter containing two intact GCC boxes confered strong ozone inducibility to a minimal cauliflower mosaic virus (CaMV) 35S RNA promoter, whereas two single-base substitution in the GCC boxes resulted in a complete loss of ozone inducibility. Taken together, these data strongly suggest that ethylene is signalling ozone-induced expression of class I -1,3-glucanase and PRB-1b genes. Promoter analysis of the stilbene synthase Vst1 gene unravelled different regions for ozone and ethylene-responsiveness. Application of 1-MCP blocked ethylene-induced Vst1 induction, but ozone induction was not affected. This shows that ozone-induced gene expression occurs via at least two different signalling mechanisms and suggests an additional ethylene independent signalling pathway for ozone-induced expression of genes involved in phytoalexin biosynthesis.  相似文献   

3.
Anti-fungal activities of two essential oils (peppermint oil and eucalyptus oil) and their main components (menthol and eucalyptol, respectively) against molds (Aspergillus niger, Penicillium chrysogenum, and Penicillium sp.) and a white-rot decay fungus (Trametes versicolor) identified from rubberwood surfaces were investigated. The broth dilution method and the agar diffusion technique were employed to determine the minimal inhibitory concentration (MIC) and the minimal fungicidal concentration (MFC) using the concentration of substances between 100 and 800 μl ml?1. Inhibitory effects of essential oils and their main components at the MICs against mold growth, fungal decay, and termite attack on rubberwood were further examined by means of the dip treatment method. It was found that MFC values against molds for all treatments examined were about 50–100 μl ml?1 higher than MIC values. Peppermint oil and menthol exhibited high fungistatic and fungicidal activities, with MICs of 300 μl ml?1 and 350 μl ml?1, respectively, against the test molds and the decay fungus. Eucalyptus oil and eucalyptol were also effective against these microbes but at higher concentrations of 600 μl ml?1 and 500 μl ml?1, respectively. Only peppermint oil at the MIC was capable of providing a complete protection from mold growth on rubberwood for up to 12 weeks at storage conditions of 25 °C and 100% RH. Both peppermint oil and eucalyptus oil at the MICs showed moderate resistance to fungal decay and high resistance to termite attack.  相似文献   

4.
Mango (Mangifera indica L. cv. Tainong) fruits were harvested at the green-mature stage in Hainan and air-freighted to the laboratory at Peking. The fruits were treated with either 1 μl l−1 1-MCP or 5 μl l−1 ethylene for 24 h and stored at 20°C for up to 16 days. 1-MCP maintained fruit firmness, whereas exogenous ethylene decreased fruit firmness. Exogenous ethylene accelerated the increase in ethylene and 1-aminocyclopropane-1-carboxylate (ACC) oxidase, whereas 1-MCP reduced both. Exogenous ethylene stimulated and 1-MCP inhibited the production of H2O2 of mango fruit during storage. Ascorbic acid was maintained at a high concentration in 1-MCP-treated fruit but was low in ethylene-treated fruit. 1-MCP inhibited activities of antioxidant enzymes including catalase, superoxide dismutase and ascorbate peroxidase. These results suggest that 1-MCP could play a positive role in regulating the activated oxygen metabolism balance. Baogang Wang and Jianhui Wang contributed equally to this work.  相似文献   

5.
This study aimed to improve rosmarinic acid (RA) production in the whole plant culture of Solenostemon scutellarioides through elicitation with phytopathogenic fungi. Amongst selected fungi, Aternaria alternata caused significant elevation (p < 0.05–0.01) in RA accumulation (∼1.3–1.6-fold) between 25 and 100 μg l−1. However, elicitation at the dose of 50 μg l−1 has been found to be most effective and intracellular RA content reached almost ∼1.6-fold (p < 0.01) higher in day 7. Therefore, A. alternata (50 μg l−1) was selected for mechanism evaluation. A significant elevation of intercellular jasmonic acid was observed up to day 6 after elicitation with A. alternata (50 μg l−1). A significant increase in tissue H2O2 and lipid peroxidation coupled with depletion of antioxidant enzymes superoxide dismutase and catalase indicated augmented oxidative stress associated with biotic interaction. Preceding the elicitor-induced RA accumulation, a notable alteration in the specific activities of biosynthetic enzymes namely PAL and TAT was recorded, while, no significant change in the activities of RAS was observed. HPPR activity was slightly improved in elicited plant. Therefore, it could be concluded that A. alternata elicited the biosynthesis of rosmarinic acid via signal transduction through jasmonic acid coupled with elicitor induced oxidative stress and associated mechanism.  相似文献   

6.
An unarmored dinoflagellate bloom of Cochlodinium geminatum (Schütt) Schütt has been identified in the Pearl River Estuary, South China Sea during the severe dry season, from late October to early November, 2009, when temperature and salinity ranged between 20.0–27.2 °C and 10.6–33.4, respectively. Light and scanning electron microscopy were used to identify the characteristics of C. geminatum and provided the clear morphological structure for this species. The organism was primarily found in chains of two cells or single cell, and no longer chains were observed. Cells were irregularly spherical or slightly dorso-ventrally, with size ranged between 28 and 36 μm and longer than wide. A large nucleus in the center with numerous golden chloroplasts was present, and the cingulum made 1.5 turns around the cell. The concentration of C. geminatum ranged from 102 to greater than 107 cells l−1 during the bloom period. Nutrient concentration ranges during the bloom were 1.29–81.00 μM NO3, 0.14–12.14 μM NO2, 0.21–6.29 μM NH4, 0.23–6.26 μM PO4 and 3.29–171.43 μM SiO3, respectively. Total biomass expressed in terms of chlorophyll a ranged from 2.44 to 135.45 μg l−1, with an average 19.9 μg l−1 in surface water throughout the PRE. Two main clusters corresponding to the water sectors were defined with multivariate analysis (cluster and nMDS). Based on the composition and abundance of phytoplankton, spatial variations were observed at a significant level (ANOSIM, R = 0.44, P < 0.01). Although the pairwise correlation analysis detected no significant effect of any single environmental variable on the abundance of C. geminatum, the multivariate analysis (BIO-ENV) between biotic and abiotic variables resulted in the best variables combination with all measured factors involved (temperature, salinity, turbidity, NO3, NO2, NH4, PO4 and SiO3) which showed a combined effect during the bloom of C. geminatum in the Pearl River Estuary (ρw = 0.477).  相似文献   

7.
Two Aureobasidium pullulans strains (L1 and L8), effective against some fruit postharvest pathogens were evaluated for VOCs production as a part of their modes of action towards five pathogens (Botrytis cinerea, Colletotrichum acutatum, Penicillium expansum, Penicillium digitatum and Penicillium italicum). The VOCs were assayed with a double petri dish assay against conidia germination of target pathogens. Results obtained showed that the VOCs generated by the antagonists inhibited significantly the conidia germination of all pathogens compared to the control. In particular, the conidia germination of all Penicillium was completely inhibited by VOCs produced by L1 and L8. In in vivo tests, apples and oranges were artificially inoculated with pathogen conidia and then biofumigated with VOCs emitted by both antagonists. The antagonistic treatment controlled significantly pathogen infection, confirming the results obtained in vitro tests. The best L1 and L8 VOCs activity was observed on apple inoculated with B. cinerea where the lesion diameter reduction observed was greater than the 88%. The compounds emitted by L1 and L8 strains were identified with the solid-phase microextraction (SPME)–gas chromatographic technique. Compounds as 2-phenyl, 1-butanol-3-methyl, 1-butanol-2-methyl and 1-propanol-2-methyl belonging to the group of alcohols were mainly produced for both strains, in the first 96 h of growth. These compounds were confirmed by comparison with standards. The pure compounds of VOCs cited above were used to determine the EC50 values for conidia germination of pathogens. The 1-propanol-2-methyl was the VOC least active against all tested fungi, with the EC50 values over 0.8 μl ml−1, while the 2-phenethyl alcohol was the most active with EC50 values lower than 0.8 μl ml−1, except for the C. acutatum (1.97 μl ml−1). The present study demonstrated, for the first time, that the production of VOCs could play an essential role in the antagonistic activity of two A. pullulans strains against five fruit postharvest pathogens.  相似文献   

8.

Phenylethanoid glycosides (PeG) are a class of polyphenols found in some plants that have pharmaceutical effects as anti-inflammatories and anti-oxidants. The presence of PeG (acteoside) in the aerial parts of Scrophularia striata Boiss. has been demonstrated. Considerable progress has been made using plant cell cultures to stimulate formation and accumulation of secondary metabolites. The present study optimized phenylethanoid production from shake flasks to bioreactor using a cell culture of S. striata. The optimal conditions for production of cell biomass by scale-up to a bioreactor were determined to be a pH of 4.8, air flow rate of 0.5–1.5 l min−1, and mixing speed of 110–170 rpm at 25 ± 1 °C in darkness. Growth parameters and PeG production were measured and compared with the results from the shake flasks. The results showed that cell biomass was high in the bioreactor (15.64 g l−1 DW) and in the shake flasks (14.16 g l−1 DW). The acteoside content in the bioreactor was 1404.20 μg g−1 DW, which is threefold higher than in the shake flasks (459.71 μg g−1 DW). The echinacoside concentration in the bioreactor was 1449.39 μg g−1, 1.36-fold lower than in the shake flasks (1973.03 μg g−1 DW). This study established an efficient way for production of acteoside, the major PeG, in a bioreactor.

  相似文献   

9.
Abscission facilitates growth and reproduction and improves plant defenses against pathogens. This tightly regulated process is triggered by environmental cues and hormones such as ethylene and auxin. Because auxin is crucial for abscission, auxin response factors (ARFs) may play important roles in this process. Here, we examined changes in gene expression during abscission in tomato, focusing on regulation of genes encoding ARFs. Specifically, we analyzed the pattern of ARF gene expression in tomato flower pedicel explants treated with ethylene, the ethylene blocker 1-methylcyclopropene (1-MCP), or auxin to determine how auxin and ethylene affect ARF gene expression. In addition, we examined the spatial and temporal distribution of IAA during abscission by examining transgenic tomato plants expressing an IAA-inducible promoter fused to the GUS reporter gene (the P5::GUS ‘Chico III’ line). Flower removal from the explants quickly induced abscission by ethylene, which was inhibited by exogenous auxin or 1-MCP. During early abscission, auxin (or 1-MCP) regulated the expression of various ARFs, including ARF1, 2, 3, 4, 5, 7, 8-1, 9, 11, 12, 13, 13-1, 14, and 17, whereas ethylene had the opposite effect on most of these genes. Further analysis shows that during this stage, auxin may mediate the expression of ARF8-1, 9, 11, 12, 13, 13-1, and 14, whereas ethylene may mediate ARF13-1. During the later stage of abscission, ARF2, 8, 10, 11, and 19 were upregulated, and 8-1, 12, 13, and 13-1 were downregulated, compared with nonabscising parts of plants. Fluorometric GUS analysis indicated that GUS activity in the abscission zone remained stable at 4 h and sharply decreased after 8 h until abscission was complete (32 h).  相似文献   

10.
The response of a laboratory trickling filter to a step increase in pentachlorophenol (PCP) feed concentration was analyzed using continuous stirred tank (CSTR) and plug flow reactor (PFR) models. The CSTR model provided a slightly better fit to experimental data than the plug flow model when specific growth rate, μ, and PCP-degrading biomass concentration before the shock load, X0, were variable parameters but was clearly superior when the mean residence time, τ, was added as a third parameter. The three-parameter CSTR model accurately represented six of seven concentration response curves corresponding to step increases in PCP feed concentration of 12–165 mg l−1 and 20–150 mg l−1. The continuing improvement in system response to repetitive 20–150 mg l−1 shock loads was reflected by a monotonic increase in the optimal estimates of initial rate of biomass production.  相似文献   

11.
H2S-fumigation experiments with the sulphur-demanding plant Brassica oleracea L. (hybrid curly kale) were carried out to modulate glutathione levels in root tip cells. Plants were exposed in small fumigation cabinets to 0.4 μl l–1 H2S for 96 h. The data obtained by HPLC analysis of bimane-labeled thiols showed a slight increase of glutathione contents of about 20% in the roots of H2S fumigated plants. The histochemical non-destructive assay for the determination of glutathione in single cells of whole plant organs was carried out for the first time by the use of monochlorobimane (BmCl) in situ to give a fluorescent GSH–bimane conjugate, followed by a fixation procedure. A significant increase of the fluorescence signal after the H2S treatment was localized in the cytoplasm as well as in the nucleoplasm of root meristem cells.  相似文献   

12.
Experiments were conducted to elucidate the hormonal induction and regulation of rhizome growth in rhubarb (Rheum rhabarbarum L.). It was found that ethylene is the key regulator of rhizome induction and development. The role of jasmonic acid (JA) and its interaction with ethylene in rhizome induction and growth were also examined. Both ethylene and JA have a significant effect on promoting rhizome formation in vitro. Conversely, the ethylene biosynthesis inhibitor aminoethoxyvinylglycine (AVG) (1.5 μM) inhibited rhizome induction in multiple-shoot clumps in vitro, and suppressed the stimulatory effects of exogenously applied ethephon (1 mg l−1) and JA (10 ng l−1) in promoting mini-rhizome formation, further confirming the role of endogenous ethylene in the process. In addition, rhizome growth was significantly enhanced in the presence of both ethylene and JA (ethephon 1 mg l−1 and JA 10 ng l−1) compared to JA alone. These results suggest that endogenous ethylene is the key regulator of rhizome growth in rhubarb and JA promotes rhizome formation, possibly through inducing endogenous ethylene synthesis.  相似文献   

13.
White shrimp Litopenaeus vannamei which had been injected with the hot-water extract of Spirulina platensis at 6, 10, and 20 μg g?1, or immersed in aerated seawater containing extract at 200, 400, and 600 mg L?1 were challenged with Vibrio alginolyticus at 1.5 × 106 or 1.4 × 106 colony-forming units (cfu) shrimp?1, and then placed in seawater. Survival rates of shrimp that received the extract of S. platensis at 6–20 μg g?1, and those of shrimp immersed in seawater containing the extract at 400 and 600 mg L?1 were significantly higher than those of control shrimp after 24–96 and 48–96 h, respectively. In a separate experiment, the hyaline cell (HC) count, granular cell (GC, including semi-granular cell) count, total haemocyte count (THC), phenoloxidase (PO) activity, respiratory burst (RB), superoxide dismutase (SOD) activity, glutathione peroxidase (GPx) activity, and lysozyme activity were measured when shrimp were injected with the extract at 6, 10, and 20 μg g?1, and immersed in seawater containing the extract at 200, 400, and 600 mg L?1. These parameters directly increased with the concentration, and significantly increased when shrimp were immersed in the seawater containing the extract at 0.5–4 h. L. vannamei that received all doses of the extract via injection or via immersion all had increased phagocytic activity and clearance efficiency to V. alginolyticus at 12–72 h and 3–4 h, respectively. It was concluded that L. vannamei that received the hot-water extract of S. platensis had enhanced innate immunity and increased resistance against V. alginolyticus infection.  相似文献   

14.
Fermentation kinetics of growth and β-carotene production by Rhodotorula glutinis DM28 in batch and continuous cultures using fermented radish brine, a waste generated from fermented vegetable industry, as a cultivation medium were investigated. The suitable brine concentration for β-carotene production by R. glutinis DM28 was 30 g l?1. Its growth and β-carotene production obtained by batch culture in shake flasks were 2.2 g l?1 and 87 μg l?1, respectively, while, in a bioreactor were 2.6 g l?1 and 186 μg l?1, respectively. Furthermore, its maximum growth rate and β-carotene productivity in continuous culture obtained at the dilution rate of 0.24 h?1 were 0.3 g l?1 h?1 and 19 μg l?1 h?1, respectively, which were significantly higher than those in the batch. Therefore, improved growth rate and β-carotene productivity of R. glutinis in fermented radish brine could be accomplished by continuous cultivation.  相似文献   

15.
Cardiac activity and arterial throughput were studied in the chiton Acanthopleura japonica following exposure to waterborne copper. In order to understand the mechanism of copper action, exposure to the metal was combined with injection of the sodium channel blocker tetrodotoxin, and two cholinergic antagonists, atropine and benzoquinonium. Copper (0.25, 0.33, 0.5, 1 mg l− 1; 3 h) induced a concentration dependent reduction in heart rate and, at the highest concentration, a reversible arrest of heartbeat. Tetrodotoxin (1 μM), atropine (20 μM) and benzoquinonium (5 μM) significantly antagonized the reduction in heart rate elicited by copper (0.33 mg l− 1, 3 h). As copper also induced a reduction of heartbeat amplitude and consequent arterial throughput, these results support the hypothesis that the metal activates an extrinsic cholinergic control of heart activity in chitons, resulting in a decrease in haemolymph circulation and, consequently, of metal uptake through the gills.  相似文献   

16.
Observations gained from model organisms are essential, yet it remains unclear to which degree they are applicable to distant relatives. For example, in the dicotyledon Arabidopsis thaliana (Arabidopsis), auxin biosynthesis via indole-3-pyruvic acid (IPA) is essential for root development and requires redundant TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS 1 (TAA1) and TAA1-RELATED (TAR) genes. A promoter T-DNA insertion in the monocotyledon Brachypodium distachyon (Brachypodium) TAR2-LIKE gene (BdTAR2L) severely down-regulates expression, suggesting reduced tryptophan aminotransferase activity in this mutant, which thus represents a hypomorphic Bdtar2l allele (Bdtar2lhypo). Counterintuitive however, Bdtar2lhypo mutants display dramatically elongated seminal roots because of enhanced cell elongation. This phenotype is also observed in another, stronger Bdtar2l allele and can be mimicked by treating wild type with L-kynerunine, a specific TAA1/TAR inhibitor. Surprisingly, L-kynerunine-treated as well as Bdtar2l roots display elevated rather than reduced auxin levels. This does not appear to result from compensation by alternative auxin biosynthesis pathways. Rather, expression of YUCCA genes, which are rate-limiting for conversion of IPA to auxin, is increased in Bdtar2l mutants. Consistent with suppression of Bdtar2lhypo root phenotypes upon application of the ethylene precursor 1-aminocyclopropane-1-carboxylic-acid (ACC), BdYUCCA genes are down-regulated upon ACC treatment. Moreover, they are up-regulated in a downstream ethylene-signaling component homolog mutant, Bd ethylene insensitive 2-like 1, which also displays a Bdtar2l root phenotype. In summary, Bdtar2l phenotypes contrast with gradually reduced root growth and auxin levels described for Arabidopsis taa1/tar mutants. This could be explained if in Brachypodium, ethylene inhibits the rate-limiting step of auxin biosynthesis in an IPA-dependent manner to confer auxin levels that are sub-optimal for root cell elongation, as suggested by our observations. Thus, our results reveal a delicate homeostasis of local auxin and ethylene activity to control cell elongation in Brachypodium roots and suggest alternative wiring of auxin-ethylene crosstalk as compared to Arabidopsis.  相似文献   

17.
Low aqueous phase solubility is the major limiting factor in successful biodegradation of pyrene and other polycyclic aromatic hydrocarbons (PAH), which can, however, be overcome by using a suitable surfactant. Biodegradation of pyrene by immobilized cells of Mycobacterium frederiksbergense in presence of non-ionic surfactant Tween 80 was evaluated. For cell immobilization, beads were prepared using calcium alginate as the immobilizing material based on immobilized cell viability and mechanical stability of the beads. Complete degradation of pyrene was achieved employing the immobilized cells in batch shake flask experiments for all four different initial concentrations of the PAH at 100 mg l−1, 200 mg l−1, 400 mg l−1 and 1000 mg l−1. The experimental results of biodegradation of pyrene at very high initial concentration of 1000 mg l−1 using the cell immobilized beads was further investigated in a 3 l fermentor operated at controlled conditions of 150 rpm, 28 °C, pH 7 and 1.5 l min−1 aeration. The results confirmed complete degradation of the PAH with a very higher degradation rate of 250 mg l−1 d−1, which is so far the highest value reported for pyrene biodegradation.  相似文献   

18.
A feather-degrading bacterium was isolated from the gut of the tarantula Chilobrachys guangxiensis, and was classified as Bacillus subtilis (named Bacillus subtilis CH-1) according to both the phenotypic characteristics and 16S rRNA profile. The improved culture conditions for feather-degrading were 10.0 g l−1 mannitol, 10.0 g l−1 tryptone, 0.1 g l−1 MgCl2, 0.4 g l−1 KH2PO4, 0.3 g l−1 K2HPO4, 0.5 g l−1 NaCl, and 2.0 g l−1 intact feather, with pH 8.5 and 37 °C. In the optimized medium, the intact black feather was completely degraded by Bacillus subtilis CH-1 in 24 h. Furthermore, four kinds of enzymes which include extracellular protease Vpr, peptidase T, γ-glutamyl transpeptidase and glyoxalmethylglyoxal reductase were identified as having principal roles. Simultaneously, the relationship between the disulfide bond reducing activity (DRT) and the keratinase activity (KT) in B. subtilis CH-1 fermentation system was discussed. This is the first report for a feather-degrading enteric bacterium from tarantula. The identification of the enzymes shines a light on further understanding the molecular mechanism of feather-degrading by microbes.  相似文献   

19.
Fungi producing high xylanase levels have attracted considerable attention because of their potential industrial applications. Batch cultivations of Aspergillus terricola fungus were evaluated in stirred tank and airlift bioreactors, by using wheat bran particles suspended in the cultivation medium as substrate for xylanase and β-xylosidase production. In the stirred tank bioreactor, in physical conditions of 30°C, 300 rpm, and aeration of 1 vvm (1 l min−1), with direct inoculation of fungal spores, 7,475 U l−1 xylanase was obtained after 36 h of operation, remaining constant after 24 h. In the absence of air injection in the stirred tank reactor, limited xylanase production was observed (final concentration 740 U l−1). When the fermentation process was realized in the airlift bioreactor, xylanase production was higher than that observed in the stirred tank bioreactor, being 9,265 U l−1 at 0.07 vvm (0.4 l min−1) and 12,845 U l−1 at 0.17 vvm (1 l min−1) aeration rate.  相似文献   

20.
The toxic effects of Aroclor 1254 (0.05, 0.5, 5 and 50 μg l?1) on scallop (Chlamys farreri) immune system in vivo were studied. The results showed that Aroclor 1254 had significant toxic effect on the parameters tested in this paper (P < 0.05). The total number of haemocytes, the proportion of granulocytes, phagocytosis in all groups as well as the lysosomal membrane stability (LMS) in 5, 50 μg l?1 and bacteriolytic activity 0.5, 5, 50 μg l?1 treatments decreased significantly, while the proportion of hyalinocytes and the production of O2- in all treatments remarkably increased during the sampling time and tended to be stable gradually after 6–15 d. The bacteriolytic activity in 0.05 μg l?1 treatments, LMS in 0.05, 0.5 μg l?1 groups and the DNA damage (comet ratios and arbitrary values) in all treatments increased at the beginning of exposure and reached their peaks on day 1, day 1, day 6 and day 3, following that they all decreased gradually and became stable after 9–15 d. When the indices reached stability, except for DNA damage was higher than controls, the others were all significantly lower than those of controls (P < 0.05). Thus, Aroclor 1254 has evident toxic effects on scallop immune system, which supports the view that a relationship exists between pollution and immunomodulation in aquatic organisms. Also it supports the speculation that the PCBs pollution is one of the important reasons of the mass mortality of the C. farreri.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号